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Abstract: The aim of this article was to address the lump,
lump-one stripe, multiwave and breather solutions for
the Hunter–Saxton equation with the aid of Hirota
bilinear technique. This model concerns in a massive
nematic liquid crystal director field. By choosing the
function f in Hirota bilinear form, as the general quad-
ratic function, trigonometric function and exponential
function along with appropriate set of parameters, we
find the lump, lump-one stripe, multiwave and breather
solutions successfully. We also interpreted some three-
dimensional and contour profiles to anticipate the wave
dynamics. These newly obtained solutions have some
arbitrary constants and so can be applicable to explain
diversity in qualitative features of wave phenomena.

Keywords: lump solitons, lump-one stripe, multiwaves,
breathers, Hunter–Saxton equation, solitarywave solutions

1 Introduction

In waves theory, nonlinear partial differential equations
(NPDEs), which explain nonlinear aspects, appear in an
extensive diversity of scientific and engineering applica-
tions, for example, plasma physics, fluid dynamics, hydro-
dynamics, acoustics, solid-state physics, hydrodynamics
and theory of turbulence, optics, optical fibers, chemical

physics, chaos theory and many other applications. The
study of NPDEs becomes increasingly significant because
of their prominent features. A main attachment of scien-
tific work has been perceived in the last few decades on
NPDEs such as efficient integration method [1], improved
modified Kudryashov method [2], asymptotic method [3],
geometric singular perturbation [4], Lie symmetry analysis

[5], Painleve expansion procedure [6], 






G
G

′ expansion

approach, highly optical solitons, homotopy perturbation
method, the semi-inversemethod [7–10], simple-equation
method, logistic function, Backlund transformation tech-
nique, asymptotic method, integrability method [11–15],
extended mapping method, non-perturbative method,
nonlinearity and conservation, Hirota bilinear method
[16–19], extended and modified direct algebraic method,
extended mapping method and Seadawy techniques
[20–27] and so on.

There are many renowned models, such as Vakhnenko
dynamical equation [35], nonlinear Schrodinger equation
[36], KdV equation [37], Camassa-Holm equation [38], sine-
Gordon equation [39] and Biswas-Milovic equation [40],
but here we will obtain the exact solutions of the Hunter–
Saxton (HS) equation [41],

u ku u u uu2 2 0.txx x x xx xxx− + + = (1)

This equation is used for propagation of orientation
waves in a massive nematic liquid crystal director field.
The HS equation can be used as a short wave limit of the
Camassa–Holm equation:

m mu um m k u u2 0, .t x x xx+ + = = + − (2)

The content of this article is organized as follows: in
Section 2, we evaluate the lump solutions via some
three-dimensional (3D) and contour shapes. In Section
3, we find out lump-one stripe interactional solutions
and some physical 3D shapes. In Section 4, the brief dis-
cussion of multiwave solutions for the proposed model is
given. In Section 5, we find breather solutions. In Section
6, there are results and discussion about our newly
obtained solutions and comparison with already pub-
lished work, and in Section 7, we give concluding remarks.
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2 Lump solution

In the direction to find lump solutions of equation (1), we
apply the transformation [42],

u m b f2 ln ,x= + ( ) (3)

which transforms equation (1),

kbf f bff f bmf f b f f f4 12 12 4 0.x y x xxxx x xxxx
3 2 3 4 2 3

− + ⋯ + + =

(4)
Now the function f in equation (5) can be assumed
as [36],

f a g h ,7
2 2

= + + (5)

where g2 = a1x + a2t + a3, h
2 = a4x + a5t + a6. However, ai

(1 ≤ i ≤ 7) are all real parameters to be measured. Now,
substituting f into equation (5) and associating the coeffi-
cients of x and t imply us the subsequent result on
parameters:
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The parameters in equation (6) prevent the lump solu-
tions to equation (1)
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Set II.

a a a a a a a a
a a
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(8)

The parameters in equation (8) imply the lump solutions
to equation (1)

u x t

m b ia a ia t ia x a a a t a x
a a ia t ia x a a t a x
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(9)

3 Lump-one stripe soliton
interaction solution

To this aim, f in the bilinear equation can be assumed
as [43],

f g h b f aexp ,2 2
1 1 7= + + ( ) + (10)

where g2 = a1x + a2t + a3, h
2 = a4x + a5t + a6, f1 = k1x + k2t.

However, ai (1 ≤ i ≤ 7), k1 and k2 are all real parameters to
be found. Now, inserting f in equation (3) and relating the
coefficients of x and t give us:
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The parameters in equation (11) create the required solutions to equation (1)

u x t m b b k ia a iμ ia x a a μ a x
a b a iμ ia x a μ a x
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where Δ e k x
1

ia k mk t
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The parameters in equation (13) reveal the required solutions to equation (1)
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4 Multiwave solutions

For finding multiwave solutions, we use the succeeding
transformation in equation (1) [44],

u x t ψ ξ ξ k x c t, , .1 1( ) = ( ) = − (15)

With the help of the above transformation, we obtain:

kk ψ k k ψ ψ c k ψ k ψψ2 2 0.1 1
3

2 1 1
2 3

1
3 3

− + − + =
′ ′ ″ (16)

Now with the aid of the following assumption in equa-
tion (16)

ψ f2 ln ,ξ= ( ) (17)

we get,
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To find the multiwave solutions of equation (18), we
apply the subsequent hypothesis [40]:

f b a ξ a b a ξ a

b a ξ a

cosh cos
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0 1 2 1 3 4

2 5 6
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(19)

where a1, a2, a3, a4, a5 and a6 are any constants to be
examined. Substituting equation (19) into equation (18)
via symbolic computation and collecting the coeffi-
cients of all powers of a ξ asinh 1 2( + ) and a ξ asinh 5 6( + ),

a ξ acos 3 4( + ), a ξ acosh 1 2( + ), a ξ acosh 5 6( + ), sin a ξ a3 4( + ),
functions to be zero, we get a system of equations. After
solving this algebraic system, we obtain some different
parametric values:
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By substituting equation (20) into equation (19), we get

f b a ξ a b a ξ a

b a ξ a
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As f solves equation (18), then ψ solves equation (16) via ψ f2 ln ξ= ( ) we obtain
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5 Breather solutions

For finding the breathers of equation (18), we assume the
successive transformation [45]:

f b
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(23)

where a s′ are any real constants to be found. Inserting
equation (23) into (18) via computational Mathematica
and collecting all the coefficients of trigonometric and
exponential functions to be zero we get a system of equa-
tions. After solving this system, we found:
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As f solves equation (18), after that ψ solves equation (16)
through applying ψ f2 ln ξ= ( ) , we get
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6 Results and discussion

In this section, we have made a detailed comparison of
our accomplished results with the earlier literature.
Many researchers used various methods for calculating
solitary wave solutions of the Hunter–Saxton equation.
Particularly, Beals et al. applied inverse scattering tech-
nique [46], Alberto et al. used distance functional [47],
Lenells applied properties of the Riemannian [48],
Lenells et al. applied a geometric approach [49], Bressan
et al. utilized Lipschitz metric [50], Zhao et al. applied
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conservation laws [51], Korpinar used symmetry analysis
[51] and Zhao applied conservation laws to obtain the
exact solutions for the presented model [52]. But here,
in this work we have found the lump, lump-one stripe,
multiwave and breather solutions for the Hunter–Saxton

equation with the aid of Hirota bilinear approach. These
types of solutions have been utilized in many fields of
science, for example, physics, chemistry, biology, finance,
oceanographic engineering, capillary flow and nonlinear
optics [42–45]. Nowwewill noticehowour obtained results

Figure 1: The graphs of the solution u(x, t) in equation (7) are shown via suitable parameters m = 5, b = −5, a7 = 7, a6 = 5. 3D graphs at (i)
a3 = 0.2, (ii) a3 = 0.8 and (iii) a3 = 2, respectively.

Figure 2: The profiles of the solution u(x, t) in equation (7) are shown by different choices of parameters m = 5, b = −5, a7 = 7, a6 = 5. 3D
graphs at (i) a3 = 5, (ii) a3 = 8 and (iii) a3 = 15, respectively.

Figure 3: The corresponding contour profiles for Figure 1.
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alter their shapes via different values of a3 from Figure 1(i),
and we can see at a3 = 0.2 that u has a maximum value at
some points, expressing 3D shape of u making two bright
lump solutions. Similarly, in Figure 1(ii) at a3 = 0.8 the
same features are observed. But at a3 = 2 in Figure 1(iii),

we obtain three bright lump solutions. In the sameway, for
a3 = 5 in Figure 2(i) we have achieved seven bright
lump solutions and the process was repeated for gradu-
ally increasing values of a3, for instance, a3 = 8, a3 = 15
(Figure 2(ii) and (iii)) respectively. Figures 3 and 4 express

Figure 4: The associating contour graphs for Figure 2.

Figure 5: The profiles of the solution u(x, t) in equation (14) via various choices of parameters m = 1, b = 5, a3 = 0.2, a4 = 1, a5 = 2, a6 = 5,
b1 = 2, k1 = −1, k = 1. Contour profiles at (i) a3 = 0.2, (ii) a3 = 0.8 and (iii) a3 = 2, respectively.

Figure 6: The shapes of the solution u(x, t) in equation (14) are shown by various choices of parameters m = 1, b = 5, a3 = 0.2, a4 = 1, a5 = 2,
a6 = 5, b1 = 2, k1 = −1, k = 1. 3D graphs at (i) a3 = 5, (ii) a3 = 10 and (iii) a3 = 15, respectively.

Lump, lump-one stripe, multi wave and breather solutions for the Hunter–Saxton equation  5



the relating contour profiles for Figures 1 and 2, respec-
tively. Now we have observed how our obtained solutions
change their wave structure via appropriate choices of a3
from Figure 5(i), and we can notice a lump-one stripe

soliton at a3 = 0.2. Similarly, Figures 5(ii), 5(iii) and
6(i)–(iii) show how a lump-one stripe soliton rises or des-
cends for different values of a3. Figures 7 and 8 present the
associating contour graphs for Figures 5 and 6, respectively.

Figure 7: The relating contour graphs for Figure 5.

Figure 8: The associating contour profiles for Figure 6.

Figure 9: The profiles of the solution u(x, t) in equation (22) via various choices of parametersm = 1, b = 5, a4 = 1, a5 = 2, a6 = 5, a7 = 1, b1 = 2,
b2 = 1, k1 = −1, k = 1. 3D graphs at (i) a3 = 0.2, (ii) a3 = 0.8 and (iii) a3 = 2, respectively.

6  Aly R. Seadawy et al.



Also, Figures 9(i)–(iii) and 10(i)–(iii) show kink wave
and their changes in wave shape via a3 = −1, a3 = 0.2,
a3 = 0.5, a3 = 0.8, a3 = 2 and a3 = 5, respectively. Similarly,

Figures 11(i)–(iii) and 12(i)–(iii) show solitary wave and the
changes in their structure through a2 = −1, a2 = 0.2, a2 = 0.5,
a2 = 0.8, a2 = 2 and a2 = 5, respectively. Finally, Figures 13

Figure 10: The profiles of the solution u(x, t) in equation (22) via various choices of parametersm = 1, b = 5, a4 = 1, a5 = 2, a6 = 5, a7 = 1, b1 = 2,
b2 = 1, k1 = −1, k = 1. 3D graphs at (i) a3 = 5, (ii) a3 = 10 and (iii) a3 = 15, respectively.

Figure 11: The graphs of the solution u(x, t) in equation (25) through different choices of parametersm = 1, p = 5, a4 = 1, b0 = 1, b1 = 2, k1 = −1,
k = 1. 3D graphs at (i) a2 = −1, (ii) a2 = 0.2 and (iii) a2 = 0.4, respectively.

Figure 12: The shapes of the solution u(x, t) in equation (25) via appropriate choices of parametersm = 1, p = 5, a4 = 1, b0 = 1, b1 = 2, k1 = −1,
k = 1. 3D graphs at (i) a2 = 0.8, (ii) a2 = 2 and (iii) a2 = 15, respectively.
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and 14 present the concerning contour graphs for Figures 11
and 12, respectively.

7 Concluding remarks

The purpose of this article is to accumulate the lump,
lump-one stripe, multi wave and breather solutions for
the Hunter–Saxton equation by way of Hirota bilinear
scheme and through defining appropriate transforma-
tions. We have successfully generated some new exact
solutions to the concerning model. The 3D and contour
graphs mapped different numeric values, to observe the
physical behavior of the system. For better understanding
and more effectiveness, we have also explained the geo-
metry of the graphs. The attained solutions show that the
proposed method is very reliable, aggressive and simple,
and so, the recommended idea could be extended for
further nonlinear models in mathematical physics.
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