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Abstract: A high accuracy of experimental correlations
on the heat transfer and flow friction is always expected
to calculate the unknown cases according to the limited
experimental data from a heat exchanger experiment.
However, certain errors will occur during the data proces-
sing by the traditional methods to obtain the experi-
mental correlations for the heat transfer and friction. A
dimensionless experimental correlation equation including
angles is proposed to make the correlation have a wide
range of applicability. Then, the artificial neural networks
(ANNs) are used to predict the heat transfer and flow friction
performances of a finned oval-tube heat exchanger under
four different air inlet angles with limited experimental
data. The comparison results of ANN predictionwith experi-
mental correlations show that the errors from the ANN
prediction are smaller than those from the classical correla-
tions. The data of the four air inlet angles fitted separately
have higher precisions than those fitted together. It is
demonstrated that the ANN approach is more useful than
experimental correlations to predict the heat transfer and
flow resistance characteristics for unknown cases of heat
exchangers. The results can provide theoretical support
for the application of the ANN used in the finned oval-
tube heat exchanger performance prediction.

Keywords: heat transfer, finned oval-tube heat exchanger,
artificial neural network, air inlet angle, prediction

Nomenclature

a length of the major axis/m
b length of the minor axis/m
Dc fin collar outside diameter/m
E experimental data (output value)
f flow friction factor
Fh fin height/m
Fl fin length/m
Fs fin spacing/m
Fw fin width/m
JF JF factors, dimensionless
mse mean squared error
n number of samples
Ntr number of tube rows
Ntp number of tube-passes
Nu Nusselt number
P predicted value (target value)
Pl longitudinal tube pitch/m
Pt transverse tube pitch/m
R linear regression coefficient
Re Reynolds number
T temperature/°C
θ air inlet angles/°

1 Introduction

External finned tube heat exchangers are widely used in
various industries such as chemical engineering and
heating and ventilation compressor intercoolers. In par-
ticular, they occupy an extremely significant position in
the air cooling towers and air separators. The extended
surfaces on the air side are used effectively to enhance
the heat transfer performance of such heat exchangers.
The finned surface is a common type of extended sur-
faces. It can be used to destroy the boundary layer,
increase the surface area, and change the flow pattern
to meet the demand of heat transfer enhancement. The
schematic diagram of the plain finned tube heat exchanger
units is shown in Figure 1, including circular tubes, oval
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tubes, and flat tubes. As usual, the water or steam flows
inside the tubes and the air flows across the finned tube
bundles. Thus, the study on the flow and heat transfer
performance of finned tube heat exchangers is very sig-
nificant for the design and the optimization of heat
exchangers. Much attention is paid on the experimental
and numerical research of finned tube heat exchangers,
and more useful results and correlations have been
presented [1–5].

With the rapid development of artificial intelligence
(AI) techniques, more intelligence algorithms are used
successfully during the process of the optimal design of
heat exchangers, such as artificial neural network (ANN)
[6–10], evolution strategies (ES) and evolutionary pro-
gramming (EP) [11], genetic algorithm (GA) [12–14], and
particle swarm optimization (PSO) [15–18]. ANN has many
attractive advantages. For example, ANN offers a new
way to predict non-linear, uncertain, or unknown com-
plex system without any explicit condition about input/
output relationship. It can be applied to learn complex
nonlinear relationship through certain network config-
uration and can be applied to simulate dynamically and
control unknown or uncertain process [9].

Now ANN is widely used in various application areas
such as function fitting, dynamic control, data clustering,
pattern recognition, and system identification. In the
thermal system, ANN is applied for performance predic-
tion, heat transfer analysis, and dynamic control. For
example, Yang and Sen [19,20] reviewed the work on
dynamic modeling and controlling of heat exchangers
using ANN and GA. Wang et al. [9,21,22] did much work
on the performance prediction and analysis of the heat
transfer and friction for heat exchangers through the
ANN methods. Hosoz et al. [8] and Gao et al. [23] pre-
dicted the performances of cooling towers with ANN.
Akbari et al. [24,25] predicted the steady state and the
transient performance of a run-around membrane energy
exchanger for yearly nonstop operation. Zdaniuk et al.
[26] correlated the heat transfer and friction in helically

finned tubes using ANNs, and it was concluded that
ANNs were well suited for the application to helically
finned tubes. Then, Zdaniuk et al. [27] made a compar-
ison of ANNs with symbolic-regression-based correla-
tions for optimization of helically finned tubes in heat
exchangers. It was concluded that the predictive cap-
ability of the ANNs was superior to empirical correlations
obtained by symbolic regression, when considering only
their applicability to the available datasets, but much
care must be exercised when using ANNs for optimization
purposes to enhance the heat transfer. Mohanraj et al.
[28] made a review about the applications of ANN for
the energy analysis of refrigeration, air conditioning,
and heat pump systems (RACHP). It was concluded that
ANN could be successfully applied in the field of RACHP
systems with acceptable accuracy. Besides, ANN is also
used in the optimization of the HVAC system energy con-
sumption in a building [29] and the type of the helical
wire inserted tube in heat exchangers [30], and to predict
thermal performances of the thermoelectric generator for
the waste heat recovery [31] and the carbon nanotube
nanofluid in a tube [32]. From the aforementioned suc-
cessful applications of ANN in the thermal system, it can
be seen that ANN is a significant tool for thermal analysis
in the engineering system, especially in heat exchangers.

Furthermore, there is a widespread problem that the
air inlet direction is not always perpendicular to the heat
exchanger surface in many cases for the direct and
indirect air cooling systems. The air oncoming flow direc-
tion has an important effect on the heat transfer and
pressure drop performances of the air-cooled radiator.
So the research and development of air inlet angles’ influ-
ence on the air-side performances of heat exchangers
have been paid more attention. Liu et al. [33] numerically
studied the effect of the air inlet angles on the air-side
performance of plate-fin heat exchangers in automotive
radiators. Also the experiments were accomplished on
finned oval-tube heat exchangers under four different
air inlet angles in the author’s previous studies [34–36].

Figure 1: Schematic diagram of finned tube heat exchanger units: (a) circular tube, (b) oval tube, and (c) flat tube.
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After the experiment has been completed, a high
accuracy of dimensionless correlations on the heat transfer
and friction is always expected according to the limited
experimental data. However, the experiment conditions
are limited. So it needs to cost much energy to acquire
more experiment data to improve the precision. Besides,
during the procedure of reducing experimental data to
get the experimental correlation for heat transfer and
friction, certain errors are always generated by the tradi-
tional methods. Pacheco-Vega et al. [10] applied the ANN
approach to accurately model thermal performances for
the fin-tube refrigerating heat exchanger with limited
experimental data, and the results showed that the ANN
methodology gave an upper bound of the estimated error
in the heat rates and the ANN procedure could also help
the manufacturer to find where new measurements are
needed. Peng and Ling [37] applied ANN to predict the
thermal characteristics on plate-fin heat exchangers with
limited experimental data. The predicted values were
found to be in good agreement with the actual values
from the experiments. However, they only researched
on the effectiveness of ANN to predict thermal perfor-
mances for fin-tube refrigerating heat exchangers and
plate-fin heat exchangers with the limited experimental
data, while few on the comparison of the predicted per-
formances of ANN with those of experimental correla-
tions of finned oval-tube heat exchangers and few on
the difference between the heat transfer and flow char-
acters predicted together and predicted separately.

In view of the aforementioned facts, this study pro-
poses a dimensionless experimental correlation equation
including air inlet angles to make the correlation have a
wide range of applicability. It uses the air inlet angle
divided by 90 degrees to make the angle dimensionless.
Then, this study shows the procedure of an ANN fitting
tool to predict the heat transfer and resistance perfor-
mances on a finned oval-tube heat exchanger under
four air inlet angles with the limited experimental
data. Then, the performances of the results predicted
by ANN are compared with those by experimental cor-
relations. The results of Nu and f predicted separately
are compared with those of Nu and f predicted
together. Finally, the predicted performances when
the data of the four air inlet angles are fitted separately
are compared with those when they are fitted together
to predict Nu and f. The results can provide the theo-
retical support for the application of the artificial intel-
ligence in the heat exchanger performance prediction
and optimization.

2 Physical model and
experimental data

A finned oval-tube heat exchanger with two rows of tubes
and single tube-pass under four different air inlet angles
(90°, 60°, 45°, and 30°) was experimentally tested in the
author’s group [35]. The schematic view of the test finned
oval-tube heat exchanger is shown in Figure 2, and the
four air inlet angle (θ) is shown in Figure 3. To study the
effect of the air inlet angle on the flow and heat transfer
performance, the heat exchanger is arranged with an
inclined angle in the experiment. The experimental system
is shown in Figure 4.

During the experimental test, the hot water flows
inside the oval tubes that are in staggered arrangement,
while cold air flows across the finned oval-tube bundles,
acting as a coolant. The heat is transferred from the hot
water to the tube wall and then across the tube wall and
finned surfaces to the cold air. The experiment was
accomplished when the Reynolds number ranged from
1,300 to 13,000 on the air side. Sixty-three sets of experi-
mental data were obtained for 90°, and 44 for 60°, 45 for
45°, and 45 for 30°. The experimental maximum uncer-
tainties of the Nusselt number and the friction factor are
8.26% and 11.98%, respectively.

Because the convective heat transfer coefficient of the
tube side can be calculated with Gnielinski correlation
[38,39] and the thermal resistance of the heat-conductive
part is known, the air-side convective heat transfer coef-
ficient could be acquired through the thermal resistance
separation methods. After the data reduction procedures,
the experimental data have been fitted separately in loga-
rithmic coordinates to acquire the classical experimental
correlations of Nu versus Re and f versus Re under different

Figure 2: Schematic view of finned oval-tube heat exchanger.
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air inlet angles, which are presented in Table 1. The cor-
relation coefficient (R) and standard deviation (SD) are
used to quantify the generalization capacity. R and SD are
described in detail in ref. [35].

In practice, there may be other angles between the
heat exchanger and the inlet air, so to make the correla-
tion have a wide range of applicability, a dimensionless
experimental correlation equation including air inlet angles
is proposed. The air inlet angles divided by 90 degrees are
used to make the angle dimensionless. According to this
form of fitting calculation, the dimensionless correlations
with the air inlet angles are listed in equations (1) and (2).
They could provide a theoretical support for related engi-
neering applications









θNu 1.39 Re
90

,Dc
0.46

0.06
= (1)

where the correlation coefficient (R) and standard devia-
tion (SD) are 0.95 and 6.11, respectively.

f 69.26

Re
,

θ
Dc
0.43

90

0.006
( )

= (2)

where the correlation coefficient (R) and standard devia-
tion (SD) are 0.96, and 0.16, respectively. The angle

ranges (θ) in the aforementioned two correlations is
from 30° to 90°.

The comparisons of the experimental value with
the value calculated from the experimental correlations
including angles are shown in Figure 5. It can be seen
that the experimental correlations for the Nusselt number
has a relatively high accuracy, and 97% of the data are
within the error line of 15%. However, 96% of the data are
within the error line of 20% for the experimental correla-
tion of the resistance coefficient.

To obtain the change law of the comprehensive
heat transfer performance of the finned oval-tube heat
exchanger at various angles, the JF factor [40] is used.
JF is a dimensionless number that can effectively evaluate
the thermal and dynamic performance of a heat exchanger
since it includes both the j and the f factor. It is a larger-
the-better characteristic, and its description is given in
detail in ref. [40]. The JF factors of the finned oval-tube
heat exchanger at the four air inlet angles are compared
in Figure 6. Figure 6 shows when the Reynolds number is
relatively small, the comprehensive performance at 60° is
the best. While the Reynolds number is relatively large,
the comprehensive performance at 45° is the best, and
the critical Reynolds number is 6,685. The comprehensive
performance at 30° is the worst. The reason may be
that the air flow is disturbed, and the heat transfer is
enhanced when the air flows into the heat exchanger
obliquely at an angle. But when the air inlet angle is 30
degrees, the air flow resistance loss is too large, resulting
in the smallest comprehensive performance.

The experimental data are divided into three types:
70% of the total data are used to train the networks, 15%
to validate the networks, and 15% to test the networks.
The data selection of training, validation and test may
be somewhat arbitrary, and these data are based on
approximate uniform variation of ReDc and total number
of data. Detailed information are presented in the
following section.

Air

Figure 3: Four different air inlet angles (θ).

Figure 4: Schematic diagram of experimental system [35]. 1,
Entrance; 2, transition section; 3, contraction section; 4, straightening
section; 5, test section; 6, straightening section; 7, contraction sec-
tion; 8, flow metering duct; 9, expansion section; 10, blower; 11,
electric heating rod; 12, water tank; 13, valve; 14, water pump; 15,
turbine flowmeter; 16, data acquisition system; 17, thermocouples grid;
and 18, U tube manometer.

Table 1: Classical experiment correlations of the finned oval-tube
heat exchanger

θ = 90° θ = 60°

Nu Nu 1.76ReDc
0.42

= Nu 1.90ReDc
0.43

=

f f 78.76 ReDc
0.44

= / f 42.46 ReDc
0.37

= /

θ = 45° θ = 30°
Nu Nu 1.15ReDc

0.48
= Nu 1.16ReDc

0.46
=

f f 47.39 ReDc
0.39

= / f 51.97 ReDc
0.39

= /

Finned oval-tube heat exchanger under different air inlet angles  971



3 Neural network configuration

ANNs consist of a great number of interconnect neurons.
Figure 7 illustrates two typical full-connect network con-
figurations. Such ANNs comprise not less than three
layers with a great many nodes, which are the input
layer, the hidden layer, and the output layer, and there
can be more than one hidden layer to be adjusted to
satisfy the desire to predict the objective parameters
well. Nodes assembled together into a column are called
a layer. Each connection between two nodes with a real
value is called weight. A node sometimes called neuron is
a basic information processing and operating unit in a
neural network. For each neuron, there exists an activa-
tion and a bias associated it. The feedforward or multi-
layer perception neural network is widely applied in
engineering applications among different types of ANNs
[22]. The input information is propagated forward through

the network, while the output error is back propagated
through the networks for updating the weights.

As described in Figure 7(a), the first layer with 10
nodes are called the input layer, and the last layer with
2 nodes are called the output layer, while the other two
layers in the middle are called hidden layers. There are
two hidden layers (with 10 and 5 nodes, respectively) of
the configuration in Figure 7(a) called 10-8-5-2. Although
there are many ways to design and implement ANN, it is
difficult to find an optimal network in consideration of
the uniqueness of a real problem. Therefore, a prior
choice, such as selection of network topology, training
algorithm, and network size, should be made on experi-
ence to keep the task to a manageable work [21,22].

Neural networks do well in fitting functions. In fact,
there is a proof that a fairly simple neural network can fit
any practical function. The standard network used for
function fitting in the ANN fitting tool is a two-layer
feedforward network trained with Levenberg–Marquardt,
with a sigmoid transfer function in the hidden layer and a
linear transfer function in the output layer. The default
number of hidden neurons is set to 10, and it can be
increased later if the network training performance is
poor. The number of output neuron is determined by
the target value associated with each input vector [41].

As mentioned earlier, the experimental data are par-
titioned into three parts: training data, validation data,
and testing data during ANN training processes. Training
data are presented to train the network, and the network
is adjusted according to its error; validation data are used
to measure the network generalization and to halt training
when generalization stops improving; testing data have
no influence on training and supply an independent mea-
sure of network generalization capability during and
after training. Function fitting is the process of training
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a neural network on a set of inputs to produce a corre-
lated set of target outputs. Once a neural network has
fitted the data, it will produce a generalization of the
input–output relationship and can be utilized to generate
outputs for inputs that were not trained on.

For the tested finned oval-tube heat exchanger in this
article, 10 independent parameters were fed to the input
layer of the network (as shown in Figure 7): the air inlet
angles (θ), the Reynolds number of the air side (ReDc), the
Reynolds number of the water side (Rew), the tempera-
ture of the inlet air (Tia) and the inlet water (Tiw), the
number of tube rows (Ntr), the number of tube-passes
(Ntp), the outer length of the major axis (a), the outer
length of the minor axis (b), and the fin collar outside
diameter (Dc). The main reason for selection of these ten
input variables is that these are the main parameters of
the heat exchanger and affect the target variables. These
variables are independent. The output layer contains two
parameters: the Nusselt number (Nu) and the friction

factor (f), which is shown in Figure 7(a). To find out the
difference between the results of Nu and f predicted sepa-
rately with those of Nu and f predicted together, Nu and f
are also predicted severally, whose corresponding config-
uration of ANN is shown in Figure 7(b), called 10-8-5-1.

In the present study, the experimental data for each
air inlet angle are trained separately by ANN. When Nu
and f are predicted together, for 90°, the input dataset is a
10 × 63 matrix, representing 63 samples of 10 elements,
and the output dataset is a 2 × 63 matrix, representing 63
samples of 2 elements; and the input datasets of other
three air inlet angles (60°, 45°, and 30°) are 10 × 44
matrix, 10 × 45 matrix, and 10 × 45 matrix, respectively;
and the output datasets are 2 × 44 matrix, 2 × 45 matrix,
and 2 × 45 matrix, respectively. When Nu and f are pre-
dicted separately, the network configuration of 10-8-5-1
shown in Figure 7(b) is applied, and the input datasets
are the same as the ones when Nu and f are predicted
together, while the output datasets of the four air inlet
angles (90°, 60°, 45°, and 30°) are 1 × 63 matrix, 1 × 44
matrix, 1 × 45 matrix, and 1 × 45 matrix, respectively.
Besides, when the experimental data of the four air inlet
angles are fitted together to predict the Nu and f together
or separately, the input datasets are 10 × 197 matrix; and
the output datasets are 2 × 197 matrix or 1 × 197 matrix,
respectively.

In addition, as the physical units of the ANN input–
output variables are different and the numerical ranges of
the ANN input–output data are different, to eliminate
these impacts, it is desirable to normalize all the input–
output data with the largest and smallest values of each
of the data sets. Consequently, to avoid any computa-
tional difficulty and to increase the training speed and
improve the convergent behavior, all of the input–output
pairs were normalized into the range of 0.15–0.85 based
on the previous studies [10,21,42], within which the acti-
vation function has an appropriate gradient. That is, the
input variables were scaled through the transformations:

x
x x

x x
S S S ,i

i i,min

i,max i,min
max min min=

−

−

( − ) + (3)

where Smax and Smin are 0.85 and 0.15, respectively. xi,max

is the maximum, and xi,min is the minimum value of the
individual input variable xi. So, even though the original
data is composed of dimensional unit and nondimen-
sional unit, the scaled input data are surely within the
range of 0.15–0.85. Such normalization is also applied to
new inputs to predict the Nusselt number and the friction
factor.

Figure 7: Configurations of two neural networks used for function
fitting for a finned oval-tube heat exchanger: (a) 10-8-5-2 neural
network and (b) 10-8-5-1 neural network.
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4 Results

In fitting problems, the ANN function fitting can select
data, create, and train a network. The mean-squared
error (MSE) and regression analysis are used to evaluate
the performance of ANN models. It is quantified in terms
of MSE, which is the average squared difference between
the outputs (the predicted data) and the targets (the
actual data) according to equation (4). Lower values are
better. A value closer to 0 indicates that a fit is more
useful for prediction, and zero means no error. Also linear
regression R measures the correlation between outputs
and targets using equation (5). An R value of 1 means a
close relationship and 0 means a random relationship.
MSE reflects the mean accuracy of the prediction, while
R reflects the scatter of the prediction. Both quantities are
important for an assessment of the relative success of the
ANN analysis.

n
E PMSE 1 ,

i

n

i i
1

2
∑= ( − )

=

(4)

R
E E P P

E E P P
,i

n
i i

i
n

i i
n

i

1

1
2

1
2

=

∑ ( − )( − )

∑ ( − ) ∑ ( − )

=

= =

(5)

where E is the experimental data (that is, the target
value), P is the predicted value obtained from ANN
(that is, the output value), and n is the total number of
data. Ē and P̄ are the mean values of E and P, respectively.
Besides, when MSE is used to evaluate the performance of
experimental correlations acquired from the traditional
methods and P is the computed value obtained from the
experimental correlations.

Note that in Table 2, MSE is the average squared
difference, which is determined from the outputs and
targets variables. Fifteen ANN configurations are trained,
and the prediction performances are compared. The values
of MSE of ANN are much smaller than the correlations.
Through the comparisons, it can be found that the perfor-
mance values (MSE) of the results obtained by different
ANN configurations are very close. Considering theminimum
errors of the predicting Nusselt number (Nu) and the
friction factor (f), ANN configuration of 10-8-5-2 with
four layers, which is shown in Table 2 with bold font, is
selected to predict the heat transfer and flow resistance
performances of the finned oval-tube heat exchanger in
this article.

4.1 Nu and f predicted together for four
different angles

As mentioned earlier, the training of the neural network
was terminated when the performance measured with the
validation data stops improving. Figure 8 shows the
train, validation, and test performances (MSE) during
the neural network training under the air inlet angle at
90° when Nu and f are predicted together. During the
iterative training of a neural network, an epoch is a single
pass through the entire training set. It can be seen that
the mean squared error descend rapidly, and the best
validation performances are acquired less than 11 epochs.

Both MSE and R are significant for an evaluation of
the relative success of the ANN function fitting analysis.
The performances of the function fitting with ANN for Nu
and f predicted together are presented in Table 3, which
also lists the values of MSE. Figure 9 depicts the linear
regressions of the outputs relative to targets of ANN func-
tion fitting and also gives the values of R and the linear
regression correlations of the output data comparative
with the target data of training, validation, test, and all
processes, under the air inlet angle θ = 90°. It can be
noticed that the values of R are more than 0.951, which
shows that all the output data and target data have close
relationships.

Besides, Table 4 presents the comparison of MSE of
ANN prediction with that of the experimental correlations
presented in Table 1. It can be seen that all the values of
MSE of ANN function fitting are smaller than those of the
correlations. That is, the results from ANN are better than
the ones from the correlations.

4.2 Nu and f predicted separately for four
different angles

For comparing the predicted performances with those of
Nu and f predicted together, Nu and f are predicted sepa-
rately, and the performances of ANN prediction are pre-
sented in Table 3. The results of Nu and f predicted
together and separately are compared with those from
correlations, which are presented in Table 4. It can be
noticed that the values of MSE of function fitting using
ANN are much smaller than those of correlations. It

974  Xueping Du et al.



means that the results from ANN function fitting are
better than the ones from experimental correlations. It
is indicated that in general it is useful of ANN function
fitting to fit experimental data to predict unknown cases,
instead of correlations.

From Table 4, it can be also seen that the values of
MSE are relatively close when Nu and f are predicted
separately and together. The comparative results of MSE
of Nu and f predicted together and separately by ANN with
those of classical correlations are shown in Figure 10. This
result can be seen intuitively from the figure.

4.3 Nu and f predicted for the four angles

The datasets of the four air inlet angles are fitted together
to predict Nu and f together or separately. The perfor-
mances and comparisons when Nu and f are predicted
together and presented in Table 5, while those when Nu
and f are predicted separately are presented in Table 6.
The comparisons of MSE of ANN with those of the corre-
lations with air inlet angles are also presented in Tables 5
and 6. It can be seen that the values of MSE of ANN are
smaller than those of correlations. Thus, it can be also
thought that better results could be acquired from ANN
predictions than from the experimental correlations.

From the comparisons of the performances of ANN
prediction presented in Tables 5 and 6, it can be found
that the values of MSE of Nu and f predicted separately

are smaller than the corresponding values of MSE of
Nu and f predicted together. Besides, comparing the
performances of the four air inlet angles fitted together
in Tables 5 and 6 with those of them fitted separately in
Table 4, the latter manner have higher precisions in most
cases. So it can be said that the results when the data of
the four air inlet angles fitted separately are better than
those when the data of the four air inlet angles fitted
together through ANN approach, because the thermal
performances of the four air inlet angles are distinctly
different, and large errors would be brought into the pre-
dicted results if the data of the four angles are fitted
together to predict Nu and f.

Table 2: Comparison of performances (MSE) by different ANN configurations with at θ = 90°

Configuration Performances of ANN ANN Correlations

All Train Validation Test Nu f Nu f

10-8-2 0.0006 0.0004 0.0007 0.0013 1.30096 0.0149 6.2535 0.0227
10-7-2 0.0006 0.0007 0.0002 0.0010 1.4874 0.0165
10-6-2 0.0003 0.0002 0.0004 0.0006 1.0114 0.0077
10-5-2 0.0004 0.0003 0.0007 0.0004 1.2492 0.0092
10-9-6-2 0.0004 0.0001 0.0005 0.0022 2.0759 0.0100
10-8-6-2 0.0004 0.0005 0.0005 0.0003 1.1984 0.0114
10-8-5-2 0.0004 0.0000 0.0025 0.0003 0.7897 0.0108
10-8-4-2 0.0003 0.0001 0.0005 0.0016 1.6703 0.0079
10-7-6-2 0.0009 0.0004 0.0007 0.0034 1.4683 0.0243
10-7-5-2 0.0005 0.0001 0.008 0.0017 1.4126 0.0116
10-7-4-2 0.0007 0.0003 0.0012 0.0021 2.3294 0.0164
10-6-4-2 0.0004 0.0003 0.0004 0.0010 0.9583 0.0109
10-5-4-2 0.0004 0.0002 0.0008 0.0008 1.1945 0.0096
10-9-8-6-2 0.0005 0.0001 0.0018 0.0010 1.3562 0.0121
10-9-7-5-2 0.0005 0.0000 0.0010 0.0026 1.2655 0.0131

0 2 4 6 8 10 12 14 16 0

17 Epochs

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

m
se

)

10-5

10-4

10-3

10-2

10-1

100

Train
Validation
Test
Best

Figure 8: ANN performances of the training record at the air inlet
angle θ = 90°.
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5 Discussion

Figure 10 shows the comparative results of MSE of Nu and
f predicted together and separately by ANN with those of
classical correlations. From Figure 10, it can be seen that
the values of MSE of ANN prediction are all much smaller
than those of the correlations, whether Nu and f are pre-
dicted together or separately. The comparison of MSE
of Nu and f predicted together for the four air inlet
angles with classical correlations and correlations with
the air inlet angles is shown in Figure 11, from which it
can be clearly seen that the values of MSE from the ANN
prediction are smaller than experimental correlations,
excepting the one of f for 60°. So it is demonstrated
that ANN prediction is much effective than the experi-
mental correlations.

In addition, the experimental data of only four air
inlet angles are acquired from ref. [34–36]. So Nu and
f under only these four angles are predicted due to
lack of experimental data of other angles. However, the
heat transfer performances under other angles are often
expected in practical engineering applications. Thus,
the heat transfer performances under different air inlet
angels could be predicted if more data of other air inlet
angles can be acquired through numerical simulation or
other methods.

It is well known that ANN is one of computer intelli-
gence algorithms, and there are no constant correlations
to express them. This article has only studied the ANN
function fitting tool to fit the experimental data to predict
Nu and f and compared the performances of ANN with
those of the experimental correlations. These processes
can be used to describe and demonstrate how the experi-
mental data are fitted through ANN approach to find out
the input–output relationship to predict the unknown
cases. By comparing the results, it can be concluded
that the results from ANN are better than the ones from

the experimental correlations. Therefore, although there
is no any constant correlation for ANN, the network con-
figuration shown in Figure 7 can be used for designers
or engineers to predict the unknown cases of the finned
oval-tube heat exchanger. In this article, the 10-8-5-2
neural network was trained, validated, and tested. All
the parameters of the neural network including the
network configuration, number of nodes, and weight
coefficient of each node are recorded in the program.
When it is used to predict an unknown case, the ANN
program can start to run with the input data, and the
expected results can be obtained.

Moreover, the heat transfer performance prediction
of heat exchangers is one of the significant objectives

Table 3: Performances of ANN prediction under four different air inlet angles

Angles/° Nu and f predicted together Nu and f predicted separately

All Train Validation Test All Train Validation Test

90 Nu 0.0004 0.000 0.0025 0.0003 0.0003 0.0001 0.0016 0.0004
f 0.0010 0.0005 0.0007 0.0034

60 Nu 0.0002 0.000 0.0014 0.001 0.0001 0.0000 0.0007 0.0004
f 0.0005 0.0000 0.0019 0.0034

45 Nu 0.0011 0.0011 0.0039 0.0017 0.0002 0.0000 0.0005 0.0011
f 0.0018 0.0012 0.0037 0.0029

30 Nu 0.0005 0.0001 0.0035 0.0008 0.0000 0.0000 0.0002 0.0001
f 0.001 0.0009 0.0006 0.0017
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Figure 9: ANN linear regressions at the air inlet angle θ = 90°.
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for designers and engineers because of the limited experi-
mental conditions. Dimensionless correlations are usually
obtained according to the limited experimental data, for
example, Nu vs Re and f vs Re, sometimes including
Pr and geometric factors. It is based on some assumptions
to acquire the dimensionless correlations, which would
bring huge error for a real problem. As shown in the
aforementioned figures and tables, the results acquired
from ANN are much better than those from correlations.
Better results can be obtained through ANN approach,
excluding some assumptions that empirical correlations
require, such as the forms of correlations, the flow patterns,

and the working fluid properties. Moreover, it can be
found that to predict thermal performances based on
limited experimental data through the ANN approach,
it not only can significantly save experimental cost but
also have higher precision than experimental correla-
tions. Therefore, we can come to the conclusion that
the ANN approach is more useful and convenient than
correlations for designers and engineers to predict
unknown cases of a given heat exchanger, especially
to model the complicated heat exchangers based on the
limited experimental data in engineering applications.

6 Conclusions

In the present study, a dimensionless experimental cor-
relation equation including air inlet angles is proposed to
make the correlation have a wide range of applicability.
Then thermo-hydraulic performances for the finned oval-
tube heat exchanger with two rows of tubes and single
tube-pass under four different air inlet angles are pre-
dicted by the ANN approach based on the limited experi-
mental data. The performance comparisons are made
between ANN with the experimental correlations, between
Nu and f predicted separately with Nu and f predicted
together, and between the data of the four air inlet angles
fitted separately with those fitted together. Based on the
aforementioned comparison results, the following conclu-
sions are drawn.

Table 4: Comparison of MSE of ANN prediction with that of classical correlations under different angles

Angles/° Nu and f predicted together Nu and f predicted separately Classical correlations

Nu f Nu f Nu f

90 0.7897 0.0108 0.8058 0.0137 6.2535 0.0227
60 0.7179 0.0031 1.06 0.0038 8.1203 0.0128
45 1.6774 0.0216 2.3193 0.0192 8.7024 0.0399
30 0.4951 0.0111 0.2366 0.0114 2.7339 0.0178
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Figure 10: Comparison of Nu and f predicted together and separately
with classical correlations.

Table 5: Performances of ANN and comparisons of MSE when Nu and f predicted together for the four air inlet angles

Angles/° Performances of ANN ANN Classical correlations Correlations with angles

All Train Validation Test Nu f Nu f Nu f

90 0.0005 0.0004 0.0009 0.0005 0.8673 0.0114 6.2535 0.0227 36.99 0.0251
60 2.7824 0.0154 8.1203 0.0128
45 2.9692 0.0163 8.7024 0.0399
30 1.6116 0.0148 2.7339 0.0178
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(1) The dimensionless experimental correlation equations
including air inlet angles for the Nusselt number and
the flow friction factor are proposed to evaluate the
performances of others angles.

(2) The data of the four air inlet angles fitted separately
have higher precisions than those fitted together to
predict the thermal performances in most cases.

(3) ANN prediction is superior to the experimental corre-
lations for predicting Nusselt numbers and friction
coefficients, excluding some assumptions, such as
the forms of correlations, the flow patterns, and the
working fluid properties. The ANN approach could be
recommended to predict the thermal performances
for unknown cases in a thermal system.
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