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Abstract: The present paper applies the variation of
( ′/ )G G -expansion method on the space-time fractional
Hirota–Satsuma coupled KdV equation with applications
in physics. We employ the new approach to receive some
closed form wave solutions for any nonlinear fractional
ordinary differential equations. First, the fractional
derivatives in this research are manifested in terms of
Riemann–Liouville derivative. A complex fractional
transformation is applied to transform the fractional-
order ordinary and partial differential equation into the
integer order ordinary differential equation. The reduced
equations are then solved by the method. Some novel
and more comprehensive solutions of these equations
are successfully constructed. Besides, the intended
approach is simplistic, conventional, and able to
significantly reduce the size of computational work
associated with other existing methods.

Key words: analytical method, the space-time fractional
Hirota–Satsuma coupled KdV equation, Riemann–
Liouville derivative

1 Introduction

Nonlinear dynamical systems play an important role in
physics. New ideas in physics including astrophysics,
computational physics, fluid dynamic, mathematical
physics, biological physics and medical physics often
explain the fundamental mechanisms studied by other
sciences and suggest new avenues of research in
academic disciplines such as mathematics. Nature and
research problems and most of the life and compound
phenomena are explained and invented through frac-
tional wave models. For example, the fluid-dynamic
traffic model [1] could succeed the deficiency based upon
the hypothesis of continuum traffic flow, the principles of
fractional calculus could model the dynamical methods
in fluids and porous structures [2] and fractional
derivatives can form the nonlinear oscillation of earth-
quake [3]. For all the attention, it is an indispensable task
to attain the closed-form wave structures of the fractional
differential equations (FDEs). Various meaningful and
truthful approaches have been interpolated for achieving
the closed-form wave structures of FDEs, including the
-expansion approach [4,5], extended Jacobi elliptic
function expansion method [6], improved sub-equation
scheme [7], modified fractional reduced differential
transform method [8], sub-equation method [9], singular
manifold method [10], fractional homotopy method [11],
fractional reduced differential transform method [12],
modified ( ′/ )G G -expansion approach [13], extended
modified mapping method [14], Sine–Gordon expansion
method [15], extended trial equation method [16],
iterative method [17], simplest equation method [18],
ansatz scheme [19], F-expansion method [20], modified
Kudryashov method [21], extended mapping method [22],
homo separation analysis method [23], modified simple
equation method [24], reduced differential transform
scheme [25], modified extended mapping method [26],
functional variable method [27], extended direct alge-
braic method [28], Darcy’s law rule [29], function



* Corresponding author: Md Nur Alam, School of Mathematical
Sciences, University of Science and Technology of China, Hefei,
China, 230026; Department of Mathematics, Faculty of Science,
Pabna University of Science and Technology, Pabna, Bangladesh,
e-mail: nuralam23@mail.ustc.edu.cn, nuralam.pstu23@gmail.com
* Corresponding author: Aly R. Seadawy, Mathematics Department,
Faculty of Science, Taibah University, Al-Ula, Saudi Arabia,
e-mail: aly742001@yahoo.com
Dumitru Baleanu: Department of Mathematics, Cankaya University,
Ankara, Turkey; Department of Medical Research, China Medical
University Hospital, China Medical University, Taichung, Taiwan;
Institute of Space Sciences, 077125, Magurele, Romania,
e-mail: dumitru@cankaya.edu.tr

Open Physics 2020; 18: 555–565

Open Access. © 2020 Md Nur Alam et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/phys-2020-0179
mailto:nuralam23@mail.ustc.edu.cn
mailto:nuralam.pstu23@gmail.com
mailto:aly742001@yahoo.com
mailto:dumitru@cankaya.edu.tr


transformation method [30], the variation of ( ′/ )G G -ex-
pansion method [31], differential transform method [32],
unified scheme, ( ′/ )G G -expansion approach [33,34],
Kudryashov method [35], new extended Kudryashov
process [36], Sine-cosine approach [37], auxiliary equa-
tion scheme [38] and many other techniques [39–50].

Here, we introduce a new method [31] for nonlinear
FDEs based on the homogenous balancing method
employing wave transformation. In this research, through

the transformation = +
( + ) ( + )

ξ kx
β

λt
αΓ 1 Γ 1

β β
for ordinary differ-

ential equation and = + + −ξ x y z V t
α

α
for partial differ-

ential equation, a given fractional ordinary and a partial
differential equation turn into a fractional ordinary
differential equation. Suppose the solutions have the form

( ) = ∑ + ∑
= =

−V ξ A L B L Hi
M

i
i

i
M

i
i

0 1
1 , where =

′L G
G , =
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where = ( )G G ξ and = ( )N N ξ represent the solution of
the coupled Riccati equation ′( ) =G ξ − ( ) ( )G ξ N ξ and

′( ) = − ( )N ξ N ξ1 2. This coupled Riccati equation gives us
four types of hyperbolic function solutions, such as sech,
tanh, csch and coth. We have manipulated the unique
method for obtaining more general closed form wave
structures of the nonlinear FDEs, such as the space-time
fractional Hirota–Satsuma coupled KdV equation [36]. The
improvement of this process over the existing rule is that it
presents a few novel closed-form wave solutions. Apart
from the physical importance, the closed-form wave
structures of the nonlinear FDEs might be helpful to the
analytical solvers to compare the exactness of their
outcomes and also develop the stability analysis of the
nonlinear FDEs. In Section 2, some definitions, characters,
properties, theorems and fundamental facts of fractional
derivatives are introduced. Section 3 shows that the current
scheme of the closed-form wave solutions of the proposed
models is obtained in Section 4. Discussion and future
works are given in Section 5.

2 Preliminaries

Herein, we acquaint a few definitions, characters,
properties, theorems and fundamental facts, which are
implemented throughout this article.

2.1 The modified Riemann–Liouville
derivative

Fractional calculus possesses several ways to generalize
the concept of differential derivatives to fractional
derivatives [51,52].

Definition 2.1. A real function ( ) >g t t, 0 is called in the
space Ck where ∈k � if there exists a real number >p k,
for example, ( ) = ( )g t t g tp

1 , where ( ) ∈ ( ∞)g t C 0,1 and
called in the space Ck

n if ∈g Cn
k, where n is a positive

integer.

Definition 2.2. Suppose that → ( )g x g x: . It denotes a
continuous but not significantly differentiable function,
then the fractional derivatives of order α are represented
through the following expression [51,52]:
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in which ( )Γ . is the Gamma function illustrated by [53].
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Definition 2.3. The Mittag–Leffler function including
two parameters is represented as follows [54]
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Some notable characteristics for the fractional
derivative are as follows:

1. = >
( + )

( + − )

−D x x γ, 0x
α γ γ

γ α
γ αΓ 1

Γ 1 .

2. ( ( )) = ( ( ))D cG x cD G xx
α

x
α .

3. ( ( ) + ( )) = ( ) + ( )D aG x bH x aD G x bD H xx
α

x
α

x
α .

2.2 The fractional complex transformation

This section performs the complex fractional transforma-
tion for the fractional-order ordinary differential equation
(ODE). First, we explore the nonlinear fractional ODE:
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where < ≤α0 0, < ≤β0 0, D ut
α and D ux

β are the
fractional derivatives of u with respect to t and x.

We investigate equation (6) through the transforma-
tion = ( ) = ( ) = +

( + ) ( + )
u u x t u ξ ξ, , kx

β
λt

αΓ 1 Γ 1

β β
, where k and λ

are nonzero arbitrary constants, then equation (6) becomes
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3 Glimpse of the method

At this moment, the general scheme of the variation of
( ′/ )G G -expansion method [31] is shortened as follows:
• Step 1: Calculate N through rule of the homogeneous
balance in equation (7).

• Step 2: Considering the method can be expressed as
the form:
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where =
′L G

G , =
′H N

N and = ( )G G ξ and = ( )N N ξ
represent the solution of the coupled Riccati equations

′( ) = − ( ) ( )G ξ G ξ N ξ , (9)

′( ) = − ( )N ξ N ξ1 .2 (10)

These coupled Riccati equations give us four types
of hyperbolic function solutions including sech, tanh,
csch and coth such as

( ) = ± ( ) ( ) = ( )G ξ ξ N ξ ξsech , tanh , (11)

( ) = ± ( ) ( ) = ( )G ξ ξ N ξ ξcsch , coth . (12)

• Step 3: A polynomial in L or N is accomplished
plugging equation (8) into equation (7). Determining
the coefficients of the equivalent power of L or N
produces a system of algebraic equations, which can be
determined to construct the values of Ai and Bi using
MAPLE. Turning the over measured values of Ai and Bi

in 12, the general solutions of equation (16) and (17)
complete the calculation of the result of equation (6).

4 Implementation of the method

To illustrate the idea of the new method, we implement
the process on the space-time fractional Hirota–Satsuma

coupled KdV equation. We implement the new method
to the considered model, which models the intercommu-
nication between two long waves that have well-defined
dispersion connection:
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where = ( )u u x t, , = ( )u u x t, and = ( )u u x t, , >t 0 and
< ≤α0 0. For our goal, we utilize the transformations
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Applying the homogeneous balance rule on equation
(14) yields =M 2. Therefore,
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where a0, a1, a2, b1 and b2 are free parameters. Plugging
equation (15) into equation (14) and calculating each
coefficient of L or N to zeros, we have:
• Case 1: Let = − = = ± = − =λ a b a a b b1, , 1, , 00 2 1 2 2 1 ,
and insert the values of Case 1 into equation (15),
we find:
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• Case 2: Let = − = = − = − =λ a b a a b b4, , 4, , 20 2 1 2 2 1

and put the values of Case 2 into equation (15), we get:

( )( )
( )

( ) = −

+ +

+

( + )

( + )

u x t
x

x
,

tanh 2 1

tanh 2
,

t
α

t
α

3

2 2
Γ 1

2

2 2
Γ 1

α

α
(22)

( )( )
( )

( ) = −

+ +

+

( + )

( + )

u x t
x

x
,

coth 2 1

coth 2
,

t
α

t
α

4

2 2
Γ 1

2

2 2
Γ 1

α

α
(23)

( )

( ) = + +
( + )

+
+

( + )

v x t x t
α

x

, 4 2 tanh 4
Γ 1

2

tanh
,

α

t
α

3

4
Γ 1

α











(24)

( )

( ) = + +
( + )

+
+

( + )

v x t x t
α

x

, 4 2 coth 4
Γ 1

2

coth
,

α

t
α

4

4
Γ 1

α











(25)

( )

( ) = + +
( + )

+
+

( + )

w x t x t
α

x

, 32 16 tanh 4
Γ 1

16

tanh
,

α

t
α

3

4
Γ 1

α











(26)

( )

( ) = + +
( + )

+
+

( + )

w x t x t
α

x

, 32 16 coth 4
Γ 1

16

coth
.

α

t
α

4

4
Γ 1

α











(27)

• Case 3: Let = − = = ∓ = − = ±λ a b a a b b1, , 1, , 10 2 1 2 2 1

and substitute the values of Case 3 into equation (15),
we achieve:
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Figure 1: The picture of the result in ( )u x t,1 with the values =α 0.35, =b 0.52 and =t 0.01 for 2D graphics. (a) Real 3D surface, (b) complex
3D surface, (c) 2D shape, (d) real contour shape, (e) complex contour shape.
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• Case 4: Let = − = = = − = −λ a b a a b b4, , 4, , 20 2 1 2 2 1

and use the values of Case 4 into equation (15),
we find:
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Figure 2: The picture of the result in ( )u x t,2 with the values =α 0.35, =b 0.52 and =t 0.01 for 2D graphics. (a) Real 3D surface, (b) complex
3D surface, (c) 2D shape, (d) real contour shape, (e) complex contour shape.
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• Case 5: Let = = = = − = ± −λ a b a a b b2, , 0, , 20 2 1 2 2 1

with b2 being a free parameter and plug the values of
Case 5 into equation (15), we obtain:
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Figure 3: The picture of the result in ( )v x t,1 with the values =α 0.35, =b 0.52 and =t 0.01 for 2D graphics. (a) Real 3D surface, (b) complex
3D surface, (c) 2D shape, (d) real contour shape, (e) complex contour shape.
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A picture is an indispensable tool for conversation
and to demonstrate the results to the difficulties lucidly.
When performing the computation in daily life, we
require the fundamental understanding of constructing
the use of pictures. Therefore, the graphical presenta-
tions of few obtained results are depicted in Figures 1–6.

5 Discussions and future work

In this research, the suggested method has been
triumphantly displayed to attain new closed-form wave
solutions of equation (13). It has been determined that

the complex fractional transformation and the advanced
method are an essential and significant mathematical
device in analyzing closed-form wave structures of a
whole class of fractional FDEs. Consequently, a few new
closed-form wave answers of the equation are
determined.

The compensations and legality of the recommended
approach over the extended Kudryashov approach are as
follows. The critical compensation of the proposed
method over the extended Kudryashov approach is that
the proposed method implements numerous general and
plentiful new closed-form wave structures. The closed-
form wave solutions of nonlinear FDE have its vital
importance to show the complicated physical aspects.
For example, [36] extends the Kudryashov method to
solve equation ( ) =Q ξξ ( ) − ( )Q ξ Q ξ3 as an auxiliary
equation and the closed-form solutions presented by

( ) = ∑ ( )
=

u ξ α Q ξ ,i
n

i
i

0 where ( ) =
±

±
Q ξ

e
1

1 ξ2
. Our solutions

u1, v1, w1, u2, v2, w2, u5 and u6 are similar to solutions of
[36] and solutions u3, v3, w3, u4, v4, w4, v5, w5, v6, w6, u7, v7,
w7, u8, v8, w8, u9, v9, w9, u10, v10 and w10 are all new exact

(a) (b) (c)

(d) (e)

Figure 4: The picture of the result in ( )v x t,2 with the unknown parameter values =α 0.35, =b 0.52 and =t 0.01 for 2D graphics. (a) Real 3D
surface, (b) complex 3D surface, (c) 2D shape, (d) real contour shape, (e) complex contour shape.

Closed-form wave structures to the space-time fractional HS-CKdV equation  561



solutions obtained in this paper, which validates our
proposed methods. Although we have presented diverse
closed-form wave solutions by performing the recom-
mended method, our obtained solutions show that our
proposed methods are more helpful and extraordinary in
contributing much more general and many new closed-
form wave solutions at the same time. To state the
effectiveness and present the insight of processes and
the comparison among our proposed method, the new
ansatz method is much more proficient than the new
extended Kudryashov method. We can underline from
our understanding that the method can be performed in
other nonlinear FDEs and can reduce the amount of
computational work. Therefore, the investigation of
closed-form wave structures of other nonlinear FDEs
deserves further analysis.

Acknowledgements: The authors would like to acknowl-
edge CAS-TWAS president’s fellowship program. The

author thanks the referees for their suggestions and
comments.

Author contributions: All parts contained in the
research carried out by the authors through hard
work and a review of the various references and
contributions in the field of mathematics and Applied
physics.

Funding: No funding for this article.

Competing interests: This research received no specific
grant from any funding agency in the public, commercial
or not-for-profit sectors. The authors did not have any
competing interests in this research.,

Availability of data and materials: Data sharing is not
applicable to this article as no datasets were generated
or analyzed during the current study.

(a) (b) (c)

(d) (e)

Figure 5: The picture of the result in ( )v x t,6 with the unknown parameter values =α 0.35 and =b 0.52 and =t 0.01 for 2D graphics. (a) Real
3D surface, (b) complex 3D surface, (c) 2D shape, (d) real contour shape, (e) complex contour shape.

562  Md Nur Alam et al.



References

[1] Podlubny I. Fractional Differential Equations. New York:
Academic Press; 1999.

[2] Miller KS, Ross B. An Introduction to the Fractional Calculus
and Fractional Differential Equations. New York: John
Wiley; 1993.

[3] Mainardi F. Fractional Calculus Some Basic Problems in
Continum and Statistical Mechanics. New York: Springer-
Verlag; 1997.

[4] Alam M, Belgacem F. Microtubules nonlinear models dynamics
investigations through the exp(−ϕ(ξ))-expansion method
implementation. Mathematics. 2016;4:6.

[5] Alam M, Tunc C. An analytical method for solving exact
solutions of the nonlinear bogoyavlenskii equation and the
nonlinear diffusive predator-prey system. Alex Eng J.
2016;55:1855–65.

[6] Sonmezoglu A. Exact solutions for some fractional differential
equations. Adv Math Phys. 2015;2015:567842

[7] Karaagac B. New exact solutions for some fractional order
differential equations via improved sub-equation method.
Discret Cont Dyn Syst – S. 2019;12:447–54.

[8] Iqbal M, Seadawy AR, Lu D. Construction of solitary
wave solutions to the nonlinear modified Kortewege-

de Vries dynamical equation in unmagnetized plasma via
mathematical methods. Mod Phys Lett A.
2018;33(32):1850183.

[9] Martineza HY, Aguilarb JFG, Baleanu D. Beta-derivative and
sub-equation method applied to the optical solitons in
medium with parabolic law nonlinearity and higher order
dispersion. Optik. 2018;155:357–65.

[10] Saleh R, Kassem M, Mabrouk SM. Exact solutions of nonlinear
fractional order partial differential equations via singular
manifold method. Chin J Phys. 2019;61:290–300.

[11] Delgado VFM, Aguilar JFG, Torres L, Jimenez RFE,
Hernandez MAT. Exact solutions for the liénard type model via
fractional homotopy methods. Fract Derivatives Mittag–Leffler
Kernel. 2019;194:269–91.

[12] Abuasad S, Moaddy K, Hashim I. Analytical treatment of two-
dimensional fractional helmholtz equations. J King Saud
Univ – Sci. 2019;31:659–66.

[13] Alam MN, Tunc C. Constructions of the optical solitons and
others soliton to the conformable fractional zakharov–
kuznetsov equation with power law nonlinearity. J Taibah Univ
Med Sci. 2020;15:263–72. doi: 10.1080/16583655.2019.1708542.

[14] Seadawy AR. Three-dimensional weakly nonlinear shallow
water waves regime and its travelling wave solutions. Int J
Comput Methods. 2018;15:1850017.

(a) (b) (c)

(e)(d)

Figure 6: The picture of the result in ( )v x t,10 with the unknown parameter values =α 0.35, =b 0.52 and =t 0.01 for 2D graphics. (a) Real 3D
surface, (b) complex 3D surface, (c) 2D shape, (d) real contour shape, (e) complex contour shape.

Closed-form wave structures to the space-time fractional HS-CKdV equation  563



[15] Kadkhoda N, Jafari H. An analytical approach to obtain exact
solutions of some space-time conformable fractional differ-
ential equations. Adv Differ Equ. 2019;2019;428.

[16] Seadawy AR, Manafian J. New soliton solution to the
longitudinal wave equation in a magneto-electro-elastic
circular rod. Results Phys. 2018;8:1158–67.

[17] Lu D, Seadawy AR, Ali A. Dispersive traveling wave solutions of
the equal-width and modified equal-width equations via
mathematical methods and its applications. Results Phys.
2018;9:313–20.

[18] Helal MA, Seadawy AR, Zekry MH. Stability analysis of solitary
wave solutions for the fourth-order nonlinear Boussinesq
water wave equation. Appl Math Comput. 2014;232:1094–103.

[19] Shi D, Zhang Y. Diversity of exact solutions to the conformable
space-time fractional mew equation. Appl Math Lett.
2020;99:105994.

[20] Seadawy AR, El-Rashidy K. Dispersive solitary wave solutions
of kadomtsev–petviashivili and modified kadomtsev–
petviashivili dynamical equations in unmagnetized dust
plasma. Results Phys. 2018;8:1216–22.

[21] Lu D, Seadawy AR, Ali A. Applications of exact traveling wave
solutions of modified Liouville and the symmetric regularized
long wave equations via two new techniques. Results Phys.
2018;9:1403–10.

[22] Arshad M, Seadawy A, Lu D. Elliptic function and solitary wave
solutions of the higher-order nonlinear Schrodinger dyna-
mical equation with fourth-order dispersion and cubic-quintic
nonlinearity and its stability. Eur Phys J Plus. 2017;132:371.

[23] Zuriqat M. Exact solution for the fractional partial differential
equation by homo separation analysis method. Afr
Matematika. 2019;30:1133–43.

[24] Arnous AH, Seadawy AR, Alqahtani RT, Biswas A. Optical
solitons with complex ginzburg-landau equation by modified
simple equation method. Opt – Int J Light Electron Opt.
2017;144:475–80.

[25] Owyed S, Abdou MA, Abdel-Atyb AH, Nekhili WAR. Numerical
and approximate solutions for coupled time fractional non-
linear evolutions equations via reduced differential transform
method. Chaos, Solitons Fractals. 2019;217:109474.

[26] Abdullah, Seadawy AR, Wang J. Mathematical methods and
solitary wave solutions of three-dimensional zakharov–
kuznetsov–burgers equation in dusty plasma and its appli-
cations. Results Phys. 2017;7:4269–77.

[27] Cenesiz Y, Tasbozan O, Kurt A. Functional variable method for
conformable fractional modified kdv-zkequation and maccari
system. Tbilisi Math J. 2017;10:117–25.

[28] Seadawy AR, Lu D, Yue C. Travelling wave solutions of the
generalized nonlinear fifth-order kdv water wave equations
and its stability. J Taibah Univ Sci. 2017;11:623–33.

[29] Sheikholeslami M. Cuo-water nanofluid free convection in a
porous cavity considering darcy law. Eur Phys J Plus.
2017;132:132.

[30] Khater AH, Callebaut DK, Seadawy AR. General soliton
solutions for nonlinear dispersive waves in convective type
instabilities. Phys Scr. 2006;74:384–93.

[31] Shehata AR, Abu-Amra SSM. Geometrical properties and exact
solutions of three (3 + 1) -dimensional nonlinear evolution
equations in mathematical physics using different expansion
methods. J Adv Math Comput Sci. 2019;33:1–19.

[32] Unal E, Gokdogan A. Solution of conformable fractional
ordinary differential equations via differential transform
method. Opt – Int J Light Electron Opt. 2017;128:264–73.

[33] Alam MN, Li X. Exact traveling wave solutions to higher order
nonlinear equations. J Ocean Eng Sci. 2019;4:276–88.

[34] Arshad M, Seadawy A, Lu D. Modulation stability and optical
soliton solutions of nonlinear Schrodinger equation with
higher order dispersion and nonlinear terms and its applica-
tions. Superlattices Microstructures. 2017;112:422–34.

[35] Eslami M. Exact traveling wave solutions to the fractional
coupled nonlinear schrodinger equations. Appl Math Comput.
2016;285:141–8.

[36] Ege S, Misirli E. A new method for solving nonlinear fractional
differential equations. N Trends Math Sci. 2017;5:225–33.

[37] Wazwaz A. Exact solutions with solitons and periodic
structures for the zakharov–kuznetsov equation and its
modified form. Commun Nonlinear Sci Numer Simul.
2005;10:597–606.

[38] Akbulut MKA, Bekir A. Auxiliary equation method for fractional
differential equations with modified riemann–liouville deri-
vative. Int J Nonlin Sci Num. 2016;17:413–20.

[39] Aly Seadawy, El-Rashidy K. Dispersive solitary wave solutions
of Kadomtsev–Petviashivili and modified
Kadomtsev–Petviashivili dynamical equations in unmagne-
tized dust plasma. Results Phys. 2018;8:1216–22.

[40] Kumar S, Kumar R, Singh J, Nisar KS, Kumard D. An efficient
numerical scheme for fractional model of HIV-1 infection of
CD4 + T-cells with the effect of antiviral drug therapy. Alex Eng
J. 2020;216:634–42. doi: 10.1016/j.aej.2019.12.046

[41] Kumar S, Kumar A, Momani S, Aldhaifallah M, Nisar KS.
Numerical solutions of nonlinear fractional model arising in
the appearance of the stripe patterns in two-dimensional
systems. Adv Differ Equ. 2019;2019(1):413.

[42] Kumar S, Kumar A, Abbas S, Qurashi MA, Baleanu D.
A modified analytical approach with existence and uniqueness
for fractional Cauchy reaction-diffusion equations. Adv Differ
Equ. 2020;2020(1):1–8.

[43] Sharma B, Kumar S, Cattani C, Baleanu D. Nonlinear dynamics
of Cattaneo–Christov heat flux model for third-grade power-
law fluid. J Comput Nonlinear Dyn. 2020 Jan 1;15(1):927–41.

[44] Kumar S, Ghosh S, Samet B, Goufo EFD. An analysis for heat
equations arises in diffusion process using new
Yang–AbdelAty–Cattani fractional operator. Math Methods
Appl Sci. 2020;162:572–84.

[45] Tassaddiq A, Khan I, Nisar KS. Heat transfer analysis in
sodium alginate based nanofluid using MoS2 nanoparticles:
Atangana–Baleanu fractional model. Chaos, Solitons Fractals.
2020;130:109445.

[46] Gao W, Senel M, Yel G, Baskonus HM, Senel B. New complex
wave patterns to the electrical transmission line model arising
in network system. Aims Math. 2020;5(3):1881–92.

[47] Gao W, Ismael HF, Husien AM, Bulut H, Baskonus HM. Optical
soliton solutions of the nonlinear Schrödinger and resonant
nonlinear Schrödinger equation with Parabolic law. Appl Sci.
2020;10(1):219, 1–20.

[48] Gao W, Yel G, Baskonus HM, Cattani C. Complex solitons in the
conformable (2 + 1)-dimensional
Ablowitz–Kaup–Newell–Segur equation. Aims Math.
2020;5(1):507–21.

564  Md Nur Alam et al.



[49] Gao W, Rezazadeh H, Pinar Z, Baskonus HM, Sarwar S, Yel G.
Novel explicit solutions for the nonlinear zoomeron equation
by using newly extended direct algebraic technique. Opt
Quant Electron. 2020;52(52):1–13.

[50] Cordero A, Jaiswal JP, Torregrosa JR. Stability analysis of
fourth-order iterative method for finding multiple roots of non-
linear equations. Appl Math Nonlinear Sci. 2019;4(1):43–56.

[51] Jumarie G. Table of some basic fractional calculus formulae
derived from a modified riemann–liouville derivative for

non-differentiable functions. Appl Math Lett.
2009;22:378–85.

[52] Guner O. Singular and non-topological soliton solutions for
nonlinear fractional differential equations. Chin Phys B.
2015;24:100201.

[53] Hartley T, Lorenzo C. Dynamics and control of initialized
fractional-order systems. Nonlinear Dyn. 2002;29:201–33.

[54] Kilbas A, Srivastava H, Trujillo J. Theory and applications of
fractional differential equations. Amsterdam: Elsevier; 2006.

Closed-form wave structures to the space-time fractional HS-CKdV equation  565


	1 Introduction
	2 Preliminaries
	2.1 The modified Riemann-Liouville derivative
	2.2 The fractional complex transformation

	3 Glimpse of the method
	4 Implementation of the method
	5 Discussions and future work
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU <FEFF0056006500720073006900740061002000410064006f00620065002000440069007300740069006c006c00650072002000530065007400740069006e0067007300200066006f0072002000410064006f006200650020004100630072006f006200610074002000760036>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


