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Abstract: Solving nonlinear evolution equations is an
important issue in the mathematical and physical sciences.
Therefore, traditional methods, such as the method of
characteristics, are used to solve nonlinear partial differ-
ential equations. A general method for determining analy-
tical solutions for partial differential equations has not been
found among traditional methods. Due to the development
of symbolic computational techniques many alternative
methods, such as hyperbolic tangent function methods,
have been introduced in the last 50 years. Although all of
them were introduced as a new method, some of them are
similar to eachother. In this study,weexamine the following
four important methods intensively used in the literature:
the tanh–coth method, the modified Kudryashov method,
the F-expansion method and the generalized Riccati
equationmappingmethod.Thesimilarities of thesemethods
attracted our attention, and we give a link between the
methods and a system of projective Riccati equations. It is
possible to derive new solution methods for nonlinear
evolution equations by using this connection.

Keywords: the tanh–coth method, the modified
Kudryashov method, the F-expansion method, the gen-
eralized Riccati equation mapping method, the projective
Riccati equations

1 Introduction

Many scientific phenomena such as heat flow, wave
propagation, population models and dispersion of
chemically reactive materials are characterized by partial
differential equations. Therefore, solutions of the partial

differential equations have attracted the attention of
many researchers in many scientific fields. As a result,
many solution methods have been introduced and the
applications of these solution methods have been
published. For instance, one of the important research
areas in modern applied mathematics is the theory of
non-integer derivative. Particularly in engineering
sciences, fractional derivatives are a very powerful tool
for modeling many problems [1–16].

It is well known that a general method for determining
analytical solutions for partial differential equations has
not been found, unfortunately. For this purpose, certain
methods have been introduced that solve certain groups of
partial differential equations. Although each method is
introduced as a new solution technique, several methods
give the same solutions to the differential equations. Thus,
the literature is filled with a lot of methods similar to each
other, such as the tanh–coth method, the modified
Kudryashov method, the F-expansion method and the
generalized Riccati equation mapping method.

Huibin and Kelin were pioneer researchers to
introduce the first member of the hyperbolic function
methods family, and they called their method as the
tanh function method [17]. Following the ideas of Huibin
and Kelin, Malfliet and Hereman introduced another
version of the tanh function method [18]. Wazwaz
improved and applied the method to a wider class of
equations [19]. After these valuable works, several
modifications of the tanh function method were used
to solve nonlinear partial differential equations (NPDEs).
In our previous work, we compared several hyperbolic
tangent function methods and combined all of them into
one called the unified method [20]. Kudryashov con-
sidered the Backlund transformation and discussed the
modifications of the method and introduced a new
method named the Kudryashov method [21]. A new and
effective modified version of Kudryashov method was
used to obtain new exact solutions of some equations
with quadratic and cubic nonlinearities [22]. Zhou et al.
generalized all the Jacobi elliptic function expansion
methods via the F-expansion method in order to obtain
periodic wave solutions of some equations [23]. Jin-Liang
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Zhang et al. considered coupled nonlinear evolution
equations and obtained solitary wave solutions by
applying the F-expansion method in the limit case [24].
Zhu reconsidered the tanh function method and im-
proved the method by introducing the generalized
Riccati equation mapping method [25].

In this study, we handle four basic methods that are
used extensively to solve nonlinear evolution equations
in the field of mathematical physics: the tanh–coth
method, the modified Kudryashov method, the F-expan-
sion method and the generalized Riccati equation
mapping method. When these methods are investigated,
the following similarities can be seen:
• All of them use similar ansatzs.
• All of them use the solutions of Riccati differential
equations.

• All of them use similar solution steps.
• All of them use the same balance procedure.
• Sometimes they give the same solutions.

We discuss these similarities and give the links
between the methods and a system of projective Riccati
equations. This connection clarifies why the methods are
so similar to each other. So, new solution methods can
be obtained by using this idea.

This paper is organized as follows: in Section 2, we
summarize the methods. In Section 3, using a kind of
system of the projective Riccati equations we deduce a
link for the methods. In Section 4, we summarize our
conclusions and explain how to create an alternative
solution method via an example.

2 The outlines of the methods

The methods developed by the solutions of some Riccati
equations are quite similar to each other. All of these
methods transform an NPDE of the form:

( …) =P u u u u, , , , 0,t x xx (1)

to an ordinary differential equation (ODE) of the form:

( ′ ″ …) =Q U U U, , , 0, (2)

by using the wave variable = −ξ x ct (c is a constant). If
all terms of the resulting ODE contain derivatives in ξ ,
then equation (2) is integrated and adhering to the
boundary conditions

( ) →
( )

→ ( = …) → ±∞U ξ ξ
ξ

n ξ0, d
d

0, 1, 2, 3, for ,
n

(3)

the constant of integration is considered being zero. So,
a lower order ODE is obtained. All methods up to this
step are similar to each other. The differences between
the methods start after this step. Now we focus on the
differences.
1. The tanh–coth method

The solution of (2) can be expressed as a
polynomial,

∑ ∑( ) = ( ) = ( ) + ( )
= =

−U ξ S σ a σ ξ b σ ξ ,
i

M

i
i

i

M

i
i

0 1
(4)

where = ( )σ σ ξ satisfies the equation:

′( ) = − ( )σ ξ α σ ξ ,2 (5)

where ′( ) =
( )σ ξ σ ξ
ξ

d
d and ai, bi, α and ξ0 are constants.

Equation (5) has the following solutions:
(i) when >α 0

( ) = ( ( + ))

( ) = ( ( + ))

σ ξ α α ξ ξ
σ ξ α α ξ ξ

tanh or
coth ,

0

0
(6)

(ii) when <α 0

( ) = − ( ( + ))

( ) = ( ( + ))

σ ξ α α ξ ξ
σ ξ α α ξ ξ

tan or
cot ,

0

0
(7)

(iii) when =α 0

( ) =
+

σ ξ
ξ ξ

1 .
0

(8)

Since the derivatives of the hyperbolic tangent
function are a polynomial in hyperbolic tangent
function, in the tanh–coth method, the value of α is
accepted as 1 and only the solution ( ) = ( )σ ξ ξtanh is
taken into account. This choice makes it easier to
calculate the higher order derivatives of = ( )σ σ ξ .

2. The modified Kudryashov method
The solutions of equation (2) are considered as a

polynomial,

∑( ) = ( )
=

U ξ a σ ξ ,
i

M

i
i

0
(9)

where ai and = …i M0, 1, 2, , are constants but ≠a 0m .
= ( )σ σ ξ is the following function:

( ) =
+

σ ξ
a

1
1 d

,ξ (10)

where d is an arbitrary constant and ≠a 0, 1. Also,
= ( )σ σ ξ satisfies the Riccati differential equation:

′( ) = − ( ) + ( )σ ξ σ ξ a σ ξ aln ln .2 (11)
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The coefficients in (11) are constants and so this
equation can be reduced to a separable differential
equation. Therefore,

∫

∫

( )
= ( ( ) − ( )) ⇒

( )

( ) − ( )

=

σ ξ
ξ

σ ξ σ ξ a σ ξ
σ ξ σ ξ

adξ

d
d

ln d

ln .

2
2

(12)

This integral can be easily calculated and we have











( ) −

( )
= ( )

( ) =
−

σ ξ
σ ξ

a c

σ ξ
ca

ln 1 ln ,

1
1

,

ξ

ξ

(13)

where c is an arbitrary constant. Thus, solution (10) is
obtained.

3. The F-expansion method
The F-expansion method uses the similar steps to

the tanh–coth method and the modified Kudryashov
method. In this method, ( )U ξ can be expressed as a
finite series in the form:

∑( ) = ( ) ≠
=

U ξ a σ ξ a, 0,
n

M

n n
0

(14)

where …a a, , n0 are constants and = ( )σ σ ξ is a
solution for the nonlinear ODE

( ′( )) = + +σ ξ Pσ Qσ R,2 4 2 (15)

where P, Q and R are constants. M can be determined
by the same procedure used in the tanh–coth method
and the modified Kudryashov method.

The F-expansion method uses some solutions of
(15) to obtain the solutions of (2) by choosing properly
P Q R, and . Some values of P Q R, , and the corre-
sponding Jacobi elliptic function solutions of equation
(15) are given as follows:

( ′( )) = − ( + ) + =

=

( ′( )) = − + (− + ) + − =

( ′( )) = − + ( − ) − + =

( ′( )) = − ( + ) + =

( ′( )) = ( − ) + ( − ) − =

( ′( )) = ( − ) + ( − ) − =

( ′( )) = ( − ) + ( − ) + =

( ′( )) = ( − ) + ( − ) + =

( ′( )) = + ( − ) + − =

( ′( )) = + ( − ) + − =

σ ξ m σ m σ σ ξ

σ ξ
σ ξ m σ m σ m σ ξ
σ ξ σ m σ m σ ξ
σ ξ σ m σ m σ ξ
σ ξ m σ m σ m σ ξ
σ ξ m σ m σ σ ξ
σ ξ m σ m σ σ ξ
σ ξ m m σ m σ σ ξ
σ ξ σ m σ m σ ξ
σ ξ σ m σ m m σ ξ

Equation Solution
1 1 sn ,

cd
1 2 1 cn

2 1 dn
1 ns

1 2 1 nc
1 2 1 nd

1 2 1 sc
2 1 1 sd

2 1 cs
2 1 ds .

2 2 4 2 2

2 2 4 2 2 2

2 4 2 2 2

2 4 2 2 2

2 2 4 2 2 2

2 2 4 2 2

2 2 4 2 2

2 4 2 4 2 2

2 4 2 2 2

2 4 2 2 4 2

(16)

Taking →m 1 the following equalities hold:

=ξ ξsn tanh ,

=ξ ξns coth ,

so some solutions in (16) degenerate into the solutions
obtained by the tanh–coth method.

4. The generalized Riccati equation mapping
method
The fundamental steps are the same as the afore-

mentioned methods. In this solution method, the
solution(s) of (2) is of the form:

∑( ) = ( ) ≠
=

U ξ a σ ξ a, 0,
j

M

j
j

j
0

(17)

where aj are functions and M is fixed by the balanc-
ing procedure. Also, ( )σ ξ is a solution of the
equation:

′( ) = + ( ) + ( )σ ξ r pσ ξ qσ ξ ,2 (18)

where r, p and q are all real constants. The generalized
Riccati equation mapping method uses some solutions
of (18).

More general form of equation (18) is the following
form:

( ′( )) = + ( ) + ( ) + ( )

+ ( ) + ( ) + ( )

ϕ ξ h h ϕ ξ h ϕ ξ h ϕ ξ
h ϕ ξ h ϕ ξ h ϕ ξ ,

2
0 1 2

2
3

3

4
4

5
5

6
6 (19)

and it involves a sixth-degree nonlinear term.
Sirendaoreji has classified the solutions of (19) by
means of the Backlund transformations and the
superposition formulas [26]. He has used the
relations

( ) = ( ) = = =ϕ ξ σ ξ h c h c h c,
4

,
4

,
4

,2
2

2
4

3
6

4

and showed that the solutions of (19) obtained
before can be reduced to the solutions of the
equation:

( ′( )) = ( ) + ( ) + ( )σ ξ c σ ξ c σ ξ c σ ξ ,2
2

2
3

3
4

4 (20)

where c c,2 3 and c4 are constants. So, all the solution
methods in the literature, such as the F-expansion
method and the generalized Riccati equation mapp-
ing method, use the following exact solutions of
equation (20) directly or the solutions derivable from
these solutions:
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




















































( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( ) =

>

>

> >

> >

< >

< >

>

> =

( )

−

− +

− +

−

+

+

−

+ −

−

+ −

− −

−

−

−

−

−

σ ξ

c

c

c c

c c

c c

c c

c

c c

, 0

, 0

, 0 and 0

, 0 and 0

, 0 and 0

, 0 and 0

, 0

, 0 and 0.

c c ξ

c c c ε ξ

c c ξ

c c c ε ξ

c ξ

c c c ξ

c ξ

c c c ξ

c ξ

c c c ξ

c ξ

c c c ξ

c e
e c c c

e
c c e

sech

1 tanh
2

csch

1 coth
2

sech

2ϵ tanh
2 4

csch

2ϵ coth
2 4

sec

2ϵ tan
2 4

csc

2ϵ cot
2 4

4
4 2

4ϵ
1 4 2 3

c

c

c

c

c

c

c

c

c

c

c

c

c ξ

c ξ

c ξ

c ξ

2 3 2 2
2

3
2

2 4
2

2

2

2 3 2 2
2

3
2

2 4
2

2

2

2 2 2
2

3 2 4
2

2

2 2 2
2

3 2 4
2

2

2 2 2
2

3 2 4
2

2

2 2 2
2

3 2 4
2

2

2 ϵ 2
ϵ 2 3 2 2 4

ϵ 2

2 4 2ϵ 2

(21)

Many authors have considered and investigated the
solutions of (19). We refer the reader to ref. [27–32] for
further references.

3 The main idea: the projective
Riccati equations and the
methods

Let us consider an NPDE of the form:

( …) =P u u u u, , , , 0.t x xx (22)

The wave transformation

( ) = ( ) = −u x t U ξ ξ x ct, , ,

where c is a constant, converts (22) to an ODE:

( ′ ″ …) =Q U U U, , , 0. (23)

If we can solve (23), then we can obtain travelling wave
solution(s) of (22). To find solutions to (23), we suppose
that ( )U ξ can be expressed as one of the following
ansatzs:

∑ ∑

∑

∑ ∑

( ) = + ( ) + ( ) ( )

( ) = + ( )

( ) = + ( ) + ( ( ))

= =

−

=

= =

−

U ξ a a σ ξ b σ ξ τ ξ

U ξ a a σ ξ

U ξ a a σ ξ b σ ξ

,

,

,

j

n

j
j

j

n

j
j

j

n

j
j

j

n

j
j

j

n

j
j

0
1 1

1

0
1

0
1 1

(24)

where = ( )σ σ ξ and = ( )τ τ ξ satisfy the system

′( ) = ( ) ( )

′( ) = ( ( ) ( ))

σ ξ εσ ξ τ ξ
τ ξ εω σ ξ τ ξ

,
, ,

(25)

where = ±ε 1 and ω is a rational function in the variables
= ( )σ σ ξ and = ( )τ τ ξ .
From (25), we get a differential equation of the form:











∫

′( )

( )
= ( ( ) ( ))

′( ) = ( ) ( ( ) ( ))

′σ ξ
σ ξ

ω σ ξ τ ξ

σ ξ σ ξ ω σ ξ τ ξ ξ

, ,

, d .
(26)

If the function ω is selected properly, then system (25)
can be solved exactly. For instance, taking = −ε 1 and

( ( ) ( )) = ( ) + ( ) −ω σ ξ τ ξ τ ξ μ
K

σ ξ, 1,2 (27)

where = ±μ 1 and ≠K 0 we get

′( ) = − ( ) ( )

′( ) = − ( ) − ( ) +

σ ξ σ ξ τ ξ

τ ξ τ ξ μ
K

σ ξ

,

1,2 (28)

which admits the first integral











( )
− −

( )

( )
= −

σ ξ
μ
K

τ ξ
σ ξ

K1 .
2 2

2
2 (29)

The general two-parameter solution of (29) is

( ) =
+

( ) =
+

σ ξ K
ξ μ

τ ξ ξ
ξ μcosh

, sinh
cosh

. (30)

For more details about (29), we refer the reader to ref. [33].
Now we can give the link between the methods and

the projective Riccati equations (25) and (26). As a result,
we will see why the methods are so similar to each other.
Also, this relationship will also clarify how to derive
alternative solution methods.
1. The tanh–coth method

Setting









( ( ) ( )) = − ( ) ( ) −

( )

( )
ω σ ξ τ ξ ε σ ξ τ ξ α τ ξ

σ ξ
, , (31)

in (26), then we get the following equation:









∫′( ) = ( ) − ( ) ( ) −

( )

( )
σ ξ σ ξ ϵσ ξ τ ξ ϵα τ ξ

σ ξ
ξd . (32)

From (23), we get





















∫′( ) = ( ) − ′( ) −
′( )

( )

= ( ) − ( ) +
( )

+

σ ξ σ ξ σ ξ α σ ξ
σ ξ

ξ

σ ξ σ ξ α
σ ξ

c

d

1 .

2
(33)
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Choosing the integration constant c as zero, then the last
equation gives (5). Thus, we obtain the tanh–coth method.

2. The modified Kudryashov method
Choosing

( ( ) ( )) = ( ) ( )ω σ ξ τ ξ εσ ξ τ ξ a, ln (34)

in (26), we get

∫

∫

′( ) = ( ) ( ) ( )

= ( ) ′( )

= ( )( ( ) + )

σ ξ σ ξ εσ ξ τ ξ a ξ

σ ξ σ ξ a ξ

σ ξ σ ξ a c

ln d

ln d

ln .

(35)

If the integration constant c equals − aln , then this
choice gives us the modified Kudryashov method.

3. The F-expansion method
Setting

( ( ) ( ))

=
( ) ( ) + − ( ) ( )

( ) + + ( )

−

−

ω σ ξ τ ξ
Pεσ ξ τ ξ Rεσ ξ τ ξ

Pσ ξ Q Rσ ξ

,
2 1 2

2
,

2 2

2 2

(36)

in (26), where P, Q and R are real constants. After
using these choices, equation (36) takes the fol-
lowing form:

∫

( )

′( )

= ( )
( ) ′( ) + − ( ) ′( )

( ) + + ( )

= ( ) ( ) + + ( ) +

−

−

−

σ ξ

σ ξ Pσ ξ σ ξ Rσ ξ σ ξ
Pσ ξ Q Rσ ξ

ξ

σ ξ Pσ ξ Q Rσ ξ c

2 1 2
2

d

.

3

2 2

2 2

(37)

Setting =c 0, we obtain

( ′( )) = ( )( ( ) + + ( ))

= ( ) + ( ) +

−σ ξ σ ξ Pσ ξ Q Rσ ξ
Pσ ξ Qσ ξ R.

2 2 2 2

4 2

So, we get (15) and the F-expansion method.
4. The generalized Riccati equation mapping method

Now, choosing

( ( ) ( )) = −
( )

( )
+ + ( ) ( )ω σ ξ τ ξ rε τ ξ

σ ξ
qεσ ξ τ ξ, 1 , (38)

in (26), where r, p and q are real constants, turns (38)
into the following form:





















∫′( ) = ( ) −
′( )

( )
+ + ′( )

= ( )
( )

+ + ( )

σ ξ σ ξ r σ ξ
σ ξ

qσ ξ ξ

σ ξ r
σ ξ

ξ qσ ξ

1 d

.

2
(39)

We can write p instead of ξ . So the last equation
takes the following form:

′( ) = + ( ) + ( )σ ξ r pσ ξ qσ ξ .2 (40)

Equation (40) is the same as equation (18). As a
result, we obtain the extended generalized Riccati
equation mapping method easily.

4 Conclusions

We have considered and investigated the similarities
and the differences of four important solution methods:
the tanh–coth method, the modified Kudryashov
method, the F-expansion method and the generalized
Riccati equation mapping method. In fact, when we put
aside their differences, the similarities of these methods
attract much more attention. We have revealed that the
origin of these methods is based on the same system of
projective Riccati equation. So the methods are similar
to each other. This study also gives the clues about
alternative solution methods. We can derive new
solution methods to find solutions to NPDEs by using
(25) and (26). The main point we need to focus on is: if
we can solve (26) exactly, then we get = ( )σ σ ξ and

= ( )τ τ ξ . We have to choose ( ( ) ( ))ω σ ξ τ ξ, appropriately.
Using ( )σ ξ and ( )τ ξ , we can determine one of the
ansatzs (24). So, we solve (23) and then we can obtain
travelling wave solution(s) of (22). Every alternative
choice for the function = ( ( ) ( ))ω ω σ ξ τ ξ, gives a new
solution method.

Let us explain via an example. Choosing the function
= ( ( ) ( ))ω ω σ ξ τ ξ, as









( ( ) ( )) = ( ) ( ) −

( )

( )
ω σ ξ τ ξ ε σ ξ τ ξ τ ξ

σ ξ
, , (41)

we get









∫′( ) = ( ) ( ) ( ) −

( )

( )
σ ξ σ ξ εσ ξ τ ξ ε τ ξ

σ ξ
ξd . (42)

Considering ′( ) = ( ) ( )σ ξ εσ ξ τ ξ , = ±ε 1 and the inte-
gration constant as 1 yield a nonlinear differential
equation:

′( ) = + ( ) + ( )σ ξ σ ξ σ ξ1 .2 (43)

The exact solution of (43) is









( ) = + −σ ξ ξ c3

2
tan 3

2
1
2

, (44)
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where c is a constant. Using (25) we get = ( )τ τ ξ and
substituting any of the ansatzs in (24) into (2), we obtain
a polynomial equation in the variables ( )σ ξ and ( )τ ξ .
Equating the coefficients of ( ) ( ) = …σ ξ τ ξ i n, 0, 1, 2, , ,i i to
zero, we get a system of polynomial equations in the
variables ai, bi. Solving this system with the aid of
Mathematica or Maple, we obtain the desired solutions.
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