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Abstract: The steady state response of a fractional order
vibration system subject to harmonic excitation was stud-
ied by using the fractional derivative operator me , Where
the order f§ is a real number satisfying 0 < < 2. We de-
rived that the fractional derivative contributes to the vis-
coelasticity if 0 < S < 1, while it contributes to the vis-
cous inertia if 1 < § < 2. Thus the fractional derivative can
represent the “spring-pot” element and also the “inerter-
pot” element proposed in the present article. The viscosity
contribution coefficient, elasticity contribution coefficient,
inertia contribution coefficient, amplitude-frequency rela-
tion, phase-frequency relation, and influence of the order
are discussed in detail. The results show that fractional
derivatives are applicable for characterizing the viscoelas-
ticity and viscous inertia of materials.

Keywords: fractional derivative, viscoelasticity, viscous in-
ertia, vibration
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1 Introduction

Fractional calculus is a generalization and extension of in-
teger order calculus and is applied to practical problems
in science and engineering, including viscoelastic theory,
anomalous diffusion, analysis of feedback amplifiers, frac-
tal dynamics, fitting of experimental data and so forth [1-
6]. Due to the widespread application of polymer materials
in various fields of engineering, viscoelastic theory has un-
dergone considerable development and constitutes one of
the most successful application fields of fractional calcu-
lus.
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The major merit of fractional calculus lies in the fact
that it is a very suitable tool for the description of the mem-
ory and hereditary properties of various materials and pro-
cesses [5-7]. It has been found that in many practical cases,
systems can be more adequately described by using frac-
tional order differential equations.

Scott-Blair [8, 9] proposed a fractional order consti-
tutive equation a(t) = boD{e(t) to describe the stress-
strain relationship of viscoelastic materials, where 0 <
v < 1. Such an equation characterizes both the elastic-
ity and the viscosity, so it represents a “spring-pot” ele-
ment [10]. Based on this, studies of fractional oscillators
and dynamical systems has attracted the interest of some
scholars [11-20]. In [11], The equivalent integer order forms
for three classes of fractional oscillators were considered.
In [19], fractional calculus was introduced to model a class
of memory oscillators. Some nonlinear fractional oscilla-
tors were investigated in [12, 13, 16, 20, 21]. The eigenvalues
and eigenvector derivatives of fractional vibration systems
were discussed in [22].

The concept of the inerter was proposed by Smith [23].
The inerter has two end points, one of which can move
relative to the other. The magnitude of the force depends
on the relative acceleration of the two end points. The in-
erter has been used in many fields, such as in the design of
construction and suspension in racing cars, trains, ships,
etc. [24-27].

In this article, we consider a fractional vibration sys-
tem with fractional order f satisfying O < f < 2, a greater
range than that considered in previous work. By analyzing
the steady state response, we explain that when the order
satisfies 1 < < 2, the fractional derivative describes be-
havior of both spring pot and inerter. We suggest that the
fractional element for an order 1 < § < 2 corresponds to
an “inerter-pot”.

2 Basic concepts

Let the function f(t) be piecewise continuous on (a, +oo)
and integrable on any subinterval (a, t). The Riemann-
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Liouville fractional integral of f(¢) is defined as
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where I'(-) is the gamma function of Euler
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I'(z) = / e “u?ldu, z> 0. 2
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Let f"(¢) be piecewise continuous on (a, +oo) and in-
tegrable on any subinterval (a, t). Then the Caputo frac-
tional derivative of f(t) of order 8 (n - 1 < B8 < n) is defined
as

aDPF(t) = I PN, n-1<B<n, neN. (3)

If 8 is a non-negative integer, an f(t) will be used to repre-
sent the integer order derivative f&)(¢).

In the following, we take a = —oo, and use the frac-
tional order operator _leg f(t) to study the steady state re-
sponse of the fractional-order system under harmonic ex-
citation.

3 Steady-state vibration with
fractional derivative

Consider a fractional order vibration system with excita-
tion in the form of the complex exponential function:

(4)

mx + kx + cx + G_mex = Foe'?!,

where G_MD/fx indicates a force associated with the
entire deformation history for the viscoelastic material,
m, k, ¢, G, Fy, w are positive real constants, i is the imag-
inary unit and the order f is restricted to the interval 0 <
B<2.

Similar to the case of integer orders, the form of the
response is assumed to be

x(t) = Xe't, (5)

where X is the complex amplitude, independent of t. The
integer order derivatives and the fractional derivative are
calculated to be [2]
X (t) = Xiwe'”', % (t) = -Xw?el", (6)
and
—eDPx (t) = X (iw)P . @)
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Substituting the first order derivative x(t), the second
order derivative X (t) and the fractional derivative in the
above formulae into Eq. (4), we have

~mXw?e! + kXe'! +icwXel! + G_oDPXel¥! = Fyel!,

Solving for the amplitude leads to ©
x= k-mw? + iI::Ow +G (iw)? ' ©)
Using the equality
i# = P2 _ cos (mB/2) +isin (mB/2), (10)
we obtain the complex amplitude as
X = Fo (11)

k-mw?+Gwb cos(np/2)+i[c w+GwP sin(np/2)]

In order to simplify the above formula, we assume that

P =k - mw? + GwP cos (mB/2), (12)
Q=cw+Gwsin (mB/2),
and rewrite the complex amplitude into
__Fo
T P+Qi’ (13)

where Q > 0 is always true due to 0 < 8 < 2. Introducing
the phase difference ¢ to rewrite the complex amplitude,
we have "
-1
x- Foe? (1)
VP2 + Q2

where the phase difference between the excitation and the
response is

arctan (Q/P), P>0,
/2, P=0,
m+arctan (Q/P), P<O.

¢ = (15)

Thus, the response of the system to complex harmonic ex-
citation is
Foel@t-9)

x(t) = - - =.
\/[k—mwz+Ga}l3 cos(B/2)]"+[c w+GwP sin(nB/2)]

If = 0,1,2, the fractional derivative contributes
pure elasticity, viscosity, and inertia, respectively.

If0 < B < 1, we have cos (18/2) > 0 and sin (78/2) >
0. The fractional derivative contributes both to the damp-
ing and the stiffness. The solution of the original fractional
order vibration system (4) is equivalent to the solution of
the integer order system

mx + kx + ¢x = Foe'!, 17)
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where
k =k + GwP cos (nB/2), E=c+ GwP ' sin (nB/2). (18)

Accordingly, the contributions of the fractional derivative
term Gﬂ,c,D';j x to damping and stiffness are

¢-c=G6wPtsin (mB/2), k- k=GP cos (mB/2) . (19)

If1 < B < 2, then we have cos (18/2) < 0, sin (1/2) >
0. The fractional derivative contributes both to the damp-
ing and the mass. The solution of the original fractional
order vibration system (4) is equivalent to the solution of
the integer order system

mx + kx + &x = Foel?!, (20)
where
¢=c+GawP " sin (nB/2),
= m - GwP 2 cos (nB/2) .

(21)

So the contributions of the fractional derivative term
G_M,Dﬁ3 x to damping and mass are

¢-c=GwP'sin (nB/2),
m-m=-GwP? cos (mB/2) .

(22)

We call (¢ - ¢)/G, (k - k)/G and (7”1 - m)/G the vis-
cosity contribution coefficient, elasticity contribution co-
efficient and inertia contribution coefficient, respectively.
They have the forms

(¢-0)/G =wPlsin (mB/2), 0< B <2, (23)
(k-k/G = wPcos (mB/2), 0<p<1, (24)
(h-m)/G =-wP2cos (nﬁ/Z) , 1<p<2. (25)

The three contribution coefficients depend on both
the excitation frequency w and the fractional order . For
0 < B < 1, the viscosity contribution coefficient (¢ - ¢)/G
decreases with increase in w, while for 1 < 8 < 2, the coef-
ficient (¢ - ¢)/ G increases with increase in w. The elasticity
contribution coefficient (k — k)/G is defined on 0 < B<1,
and is an increasing function of w. The inertia contribu-
tion coefficient (1 - m)/G existson 1 < 8 < 2, and is a
decreasing function of w.

In Figure 1, the curves of the viscosity contribution co-
efficient (¢ - ¢)/ G versus the order B are shown on the in-
terval 0 < B < 2 for different values of w. From Eq. (23)
we deduce that the two curves for the values of w which
have a reciprocal relation are symmetric with respect to the
straight line 8 = 1 as shown in Figure 1. For further analy-
sis, we calculate the derivative as

% [wﬁ’l sin (%ﬁ)] = P sin (2B) In(w) + ZwP ' cos (2B). (26)
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Figure 1: Curves of (¢ - ¢)/G versus Bon 0 < 8 < 2 when w takes
different values: w = 0.25 (solid line), w = 0.5 (dotted line), w = 1
(dashed line), w = 2 (dot-dashed line), w = 4 (dot-dot-dashed line).

It can be concluded that wf~!sin (nB/2) always in-
creases and then decreases with f increasing from O to 2.
At the stationary point

B = %arccot [—@] , 27
or equivalently,
2 arctan [_ZIn(w)} , O<w<1,
B =11, w=1, (28)
2 - 2arctan [ﬁ(aj)} , w>1,

the viscosity contribution coefficient (¢ - ¢)/G takes the

maximum
c-c . _ B-1_: E *
<—G > w” 7 sin (Zﬁ ) .

The stationary point and the maximum depend on the
frequency w. Figures 2 and 3 show how their curves vary
with the frequency w, where the horizontal axes adopt the
logarithmic scales in order to magnify the interval 0 < w <
1 for visualization of the symmetrical patterns.

For w = 1, the stationary point lies at the midpoint
B" = 1in Figures 1 and 2, and the maximum [(¢ - ¢)/G]| i
has the minimum 1 in Figures 1 and 3. With increase of w
on the interval (0, +oo), the stationary point " increases
monotonically through the interval (0, 2). The maximum
(- c)/G]* approaches infinity as w — 0" or w — +oo.

The curves of (k — k)/G versus B on the interval 0 <
B < 1 for different values of w are plotted in Figure 4. For
further analysis, we consider the derivative

(29)

& [a)ﬁ cos (%ﬂ)} = wP cos (Zp) In (w) - TwPsin (2B). (30)

It can be concluded that if 0 < w < 1, the elasticity
contribution coefficient (k- k)/ G decreases monotonically
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Figure 2: Curve of stationary point 8* versus w.
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Figure 3: Curve of the maximum [(¢ - ¢)/G] " versus .
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Figure 4: Curves of (k - k)/G versus B on the interval 0 < 8 < 1 when
w takes different values: w = 0.25 (solid line), w = 0.5 (dotted line),
w = 1 (dashed line), w = 2 (dot-dashed line), w = 4 (dot-dot-dashed
line).

with f increasing, while if w > 1 it has the maximum
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Figure 5: Curve of stationary point 8* versus w.
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Figure 6: Curve of the maximum [(k - k)/G]" versus w.
at the stationary point
x 2 2
= Zarctan | = In(w)]| . 32
= [n ( )} (32

In Figures 5 and 6, the curves of the stationary point
and the maximum [(k — k)/G]" versus the frequency w on
the interval 1 < w < 40 are shown. With increase of w on
the interval (1, +o0), /3* increases monotonically through
the interval (0, 1), and the maximum [(k-k)/G]" increases
monotonically through the interval (1, +o0).

In Figure 7, the curves of (h — m)/G versus 8 on the
interval 1 < 8 < 2 are displayed for different values of w.
By calculating and analyzing the derivative

d% {—wﬁ’z cos (gﬁ)} = w22 sin (%) - wP 2 In(w)cos (28), (33)
we conclude that if 0 < w < 1, the inertia contribution
coefficient (i1 — m) /G always first increases and then de-
creases on the interval 1 < § < 2, reaching the maximum

(757) o e (3). o
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Figure 7: Curves of (fn — m)/ G versus B on the interval 1 < 8 < 2 when
w takes different values: w = 0.25 (solid line), w = 0.5 (dotted line)
w = 1 (dashed line), w = 2 (dot-dashed line), w = 4 (dot-dot-dashed
line).
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Figure 8: Curve of stationary point " versus w.
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Figure 9: Curve of the maximum [(ﬁl - m)/G} " versus w.
at the stationary point
B = 2+2 arctan | 2 1n (w) (35)
Vi3 i ’

DE GRUYTER

n(w)
201

0 1 2 3 4

Figure 10: Form = k = G = 1, ¢ = 0.4, curves of n (w) versus w when
B takes the values: 8 = 0 (solid line), 8 = 0.25 (dotted line), 8 = 0.5
(dashed line), B = 0.75 (dot-dashed line), B = 1 (dot-dot-dashed
line).

while if w > 1, the inertia contribution coefficient
(M - m) /G increases monotonically with increase in .

In Figures 8 and 9, the curves of the stationary point
B and the maximum [ - m)/G] " versus the frequency
w on the interval 0 < w < 1 are shown. With increase in
w on the interval (0, 1), the stationary point 8" increases
monotonically through the interval (1, 2), and the maxi-
mum [( - m)/G]| " decreases monotonically through the
interval (1, +oo).

Next, we consider the amplitude-frequency and phase-
frequency relations. From Eq. (16), the amplitude amplifi-
cation factor is derived as a function of w,

x(®] _

@)= pop 36)

k
\/[k—mw2+GwB cos(nﬁ/Z)]2+[c w+Gwh sin(nB/Z)]2 ‘

Also, the phase difference in Eq. (15) is regarded as a func-
tion of the frequency w,

c w+GwP sin(mp/2)

arctan . o e of cos(np/2)’ >0,
W)= n/2, pmo. 0D
7T + arctan — wiGu”sinnf2) P<0,

k-mw?+GwP cos(nB/2)’

where P = k- mw? + Gw® cos (mB/2).Takem =k =G =1,
¢ = 0.4. The amplitude-frequency curves 1 (w) are shown
in Figures 10 and 11, and the phase-frequency curves ¢ (w)
are shown in Figures 12 and 13, where the order S takes
different values 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2.

We note that the limit wli_l;l(ly n (w), as a function of S,
has a jump between 8 = 0 and B > O (see Figure 10). For
0 < B < 1, small damping corresponds to &2 — 4mk < 0
in Eq. (17). For 1 < B < 2, small damping corresponds to
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Figure 11: Form = k = G = 1, ¢ = 0.4, curves of n (w) versus w when
B takes the values: B = 1 (solid line), 8 = 1.25 (dotted line), B = 1.5
(dashed line), B = 1.75 (dot-dashed line), B = 2 (dot-dot-dashed
line).
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Figure12: Form = k = G = 1, ¢ = 0.4, curves of ¢ (w) versus
w when B takes the values: B = 0 (solid line), B = 0.25 (dotted
line), B = 0.5 (dashed line), B = 0.75 (dot-dashed line), B = 1
(dot-dot-dashed line).

¢? - 4mk < 0 in Eq. (20). For the case under considera-
tionn, m = k = G = 1, ¢ = 0.4, the system has obvious
small damping as 8 approaches O or 2. So the amplitude-
frequency curves n (w) display distinct resonance peaks in
Figures 10 and 11. The resonance peaks descend with in-
crease of § from O to 1in Figure 10, while the peaks ascend
with increase of  from 1 to 2 in Figure 11.

In Figures 12 and 13, variations of excitation and re-
sponse from in-phase to anti-phase are displayed as w in-
creases. Moderate transitions from in-phase to anti-phase
are shown as f§ approaches 1, while sharp transitions ap-
pear for 8 approaching O or 2, the case of small damping.

Finally, we consider the quality factor of the oscilla-
tory system. If O < 8 < 1, from Eq. (17) the equivalent damp-

Vibration Equation of Fractional Order Describing Viscoelasticity and Viscous Inertia

— 855

$(w)
b m o
s /’ -
. e
7 .
L
1/,
e
7,
'/:,
i
d
/.
:4/'/
/7,
/i/' Il Il Il Il Il
w
1 2 3 4 5

Figure13: Form = k = G = 1,c = 0.4, curves of ¢ (w) versus
w when B takes the values: 8 = 1 (solid line), B = 1.25 (dotted
line), B = 1.5 (dashed line), B = 1.75 (dot-dashed line), B = 2
(dot-dot-dashed line).

ing ratio is B

¢
2V mk
For smaller damping (usually ¢ < 0.05), the amplitude am-
plification factor at resonant frequency is the quality fac-
tor, which is approximated as Q = 1/(2{), 0 < 8 < 1. If
1 < B < 2, from Eq. (20) the equivalent damping ratio is

(=

¢
= vk
The quality factor is Q = 1/(2{), 1 < B < 2. The quality
factor can effectively reflect the damping strength of an os-
cillatory system. A peculiar aspect is that these quantities
are related to the frequency w.

4 Conclusion

In this paper, the steady state response of fractional order
vibration systems under harmonic excitation was studied
by using the fractional derivative operator _wa . We used
the harmonic excitation in the form of a complex exponen-
tial function to discuss the contribution of the fractional
derivative term to the damping, stiffness and mass, respec-
tively. If 8 = 0, 1, 2, the fractional derivative contributes
pure elasticity, viscosity, and inertia, respectively.

We derived that if 0 < B < 1, the fractional derivative
term causes contributions to damping and stiffness, so it
characterizes viscoelasticity and represents a “spring-pot”
element; if 1 < B < 2, the fractional derivative term pro-
duces contributions to damping and mass, so it character-
izes viscous inertia and represents an “inerter-pot”, which
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is a newly proposed terminology in this paper. Dependen-
cies of the viscosity contribution coefficient, elasticity con-
tribution coefficient and inertia contribution coefficient,
respectively, on the frequency w and the order 8 were in-
vestigated. We also discussed the amplitude-frequency re-
lation, the phase-frequency relation and the influence of
the order. The results show that fractional derivatives are
applicable for describing the viscoelasticity and viscous in-
ertia of materials.
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