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Abstract: Quantum algorithm is an algorithm for solving
mathematical problems using quantum systems encoded
as information, which is found to outperform classical al-
gorithms in some specific cases. The objective of this study
is to develop a quantum algorithm for finding the roots
of nth degree polynomials where n is any positive integer.
In classical algorithm, the resources required for solving
this problem increase drastically when n increases and it
would be impossible to practically solve the problemwhen
n is large. It was found that any polynomial can be re-
arranged into a corresponding companion matrix, whose
eigenvalues are roots of the polynomial. This leads to apos-
sibility to perform a quantum algorithmwhere the number
of computational resources increase as a polynomial of n.
In this study, we construct a quantum circuit representing
the companionmatrix and use eigenvalue estimation tech-
nique to find roots of polynomial.
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1 Introduction
Roots finding is a centuries-old problem that has contin-
ued to attract considerable research interests and efforts
due to its relevance in many fields of mathematics and
physics involving geometry, number theory, probability
and combinatorics. It is well known that for a polynomial
of degree 4 or less, there exists a formula or procedure to
solve for its roots exactly [1]. However, such a task is im-
possible for a polynomial of degree 5 or greater [2]. Many
root-finding algorithms have been devised for obtain ap-
proximated roots of a polynomial of arbitrary degree [3–5].

The plausibility of a quantum computer—a new type
of computation, which embraces quantummechanics into
its information, algorithms, and output measurements—
has entailed quantum algorithms. A simple enhancement
by rather non-intuitive mathematics of quantum mechan-
ics like superposition, the uncertainty principle, and en-
tanglement, brings quantum algorithms forth to a new
level of computation unreachable before by conventional
computers with classical algorithms. For example, the
Shor’s algorithm, an algorithm to factorize a large integer
into a product of primes, is proven in principles to over-
come the classical-algorithm limit in terms of speed [6]. A
breakthrough in quantum simulation is expected to bring
eminent impact into science and technology [7, 8]. Re-
cent progress on the actual quantum devices, such as a
successful small-molecule simulation [9–12] or probing
the statistics of quantum systems [13–15], have yielded
high promises and attracted immense interests. The ad-
vancement of computation and simulation in the afore-
mentioned examples owes largely to a common underly-
ing method called phase estimation algorithm (PEA) [16].
Still, PEA can be improved, especially at the fundamental
algorithm of finding roots of a polynomial.

However, PEA is only applicable to unitary operators
which are not always the case for some quantum algo-
rithms; for instance, the phase measurement under the
circumstance where decoherence is present in the pro-
cess [17]. In a measurement process of the quantum algo-
rithm, the non-unitary matrices also play key roles as pro-
jective operators. In order to modify existing PEA to be

https://doi.org/10.1515/phys-2019-0087


840 | T. Tansuwannont et al.

suitable for eigenvalue problems comprehensively, a pro-
grammable circuit, and measurement of the control and
ancillary qubits are recently exploited to tailor-made any
arbitrary matrix [18]. The great advantage of this proposed
scheme is that any matrix can be constructed and the con-
trol gate of the respective matrix can be realized, paving
ways to build a quantum computer which can calculate
eigenvalue of any matrix. However, some drawbacks exist
as the algorithm itself may not be efficient for complicated
matrices, which quantum complexity arises following the
increasing number of non-zero matrix elements [19]. Fur-
ther investigation on the algorithm in terms of appropriate
complexity is still needed.

Our main aim in this paper is to propose a mod-
ified quantum phase estimation algorithm for finding
polynomial roots, where we present a benchmark imple-
mentation of quantumnon-unitary eigenvalue calculation
scheme for polynomials. This specific task represents the
least complex eigenvalue,which the algorithmcanbe fruit-
ful without too much concern over the complexity.

This article is organized as follows. The remaining
subsections of this section will cover key concepts and
ideas about the phase estimate algorithm, and the iterated
phase estimate algorithm (IPEA) for unitary operators, as
well as the quantum algorithm to find complex eigenval-
ues of a general matrix. In Section II, we present our mod-
ified PEA and IPEA, together with the companion matrix
approach, and more importantly, the circuit design to esti-
mate roots of a polynomial of degree n. There we focus our
presentation of the circuit operation and outputs, leaving
the discussion and complexity analysis in Section III. Fi-
nally, the conclusions are summarized in Section IV.

1.1 PEA and IPEA for Eigenvalue Problems of
Unitary Operators

In the original version of PEA, a phase φ arising after a uni-
tary evolution U with eigenvalue exp(2πφi) is operated on
its basis. Because a quantum evolution can be interpreted
by a phase factor U = exp(−iHt/~), where H is a Hamilto-
nian of a finite system, the phase as a result of the phase
estimation algorithm is indeed the eigenvalue of theHamil-
tonian. PEA has also been introduced as a potential quan-
tum tool to effectively solve various eigenvalue problems
involving unitary operators [20–23]. The unitary operators
play a central role in all of the quantumalgorithms, as they
are required for universal quantum computations [24].

In order to estimate the value of a phase parameter
ωj up to the b bit-precision using PEA, b ancillary qubits
in control register are required. In practice, however, the

number of qubits which can be implemented is very lim-
ited. Iterative Phase Estimation Algorithm (IPEA) is an al-
gorithm improved from the original PEA with an aim to
estimate ωj up to bth digit while using only one ancillary
qubit together with b iterations as a result of scalable in-
verse quantum Fourier transform in a semi-classical man-
ner [25, 26]. In order to explain the algorithm as illustrated
in Figure 1, we first assume that the phase parameter ωj
has a binary expansion no more than b digits (written as
ωj = 0.x1x2x3 . . . xb000 . . .). Initially, all of the ancillary
qubits are prepared in state |0⟩ and the target register is
prepared in the eigenstate |ψj⟩ of unitary operator U. A
Hadamard gate is applied to the control register in order to
prepare state (|0⟩ + |1⟩) /

√
2. In the first iteration (k = 1), a

c-U2b−1 and

Z (θk) =
[︃
1 0
0 e−iθk

]︃
, (1)

where θ1 = 0 are applied. After that, the secondHadamard
gate is applied on the control qubit and its state is mea-
sured in the computational basis {|0⟩, |1⟩}. This results in
state

1
2
[︀
(1 + e2πi(0.xb))|0⟩ + (1 − e2πi(0.xb))|1⟩

]︀
, (2)

whosemeasurement gives either 0 or 1, and is determined
by the majority probability between |0⟩ and |1⟩. This mea-
surement result consequently dictates the value of xb. The
next iteration is performed with the c-U2b−k and Z (θk),
where θk = 2π (0.0xb−k+2xb−k+3 . . . xb) is calculated by the
feed-forwarded measurement result of the prior iterations
up to xb−k+1. The algorithm is finished when the digit x1 is
obtained.

Figure 1: A circuit for the kth iteration of the IPEA where θk is the
feedback from prior iterations.

The original IPEA has been used to determine only the
phase parameter ωj of the eigenvalue λj = e2πiωj of a uni-
tarymatrix U. In general, however, an eigenvalue of a non-
unitary operator can be written as λj = |λj|e2πiωj . The stan-
dard IPEA therefore cannot be applied without the knowl-
edge of modulus |λj|.
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1.2 Quantum Algorithm for Finding Complex
Eigenvalues of General Matrices

Recently, Daskin et al. have introduced their technique to
find the complex eigenvalues of generalmatrices [18]. In or-
der to employ the IPEA on the non-unitary operators, first
of all, the non-unitary operator O has to be controlled by
a phase qubit and the c-U2b−k in Figure 1 is replaced by c-
O2b−k .

In the scheme proposed by Daskin et al., the decompo-
sition of the control gate of the non-unitary operator O of
size N = 2m uses the programmable circuit design, which
requiresm+1 ancillary qubits andmmain qubits [18]. The
operatorO generally has a eigenvalue of the form |λj|e2πiωj .
In case thatωj = 0.x1000 . . ., an operation of c-O followed
by the Hadamard gate gives an output state[︁(︁

1 + |λj|e2πi(0.x1)
)︁
|0⟩p+

(︁
1 − |λj|e2πi(0.x1)

)︁
|1⟩p

]︁
|ψj⟩m , (3)

where p and m denote phase qubit and main qubits, re-
spectively. As can be seen, the c-O2b−k can be realized by
the decomposition proposed by Daskin et al. It is also pos-
sible to estimate its phase ωj via the IPEA from the prob-
ability shown in (3) in the same fashion as the phase es-
timation results determined by (2). However, the true nov-
elty of the scheme is in the estimation of |λj|—taking the
calculation to a complete eigenvalue estimation for any
non-unitary matrix. Following the result shown in (3), the
value of |λj| is related to the probability P0 or P1 of find-
ing the phase qubit in states |0⟩ or |1⟩, respectively. Let
P = max{P0, P1}, so that we can estimate |λj| as

|λj| = 2N2√P − 1, (4)

where N is the dimension of matrix. In practice, |λj| is de-
termined by the statistics of themeasurement.We can also
improve the accuracy of the estimation by using the statis-
tics from other iterations. For the kth iteration after which
c-O2b−k is operated followed by Z(θk) and the Hadamard
gate, the relationship between P(k) and |λj| becomes

|λj|2
b−k

= 2N2
√︀
P(k) − 1. (5)

Since we can estimate both |λj| and ωj, the complex eigen-
value λj can be determined.

2 Quantum Algorithm for Finding
Polynomial Roots

2.1 Companion Matrix Approach

As the aim of this study is to find roots of a generic poly-
nomial of degree n, we can formulate this problem as the

eigenvalue problem of a non-unitary operator. First of all,
consider

p(x) = xn + an−1xn−1 + · · · + a1x + a0; (6)

it can be factorized into the form

p(x) = (x − z1)(x − z2) · · · (x − zn), (7)

where z1, z2, . . . , zn ∈ C are the roots of p(x). From gen-
eral linear algebra [27], the roots of polynomial p(x) are
eigenvalues of its companion matrix defined as

Cp =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0

0 1 0
. . . . . .

0 1
−a0 −a1 · · · −an−2 −an−1

⎤⎥⎥⎥⎥⎥⎥⎦ (8)

with respect to the basis
{︀
1, x, x2, . . . , xn−1

}︀
.

Daskin’s algorithm requires that the absolute value
of every coefficient ai must be less than or equal to 1,
since rotation gates are used to simulate these coefficients.
Therefore, we introduce a scaling method to meet this re-
quirement. Let amax denote the greatest absolute value of
a0, a1, . . . , an. We choose a basis of circuit in the x-mode
or (1/x)-mode depending onwhether |an| or |a0| is greater
to maximize the success probability of the circuit scheme.

In case |an| > |a0|, the x-mode will be chosen, so the
polynomial p(x) can be equivalently expressed in the form

an
amax

xn + an−1amax
xn−1 + · · · + a1

amax
x + a0

amax
= 0. (9)

Let µ = amax/an be a scaling factor. Then the correspond-
ing eigenvalue equation is written as⎡⎢⎢⎢⎢⎢⎢⎣

0 an
amax

0
0 an

amax
0

. . . . . .
0 an

amax

− a0
amax

− a1
amax

· · · − an−2amax
− an−1amax

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1
x
...

xn−2

xn−1

⎤⎥⎥⎥⎥⎥⎥⎦ (10)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
µ 0
0 1

µ 0
. . . . . .

0 1
µ

−a′0 −a′1 · · · −a′n−2 −a′n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1
x
...

xn−2

xn−1

⎤⎥⎥⎥⎥⎥⎥⎦

= x
µ

⎡⎢⎢⎢⎢⎢⎢⎣
1
x
...

xn−2

xn−1

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Figure 2: Polynomial Representative Circuit (PRC) which is used to represent an operation of a companion matrix.

where a′i = ai/amax. The eigenvalue of modified compan-
ion matrix is x/µ.

On the other hand, if |a0| > |an|, the (1/x)-mode will
be used. Dividing the polynomial p(x) by amaxxn leads to

a0
amax

(︂
1
x

)︂n
+ a1
amax

(︂
1
x

)︂n−1
+ · · · (11)

+ an−1amax

(︂
1
x

)︂
+ an
amax

= 0.

In this case, a scaling factor is µ = amax/a0, and the corre-
sponding eigenvalue equation is in the form⎡⎢⎢⎢⎢⎢⎢⎣

0 a0
amax

0
0 a0

amax
0

. . . . . .
0 a0

amax

− an
amax

− an−1amax
· · · − a2

amax
− a1
amax

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1
1/x
...

1/xn−2

1/xn−1

⎤⎥⎥⎥⎥⎥⎥⎦ (12)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
µ 0 1
0 1

µ 0
. . . . . .

0 1
µ

−a′0 −a′1 · · · −a′n−2 −a′n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1
1/x
...

1/xn−2

1/xn−1

⎤⎥⎥⎥⎥⎥⎥⎦

= 1
µx

⎡⎢⎢⎢⎢⎢⎢⎣
1
1/x
...

1/xn−2

1/xn−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where a′i = an−i/amax in this case. Note that the eigenvalue
of the modified companion matrix is 1/µx.

However, the traditional companion matrix as de-
scribed in (8) has 1’s in the upper diagonal entries but all of
such entries of themodified companionmatrices as shown
in (10) and (12) have absolute values less than 1. To rec-
tify this, we introduce a scaling gate Sm,µ which will be
explained in details later; see Equation (21).

2.2 Quantum Circuit Design

Our design of the respective algorithm relies on Polyno-
mial Representative Circuit (PRC), a circuit to represent
this modified companion matrix as illustrated in Figure 2.
PRC requires m main qubits and 2 ancillary qubits where
2m = n is a degree of the polynomial. (Although it is in-
convenient, the circuit is also applicable for n ≠ 2m sim-
ply by shifting the degree of polynomial up to the nearest
power of 2.) First, let the main qubit be prepared in the ini-
tial state :

|α⟩ =

⎡⎢⎢⎢⎢⎢⎢⎣
α0
α1
...

αn−2
αn−1

⎤⎥⎥⎥⎥⎥⎥⎦ , (13)

and we define |β⟩ as a result of Cp operating on |α⟩; i.e.

Cp|α⟩ = |β⟩. (14)
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Multiplying |α⟩ by the modified companion matrix from
(10) or (12) gives |β⟩ in the form:

|β⟩ =

⎡⎢⎢⎢⎢⎢⎢⎣
α1
α2
...

αn−1
−a⃗′ · α⃗

⎤⎥⎥⎥⎥⎥⎥⎦ , (15)

where a⃗′ · α⃗ = a′0α0 + a′1α1 + · · · + a′n−1αn−1. Similar to the
circuit introduced by Daskin et al., our circuit consists of
Input Modification Block, Formation Block, and Combina-
tion Block. The main ingredient of the Input Modification
Block is a cyclic-swap gate Cs applied on the main qubits.
The matrix representation of the gate is

Cs =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0

. . . . . .
0 0 · · · 0 1
1 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (16)

which can be implemented by the Toffoli gates as shown
in Figure 3.

Figure 3: The cyclic-swap gate can be implemented by a sequence of
Toffoli gates.

The aim of the operator Cs is to generate the matrix
element of the companion matrix from row 1 to row n − 1.
Since the operation is underpinned by the presences of the
sequences of Toffoli gates, the algorithm will be plagued
by the huge complexity. The complexity of the algorithm
is quite large, and yet still smaller than that of Daskin’s
scheme, as their matrix elements are generated by the for-
mation block which incurs more complexity.

The formation block in our version plays a role of the
controlled gate of an operator Fµ, which represents the
components in the last row of themodified companionma-
trix Cp as in (10) or (12). The rotation gate Ri is represented

by a matrix as follows:

Ri =

⎡⎣ a′i
√︁
1 − a′i

2

−
√︁
1 − a′i

2 a′i

⎤⎦ , (17)

where i = 0, 1, 2, . . . , n − 1. Accordingly, the array of Ri
forms the block matrix Fµ as follows:

Fµ =

⎡⎢⎢⎢⎢⎣
R1

. . .
Rn−1

R0

⎤⎥⎥⎥⎥⎦ . (18)

The operation of Fµ can be simulated by a sequence of
controlled-rotation gates as in Figure 4. The operation of
Fµ will be performed onmain qubits and the second ancil-
lary qubit in case that the state of first ancillary qubit is |1⟩.

Figure 4: The formation block can be simulated by a sequence of
controlled-rotation gates.

Next step, in the combination block, we define the op-
erator C as follows:

C = (XH)⊗m ⊗ I (19)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

• • • • · · · • •
• • • • · · · • •
...

...
...

...
. . .

...
...

• • • • · · · • •
1 0 1 0 · · · 1 0
• • • • · · · • •

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

where "•" represents the elements we can neglected be-
cause they will be filter out by post-selection at the final
stage of the algorithm.

There are three sub-tasks to undertake in the combi-
nation block. First, a controlled-C gate with the operator
C is operated on the main qubits conditioning to the state
of the first ancillary qubit as |1⟩ to create the a⃗′ · α⃗ compo-
nent. As a result, the operation of Cs, Fµ, and C on main
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Figure 5: A circuit scheme for finding polynomial roots.

qubits and second ancillary qubit conditioning to the first
ancillary state |1⟩ give the following output:

1√
2m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

•
•
...
•
a⃗ · α⃗
•

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

with the probability amplitude 1/
√
2m. This amplitude is

required to be balancedwith the casewhere the state of the
first ancillary qubit is |0⟩. At this stage of the algorithm, the
scaling gate Sm,µ is introduced to balance this probability
and generate 1/µ in the upper diagonal entries of themod-
ified companion matrix. It is defined as

Sm,µ =
1√
2mµ

[︃
1

√︀
2mµ2 − 1

−
√︀
2mµ2 − 1 1

]︃
. (21)

This gate is, in fact, a rotation gate Ry(θ), where θ =
2 cos−1(1/

√
2mµ). Scaling gate Sm,µ is to be operated on

the second ancillary qubit in case that first ancillary qubit
is in state |0⟩. After the controlled-Sm,µ gate, the state is
transformed into the following,

|Ψ1⟩ =
1
√
2

{︁
|0⟩ ⊗

[︁ (︀
I⊗m ⊗ Sm,µ

)︀
(Cs ⊗ I) (|α⟩ ⊗ |0⟩)

]︁
(22)

− |1⟩ ⊗ CFµ (Cs ⊗ I) (|α⟩ ⊗ |0⟩)
}︁

=
1

√
2m+1µ

[︁
|0⟩ ⊗ [α1 • α2 • · · · αn−1 • α0 •]

+ |1⟩ ⊗ [• • · · · • −a⃗′ · α⃗ •]
]︁
.

However, referring to (22), the final state is not exactly
|β⟩. The last task is just to swap between the coefficient α0

and −a⃗′ · α⃗ in (22) using the Toffoli gate in Figure 2, which
results in

|Ψ2⟩ =
1√

2m+1µ
|0⟩ ⊗ |β⟩ ⊗ |0⟩ + |ψ⊥⟩ (23)

where |ψ⊥⟩ refers to the case that the ancillary qubits do
not all give the result ‘0’. Finally, the post-selection only
the results of both ancillary qubits gives ‘0’, the output of
the algorithm becomes |β⟩ with the success probability of
1/(2m+1µ2).

2.3 Polynomial Root-finding by Eigenvalue
Estimation Technique

In order to find roots of the polynomial, we will use the cir-
cuit shown in Figure 5. A controlled operation of the PRC
by the phase qubit is denoted by c-Cp in the figure. To de-
scribe the operation, we will firstly assume that the main
qubits are initially prepared in an eigenstate |ψj⟩ of the
companion matrix. An expected state from the operation
will be in the form

|β⟩ = |λj|e2πiωj |ψj⟩. (24)

Here we will assume that ωj has a binary expansion
in the form ωj = 0.x1x2x3 . . . xb, where b is bit-precision.
As in IPEA, the c-Cp will be operated 2b−k times in the kth

iteration as illustrated in Figure 6. The result of the first
iteration is given by

1
2

(︁
1√
2mµ

)︁2b−1(︁
|0⟩|0⟩|ψj⟩|0⟩+|λj|2

b−1
e2πi(0.xb)|1⟩|0⟩|ψj⟩|0⟩

)︁
. (25)
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Figure 6: In order to estimate polynomial roots up to b bit-precision, c-Cp must be operated 2b−k times in the kth iteration.

Similarly, for the kth iteration, we have

1
2

(︂
1√
2mµ

)︂2b−k(︁
|0⟩|0⟩|ψj⟩|0⟩ (26)

+ |λj|2
b−k
e2πi(0.xb−k+1xb−k+2 ...xb)|1⟩|0⟩|ψj⟩|0⟩

)︁
.

After the operation of Z(θk) with θ1 = 0 and θk =
2π (0.0xb−k+2xb−k+3 . . . xb) followed by the Hadamard
gate, the phase qubit will be in the following state,

1
2
√
2

(︂
1√
2mµ

)︂2b−k{︁[︀
1+|λj|2

b−k
e2πi(0.xb−k+1)

]︀
|0⟩ (27)

+
[︀
1−|λj|2

b−k
e2πi(0.xb−k+1)

]︀
|1⟩

}︁
.

The value of xb−k+1 can be either 0 or 1. Therefore, the prob-
abilities of finding the phase qubit in states |0⟩ or |1⟩ given
that the both ancillary qubits give result 0 depend on the
value of xb−k+1; namely,

P0 =
1 + 2 cos(2π0.xb−k+1)|λj|2

b−k
+ |λj|2

b−k+1

8
(︀
2mµ2

)︀2b−k , (28)

P1 =
1 − 2 cos(2π0.xb−k+1)|λj|2

b−k
+ |λj|2

b−k+1

8
(︀
2mµ2

)︀2b−k . (29)

Since xb−k+1 can be either 0 or 1, the value of
cos(2π0.xb−k+1) is either +1 or −1. In practice, xb can
be obtained by comparing P0 and P1 [25], i.e., xb = 0 if
and only if P0 > P1; and xb = 1 if and only if P0 < P1.
In addition, the value of |λj| from the kth iteration can be
calculated from the equation

|λj|2
b−k+1

= 4
(︁
2mµ2

)︁2b−k
|P0 + P1| − 1. (30)

It should be emphasized that in later iterations, the pa-
rameter θk used in Z(θk) is constructed from xb−k+1 from
theprior iterations as in IPEA. Finally, an estimate of λj can

nowbe obtained and the corresponding root of the polyno-
mial can be calculated depending onwhichmode (x-mode
or 1/x-mode) is being used.

However, in general, the eigenstates of the compan-
ionmatrix are unknown. The following approach is to esti-
mate the greatest eigenvalue |λmax|. Suppose that an initial
state is prepared in amixed state, the density operator can
be expressed as

ρ =
∑︁
j
Aj|ψj⟩⟨ψj|, (31)

where Aj is a probability of preparing the initial state in
the eigenstate |ψj⟩. The operation of c-Cp when the phase
qubit is in state |1⟩ transforms the density operator as

ρ ↦→ (Cp) ρ
(︁
C†p

)︁
. (32)

For the kth iteration after which c-C2
b−k
p is operated and fol-

lowed by Z(θk) and the Hadamard gate, the probabilities
of finding phase qubit in states |0⟩ or |1⟩ given that both
ancillary qubits give result 0 are

P0 =
∑︁
j
Aj

(︁
1 ± 2|λj|2

b−k
+ |λj|2

b−k+1)︁
/κ, (33)

P1 =
∑︁
j
Aj

(︁
1∓ 2|λj|2

b−k
+ |λj|2

b−k+1)︁
/κ. (34)

where κ = 8
(︀
2mµ2

)︀2b−k . In Equations (33) and (34), the
terms with the largest eigenvalue |λmax| will dominate if
the number of iterations is large enough. Hence, the prob-
abilities P0 and P1 will be reduced to the following forms:

P0 ≈
[︁
1 + Amax

(︁
|λmax|2

b−k+1
± 2|λmax|2

b−k)︁]︁
/κ, (35)

P1 ≈
[︁
1 + Amax

(︁
|λmax|2

b−k+1
∓ 2|λmax|2

b−k)︁]︁
/κ. (36)

The value of xb−k+1 can be found by comparing P0 and
P1. Even without knowing the probability Amax, an esti-



846 | T. Tansuwannont et al.

mate of |λmax| can be obtained from

|λmax|2
b−k

= 2
(︂
P0 + P1 − 2/κ

|P0 − P1|

)︂
. (37)

After the largest root is found, it can be factorized from the
polynomial, and the same technique andprocedure can be
repeated to calculate the other roots.

3 Discussion
In order to justify the efficiency of the quantum algorithm
for finding roots of a polynomial, we have to compare it
with the classical algorithm for solving the same problem.
One of the most efficient classical algorithms for finding
roots of a polynomial was created by Pan in 2002 [28]. We
shall compare these two versions of the algorithm based
on (i) resources required for calculation and (ii) algorith-
mic complexity.

We start by comparing the number of bits and qubits
required by the computations. In order to find roots of
an nth degree polynomial, the quantum algorithm re-
quires O(log n) qubits. In contrast, the Pan’s classical root-
finding algorithm requires O(n) or O(n log n) bits. This
makes it obvious that the quantum algorithm requires sig-
nificantly fewer bits than its classical counterpart. In this
way, especially for larger n, the quantum version of algo-
rithm is capable for finding roots of a much higher order
degree than the classical one.

Next, we will compare their algorithmic complexities.
In Pan’s algorithm, the number of operations required to
find the roots is

O((n log2 n)(log2 n + log b)) (38)

where b is the bit precision of the solutions. In contrast,
since any m-qubit unitary gates can be simulated using
only single-qubit gates and CNOT gates [29], it is appro-
priate to compute the complexity of a quantum circuit in
terms of the number of single-qubit gates and CNOT gates
required to construct the circuit. From polynomial root-
finding circuit, many unitary operations are controlled by
several qubits. Wewill use the following corollary to calcu-
late complexity of these gates (SeeCorollary 7.12 inBarenco
et al. [24]).

Corollary: For any unitary U, the corresponding c-U gate
controlled by (m − 2)-qubit can be simulated by O(m) basic
operations in m-qubit network, where the initial value of one
qubit is fixed and incurs no net change.

In order to apply this corollary with the root-finding cir-
cuit, we need one more ancillary qubit and set its initial
value to state |0⟩. Note that this ancillary qubit can also be
reused to simulate several controlled-unitary operations.
In order to compute the overall complexity of the whole
circuit, a complexity of each part may be found separately.
The cyclic-swap gate can be simulated by m CNOT gates.
Number of control qubits of each gate varies from0 tom−1.
For other CNOT gates with multiple control qubits, its op-
eration can be simulated by O(i+2) operations where i > 1
is the number of control qubits. Therefore the overall com-
plexity of the cyclic-swap gate is 2 +

∑︀m−1
i=2 i ∼ O(m2).

The formation gate consists of 2m controlled rotation gates.
Each gate, which is further controlled by m qubits, can be
simulated by O(m + 2) basic operations. Hence the total
complexity of the formation gate is O(2mm). The combina-
tion gate consists of m Hadamard gates and m NOT gates
which brings its overall complexity to O(m). Finally, the
complexity of the (m+1)-qubit CNOT gate before the appli-
cation of the last Hadamard gate can be readily computed
by the corollary above, which amounts to O(m).

The total complexity of the complete circuit is the sum
of complexity of each part as described above. However, in
the complexity calculation, only the greatest term is kept.
In the case of large n (where n is the degree of a polyno-
mial), we can clearly see that the dominant term comes
from the formation gate. Therefore, the complexity of the
circuit in terms of the degree of a polynomial is

O(2mm) ∼ O(n log n), (39)

for one iteration, or

O(kn log n), (40)

for k iterations. Compared with the classical case for b-bit
precision, our approach needs k = 2b and the total com-
plexity of the quantum version is

O(2bn log n). (41)

Comparing between (38) and (41) (see Figure 7), at
certain values of b with increasing n, the quantum algo-
rithmperforms faster than the classical one at high n. How-
ever, there are some disadvantage influences of b, when
the computation is undertaken with higher bit-precision
requirements on low degree polynomials.

In addition, the rising complexity of the algorithm for
high degree polynomials can possibly be inflicted by its
inscalable success probability. Following (22), the success
probability is diminished to 1/2mµ and will require more
iterations tomaintain the precision. As a consequence, the
increase iterations will effectively raise the complexity.
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Figure 7:We compare the number of operations needed for our quantum algorithm (magenta for b = 3, red for b = 8) and the best known
classical algorithm (blue for b = 3, green for b = 8), with the increasing n. Our algorithm clearly outperforms the classical one for the
calculation with high n for both values of b (upper figure), especially at low bit-precision. For low n, the bit-precision b increases the
number of operations exponentially, instead of linearly as in the Pan’s classical algorithm.

However, here we can validate that the quantum ver-
sion of the algorithm is less complex than the classical
version in the case where the polynomial has a high de-
gree.On the contrary, the quantum algorithm may be an
overkill when finding the roots, with high-bit precision, of
a low degree polynomial.

4 Conclusion
Polynomials are the key foundation of various calcula-
tions in mathematics and physics. The computational ad-
vantages provided by this quantum-based algorithmcould
be very useful for a broad field of studies [30–37]. How-

ever, to implement this algorithm in further application
efficiently, some requirements of the particular task must
be considered. In summary, we have provided a quantum
algorithm for finding roots of the nth degree polynomial
partially based on Daskin et al.’s circuit for finding com-
plex eigenvalues of a general matrix [18]. To make a com-
parison with classical version of the algorithm, resources
and algorithmic complexities are considered. The quan-
tum version requires significantly fewer number of (quan-
tum) bits than its classical counterpart for a high degree
polynomial. In terms of algorithm complexities, the quan-
tum algorithm also trumps the classical algorithms for a
high degree polynomial, requiring low bit-precision solu-
tions. The growth in complexity stems from a larger num-
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ber of iterations needed to achieve the desired precision.
Although our result clearly shows that finding the roots
of polynomials using quantum information scheme is pos-
sible, the most important challenge, however, remains in
strengthening the algorithm to overcome the classical al-
gorithm both in the utilized resources and the chosen pre-
cisions. Another challenge lies of course in the practical is-
sue of a working quantum computer. It is well known that
the current quantum computer technology still falls short
of the theoretical requirement of the algorithm, especially
in terms of the number of entangled qubits and multiple-
qubit quantum operations.
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