DE GRUYTER

Open Phys. 2019; 17:519-526

Research Article

Marcin Wawrzonowski and Dominik Szajerman*

Optimization of screen-space directional

occlusion algorithms

https://doi.org/10.1515/phys-2019-0054
Received May 31, 2019; accepted Jul 01, 2019

Abstract: Developers of video games and simulations from
the day one have been trying to improve visuals of their
products. The appearance of the scenes depends to a large
extent on the approximation to the physical basis of light
behaviour in the environments presented. The best effects
in this regard are global illumination. However, it is too
computationally expensive. One of the methods to sim-
ulate global illumination without a lot of processing is
Screen-Space Ambient Occlusion. Many implementations
of this technique were created, though few take into ac-
count direction and colour of the incoming light. An ex-
ception is a technique named SSDO - Screen-Space Direc-
tional Occlusion. Unfortunately, it suffers from the same
drawbacks as its less realistic cousins, such as noise and
banding while also remaining moderately expensive for
computation. The main purpose of this paper is to opti-
mize basic SSDO method using technique called Statistical
Volumetric Obscurance, enhancing its performance while
retaining plausible visual effect.

Keywords: physical-based rendering, global illumination,
ambient occlusion, directional occlusion, volumetric ob-
scurance, computer graphics

PACS: 07.05.Rm, 87.57.C-, 87.63.]j, 87.63.Im

1 Introduction

Since the beginning of the video games industry, develop-
ers struggled to achieve the best looking and most real-
istic graphics. Possibly the most important factor in this
matter is illumination of the virtual scene. Methods like
ray-tracing or radiosity, which are very accurate and pro-

*Corresponding Author: Dominik Szajerman: Institute of Infor-
mation Technology, Lodz University of Technology, £.6dZ, Poland;
Email: dominik.szajerman@p.lodz.pl

Marcin Wawrzonowski: Institute of Information Technology, Lodz
University of Technology, E6dz, Poland

duce realistic results, because of their foundations based
on physics, are still too computationally expensive to be
used in real-time applications. Thus, many techniques
were created to approximate them while achieving good
performance as well [1]. Among these methods, one of the
most important and popular one is SSAO — Screen-space
Ambient Occlusion. It introduces additional darkening in
places, where it would be difficult for light to reach. Many
techniques of generating SSAO were created, but most
of them suffer from similar problems, such as undersam-
pling, noises, banding and other visual artefacts. It is not
related to light direction or colour, as it usually appears as
a separate postprocess. An improvement to this situation
is a technique named Screen-Space Directional Occlusion.
Its main feature is combining computations with light cal-
culations, allowing to take into account colour and direc-
tion of light. A way to produce an additional one bounce of
light was also presented, allowing to approximate global il-
lumination model more closely. While SSDO can be easily
computed in real-time, it is still moderately expensive for
performance. A main purpose of this paper is to optimize
the SSDO technique while maintaining its visual features
and keeping, or insignificantly reducing, their quality. It
was achieved by employing an algorithm named Statisti-
cal Volumetric Obscurance (StatVO). Its main characteris-
tic is a replacement of traditional SSAO sampling with a
statistical model, based on precomputing an average value
of depth in the neighbourhood of a pixel. In this paper,
all aforementioned techniques are discussed, all their key
equations and algorithms are presented. Then, the pro-
posed solutions are described, which consist of two tech-
niques based on StatVO model. The most important dif-
ference between them is the average input data genera-
tion process. After this, test methods and their results are
presented. Tests are conducted between the original SSDO
technique and two novel ones. In the last chapter, test re-
sults are discussed, methods are compared in regard to the
performance and visual quality. A ways to enhance them
further are also presented.

3 Open Access. © 2019 M. Wawrzonowski and D. Szajerman, published by De Gruyter. (cc) This work is licensed under the Creative

Commons Attribution 4.0 License

https://doi.org/10.1515/phys-2019-0054

520 —— M. Wawrzonowski and D. Szajerman

2 Related work

2.1 Screen-space Ambient Occlusion

A basic ambient occlusion algorithm uses local geometry
around a given point on an object’s mesh as the input
data. For every such point, a set of random, but evenly
distributed rays is generated. This distribution can have
shape of a sphere or a hemisphere, if the surface normal
vector is taken into account [2]. Whole process is described
in the Figure 1 below.

Figure 1: Essence of the ambient occlusion method based on [3].

An ambient occlusion for a given point is described by

aratio of the number of outgoing rays which hit neighbour-
ing geometry to the number of all rays. It is formally de-

fined in [4] as:

AO(x, 7i) = % / p(d(x, @,)i - Gda , 0
Q

where x stands for a position in the scene, and 7 is a nor-
mal vector in the same place, Q represents sampling di-

rections and d is the distance from the ray’s first hit. p
is usually an user-defined falloff function, which relates

d with the final occlusion effect. In most cases it is lin-

ear or quadratic function. Presented method is still too
costly to be applied in real-time graphics. To solve this

problem, a screen-space approach was introduced [5]. In-
stead performing calculations on the geometry, it uses ren-

dered frame’s depth buffer, with an optional normal vector

buffer. As a replacement for the aforementioned ray trac-
ing, many techniques were invented by the developers, in-

cluding point sampling, line sampling or horizon-based
sampling [3]. Similarly, amount of occlusion in the given
pixel equals a ratio of the number of “occluded” samples

DE GRUYTER

(i.e. “behind” the depth buffer, with a higher depth that
can be directly sampled from it) to the number of all sam-
ples. A convenient falloff function is also applied. SSAO
can generate very plausible approximation of the ambi-
ent light distribution, but suffers from undersampling and
noise, because it is a low-frequency effect. A number of
samples is usually low to avoid a significant performance
drop. In most cases additional blurring is needed to ac-
count for these artefacts.

2.2 Statistical Volumetric Obscurance

This technique (StatVO) bases on a similar assumption as
the SSAO does, i.e. the occlusion in each pixel is related to
the amount of geometry around it. The difference is that
StatVO does not achieve it through sampling. Instead it
builds a statistical model based on an average depth. It can
be seen in Figure 2.

Figure 2: Essence of the StatVO method based on [3].

A sample box is build around processed point, instead
of a sample hemisphere. The authors of [3] assume that the
bigger is the difference between y (the mean value of the
screen space depth within a sample box) and d, the more
occlusion occurs in each pixel. This is computed in rela-
tion to the Zt and Zp parameters and can be seen in equa-
tion (2).

StatVo(x) = l/’(%) ' ?

Function v is a falloff function. It clamps negative val-
ues to 0, behaves linearly in the compartment of [0, 1] and
drops down to O beyond it. The last behaviour simulates
samples falling outside the sampling area in the classic
AO approach. As it will be shown in section 4, thanks to
the averaging, StatVO results in a very smooth, noise-free

DE GRUYTER

effect, requiring no blurring in the process. It also lowers
number of samples in the pixel shader, effectively boost-
ing the performance. Regardless of this, StatVO also pos-
sess a very serious drawback. Because of the statistical
approach and computing an average depth value, whole
process does not take into account depth discontinuities
around rendered objects. It generates unwanted dark ha-
los it such places and special steps must be taken in or-
der to avoid this artefact. One such approach, described
in [3] is to split depth buffer into separate layers, adap-
tively to the local geometry. Borders of the layers are cre-
ated around depth discontinuities. Second approach, in-
volving usage of depth buffer’s mip maps was described in
section 3.2.

2.3 Summed Area Table

A key element in the StatVO technique is fast and error-
free generation of the averaged depth buffer. A data struc-
ture named Summed Area Table (SAT) was chosen for this
purpose by the authors of [3]. SAT is a two-dimensional ar-
ray, where each element corresponds to the sum of the el-
ements above and to the left of him. It is presented in the
Figure 3.

Input array SAT
4| 2| 3| 4| 3 4| 6| 9(13|16
3| 0] 1| 6| 1 7| 9|13|23|27
6| 4| 5| 4| 3 13|19(28|42|49
4| 6| 6| 3| 6 17(29|44|61|74

Figure 3: SAT example (based on [6]).

Value of each cell (x, y) in SAT is described by equa-

tion: y
X
SAT(x, y) = > " Input(i,j) , 3)
i=1 j=1

where maximum values of x and y are respectively width

and height of the input array. The most important charac-

teristic of sum tables is the fact that finding an average
value of any rectangular filter requires sampling only four
values. This makes computation time independent of filter

size, it equals O(1). Whole process is described by follow-

ing equation:
X4 —XB—Xc+Xp

- : o)

X =

where x4 is a SAT value in the bottom-right corner of av-

eraged area, xp is a SAT value in the bottom-left corner of

Optimization of screen-space directional occlusion algorithms = 521

averaged area, x¢ is a value in the top-right corner and xp
is a value from the top-left one. A stands for the area of the
filter.

2.4 Screen-space Directional Occlusion

This technique is an improvement of SSAO, taking account
of the direction and colour of incoming light. It can be a
simulation of the color of the sky [7] as well as the sur-
rounding environment. It also computes one bounce of
indirect light, entailing final effect closer to the one gen-
erated by global illumination algorithms. Because SSDO
uses the same samples to compute both parts of the pro-
cess, it’s similar to the original SSAO in the terms of per-
formance. Authors of [8] remove decoupling between light-
ing and occlusion computation. They propose the follow-
ing equation:

N
Lay®) =Y PLip@)V(w)cosbdw. ()
i=1

For every pixel in view position P direct illumination
is computed from N sampling directions, distributed over
a hemisphere. Each sample calculates a product of incom-
ing light intensity L;,, visibility V and a BRDF function
%, 0; is an angle between the normal and the incident
vector. A key difference between SSAO and SSDO is clas-
sification of the samples, depending on the fact, whether
they are “below” geometry or “above”. A depth buffer and
depth values of samples are used to compute this factor.
Instead of calculating a ratio between occluding samples
and all samples to create darkening effect, an illumination
is calculated from the “above” directions, each classified
as “visible”. The more geometry occurs around sampling
point, the less samples are categorized as such, less illumi-
nation is computed and the darkening increases, but effect
is strictly coupled with light colour and direction. Whole
process can be seen in the Figure 4.

In the second pass, SSDO calculates one bounce of in-
direct light. As for the input data, samples which appear
“below” the depth buffer are classified as “not visible” and
used. They are back-projected to the image, then colour
and normal buffers are sampled, resulting in acquiring all
necessary information about outgoing light. Indirect illu-
mination is computed according to the equation (6).

As cos 65, cos 0,

2 . (0

N
Ling®) = %Lpixel(l - V(wy)
i1

where d; is the distance between occluder and P, cos 6s;
and cos 6, correspond to respectively angles between

522 —— M. Wawrzonowski and D. Szajerman

Figure 4: Essence of the SSDO technique based on [8]. Left section
describes direct illumination, while right shows indirect one.

source and receiver’s normal vectors and direction of the
incoming light. A value of A; is used to control the size of
the effect. The usage of factor (1 — V(w;)) assures that indi-
rect illumination won’t occur in places where the darken-
ing is present. Usually they appear on the different sides
of the object though [8].

3 Proposed solutions

The main purpose of this paper was to improve the per-
formance of SSDO algorithm while maintaining similar,
or insignificantly worse, visual plausibility. It was done
so by employing StatVO instead of traditional sampling
method, lowering number of texture look-ups in the pixel
shader and removing necessity to blur the final effect. For
these purposes, two novel SSDO techniques were created,
referred to as SSDO-B and SSDO-C. Both are described
thoroughly in this section. The original SSDO method dis-
cussed in section 2.4 will be referred to as SSDO-A.

3.1 SSDO-B

The first part of this algorithm is SAT data generation pro-
cess. To acquire average values for each pixel, a summed
area table must be generated for two buffers. One consists
of normal vectors and depth. The other is a color buffer
and is necessary for the indirect light computations. While

DE GRUYTER

creating SAT using equation (3) is a trivial process, it may
have a serious performance drawback and is completely
not suitable for GPU texture data, as it would require trans-
fers between CPU and the GPU. To keep high framerate it is
necessary to compute SAT on the GPU itself. In this work,
Direct3D 11 compute shaders and Parallel Prefix Sum al-
gorithm [9] are used. The method performs computation
on each texture row separately and uses a balanced tree
concept to determine what each thread does at each step
of its traversal. It is divided into two phases, up-sweep
and down-sweep. In the first one, tree is traversed from
leaves to root, computing partial sums at internal nodes
of the tree. After this, a zero is inserted in the root node
and down-sweep phase begins. There, each node at the
current level passes its own value to its left child, and the
sum of its value and the former value of its left child to
its right child. In result, a one-dimensional array of sums
is created in each row of the texture. To generate SAT it-
self, an algorithm is launched twice — vertically and hori-
zontally. To further optimize computations, an offset is in-
troduced when accessing shared memory to prevent bank
access conflicts [10]. Also, each thread computes SATs for
both input textures at once, reducing the number of com-
pute shader dispatch calls. Summed area tables are gener-
ated from second mip level of base textures. It greatly im-
proves performance and has almost no effect on the final
result.

As it was explained in section 2.2, using one depth
buffer for whole rendered scene may result in errors
around depth discontinuities. They are even more visible
when the camera navigates around the scene [11]. To pre-
vent this, four adaptive layers are created, also with com-
pute shaders. The input data are original parent layers
(both textures are processed at once) and their SATs. Hav-
ing summed area tables, an average depth value can be
computed for each input pixel. Then it is assigned to one
of the layers, depending on the factor, whether its depth is
higher or lower than the average. The idea of this algorithm
is that around depth discontinuities, every pixel closer to
the camera will have depth value lower than the average
and vice versa, therefore they will be assigned to different
layers [3]. Process is repeated recursively until four input
layers are created. The important optimization here is that
not every SAT needs to be computed, as for example, child
B’s SAT value is the difference between corresponding val-
ues in parent SAT and child A SAT [3].

Like in original SSDO-A algorithm, directional occlu-
sion computation is divided in two stages — direct illu-
mination and one bounce of indirect light. To improve
performance, both are computed in the same rendering
pass. When abandoning sampling method from SSDO-A

DE GRUYTER

in favour of statistical model, it is necessary to take into
consideration that noticeably different algorithm must be
used. In the discussed case, the technique was simplified,
but it generates similar effects. Colour and direction of
SSDO-A shadowing are strictly dependent of analogous
light parameters. This fact was used to limit occlusion gen-
erated by StatVO to less illuminated places. A dot product
of average normal vector and light direction was used in
this matter. Colour of shadowing was related to light colour
by multiplication. The latter’s vector was normalized be-
fore this operation to avoid influence of brightness on the
final occlusion effect. Whole process can be described by
following equations:

D = saturate((1 - max(nayg - Ly, 0))P), 7)
Lc

V=AD(1 - StatVO(x))L: . (8)
[

V is the final illumination colour based on SSDO. A refers
to brightness factor, an external parameter for the algo-
rithm. ngvg is an average normal vector for a given pixel,
computed using SAT. L; and L. are, respectively, light di-
rection and colour. And “saturate” is a function that re-
turns O if its argument is less than 0; else returns 1 if its is
greater than 1; else returns its argument intact otherwise.
Indirect bounce of light computing process was also
simplified and, basically, it reduces to manipulating aver-
aged colour buffer. It is important to notice that blurred
colour, when limited to certain areas, can mimic the effect
of SSDO-A light bleeding. The process starts with comput-
ing a difference of pixel colour (cx) and the averaged one
(cavg). In the next step, result is transformed to HSV space,
hue component is inverted and whole value is transformed
back to RGB space. Because of this, only the colour part
which “bleeds” is left in the process and it is possible to
simply add result to the final value. In the end, indirect
light is related with directional factor D, light colour and

occlusion by multiplication. I is the color added to the fi-

nal color of the given pixel. Whole process is described by
following equation:

I=p(cx - Cavg)Cang_;(l -D)1 - StatVox)), (9)

where p is a function which transforms to HSV space, flips
hue component and restores value back to RGB.
Both stages, indirect and direct, were computed for

each of the SAT adaptive layers. Then, results were aver-

aged using SAT of separate index buffer, where in each

pixel a value of 1is present if a pixel was assigned to corre-

sponding layer and O otherwise.

Optimization of screen-space directional occlusion algorithms = 523

3.2 SSDO-C

The second proposed solution is a simplification of SSDO-
B algorithm. It was created because of the necessity to re-
move the most computationally heavy part of SSDO-B -
creating adaptive layers and calculating SATs for some of
them. It was observed that necessary input data for SSDO-
B are simply an averaged normal, depth and color buffers.
These can be computed without resorting to SAT, using
less expensive methods. It was also important to use al-
gorithm that is aware of depth discontinuities around ren-
dered objects. In the end, a simple Gaussian blur with
5x5 filter was used. Each sample was also weighted by its
depth and normal vector differences, cutting out samples
which are placed too far away.

Second mip level of base textures is also used as in-
put data. Without depth layering, an error is present where
jagged edges of objects in lower-resolution buffers overlap
with smooth ones in full-size textures (see part D of Figure
8 in section 4). A technique was created to partially solve
this issue. It bases on the fact that error results in sharp
outlines around objects and they are becoming thicker
when lower mip level of input texture is used. Employing
a simple difference between depths, these edges can be de-
tected, and occlusion in these places cut out from the final
result.

Table 1: The performance of implemented SSDO techniques

Method FPS ms msg
SSDO-A 793 1.26 0.91
SSDO-B 362 2.76 2.41
SSDO-C 2130 0.46 0.12
None 2880 0.34 0
(]
£
0 SSDO-C 2,130
3
o)
A SSDO-B 362
N
(7]
SSDO-A 793
| | |
0 800 1,600 2,400
FPS

Figure 5: The performance of implemented SSDO techniques.

524 —— M. Wawrzonowskiand D. Szajerman

Figure 6: Visual results of SSDO-A technique.

4 Test method and results

Test method consists of two sections. First, the perfor-
mance of each technique is measured and presented on
the chart. The measure units are FPS (Frames Per Second,
i.e. how many frames the program is able to compute in
the time of one second), ms, what corresponds to time of
rendering an one frame of application and msy which is
the time of computing given technique (i.e. ms minus all
other processing of the program). For reference, an orig-
inal SSDO technique (SSDO-A) was measured. To show
each method’s influence on the workload of the applica-
tion, a situation where no technique is applied was also

DE GRUYTER

Figure 7: Visual results of SSDO-B technique.

presented. Measured values were collected in every frame
between 10 and 40 second of the program’s work time and
the final result is an arithmetic average of all of them.

In the second section, visual result of each technique
(along with the original one) is displayed. For each of three
methods (Figures 6, 7 and 8), four screenshots were taken
(A, B, C and D). The ones marked A and B concentrate on
showing occlusion effects and C shows indirect lightning.
Each category was created with the same position of the
camera in scene. Pictures marked with letter D are different
for each method and concentrate on presenting errors that
can occur for used technique. The coloured rectangles and
circles have been placed in the graphics program and serve
only as indicators of important elements on images.

DE GRUYTER

Figure 8: Visual results of SSDO-C technique.

5 Conclusions

Despite previous assumptions, SSDO-B performed two
times slower than its archetype and almost six times than
SSDO-A. Letting a 16.67 ms be a maximum time an one
frame can be rendered in (equals 60 FPS), this method
needs 2.41 ms for computation which is 14% of total time.
It is a very high value and expels the technique from any
practical employment. In spite of using statistical model,
which requires much less samples for one pixel, no perfor-
mance gain was obtained. The reason for this is the adap-
tive layer technique. Creating SAT only for main buffers
would not have such a great impact, but aforementioned

Optimization of screen-space directional occlusion algorithms =——— 525

method requires this computation done five times in one
frame. Because of the fact that SSDO requires averaged
colour buffer as well, data set is twice as big than in orig-
inal StatVO implementation. These two factors are main
reason of this serious performance drop. In one frame,
thirteen compute shader Dispatch calls and six shader
changes take place. This is hardly avoidable because of the
necessity to keep the proper order of operations.

The situation is much better in case of the SSDO-C
method. On the Figure 5 it can easily be seen that this is the
fastest technique. Computations take only 0.12 ms which
is 0.7% of the assumed total frame time. Their speed is 2.5
times higher than speed of the SSDO-A. The reason of this
performance boost is removal of whole SAT and adaptive
layer generation. They were replaced with simple depth-
aware Gaussian blur of the second mip level of base tex-
tures. In result, the amount of computations and number
of Dispatch calls was drastically lowered. Only two passes
of blurring are performed in one frame - vertical and hor-
izontal. Third pass is the main pass of the SSDO-C tech-
nique. Sampling process is simplified comparing to the
SSDO-B as well, because it requires obtaining only one
sample per buffer, instead of four. Neither averages nor dif-
ferences between values are computed as well.

Out of the two implemented techniques, SSDO-B gen-
erates more visible errors and artifacts. It was presented
on pictures A, C and D of Figure 7 and marked with green
circles. It is visible that in these places a hard border be-
tween darkened and non-darkened occur. A reason for that
is the usage of adaptive layer system. Non-assigned pixels
on each layer are filled with zeroes. During the computa-
tion of an average value, these zeroes have influence on
the final value. It results in “holes” in occlusion effect. In
places where it is visible, as well as in SSDO-C, it can be
noticed that the result differs from the one produced by
SSDO-A. Because the statistical model was used, no noise
appears and the effect is very smooth but also much more
subtle (screenshots A and B of Figure 8 and Figure 6). The
same properties apply to indirect lighting. What needs to
be mentioned is that a reflection from the floor does not
occur in SSDO-B and SSDO-C methods (marked with red
rectangles on Figure 6). Whether it is an improvement or
an error is a completely subjective matter. One of the great-
est limitations of this technique is the number of layers.
For more complex scenes it may not be enough to prevent
dark halos around objects from appearing. Further multi-
plication of the layer count will result in even greater per-
formance drop. Also it needs to be mentioned that SAT gen-
eration algorithm needs to use a continuous shared mem-
ory block per texture row. This limits maximum buffer size
to twice the maximum thread count in a compute shader

526 —— M. Wawrzonowski and D. Szajerman

thread group, which results in 2048 on Direct3D 11. Tex-
ture can be split into parts which are computed separately
and then combined, but this will result in a serious perfor-
mance drop.

The SSDO-C technique is free of holes in darkening be-
cause it does not use adaptive layering. On the pictures
B and D of Figure 8 aforementioned dark edge border ar-
tifact can be seen (marked with green circle), which is a
result of an edgy depth buffer. A method proposed to solve
this issue is not completely effective and its results depend
on the distance from the camera. A second issue is “occlu-
sion bleeding” on flat surfaces near the depth discontinu-
ities. A reason of this is distortion generated by simple but
efficient blurring algorithm. It can be seen only from spe-
cific directions of the camera. The last important issue is
that “directness” of the occlusion is much less visible than
in SSDO-A, what can be easily noticed by comparing left
side of pictures A of Figures 8 and 6. After solving these
three issues, SSDO-C could be successfully used in prac-
tice, for example in game engine, as an efficient and noise-
free directional occlusion generating algorithm.

5.1 Future work

To use SSDO-B technique in practice a SAT and adaptive
layer generation process need to be simplified. Also, a
layer discontinuity has to be solved. First issue could be re-
paired by combining all computation into one global com-
pute shader, but inability to synchronize code execution
between thread groups makes this a non-trivial concept.

To improve upon SSDO-C technique one should em-
ploy more complex depth-aware blurring algorithms, to
eliminate edge issues and remove “occlusion bleeding”. In
the first matter using a hybrid method may help, i.e. intro-
ducing limited amount of sampling in the neighbourhood
of the pixel to detect edges more successfully. Employing
an efficient anti-aliasing algorithm could also be a promis-
ing direction. To make the directional factor be more visi-
ble, as it is in SSDO-A, one could use varying size of blur
kernel, depending on an angle between normal vector and
light direction.

DE GRUYTER

References

)

[2

E]

[4]

5]

(6]

71

(8]

191

[10]

[11]

Muszynski G., Guzek K., Napieralski P., Wide field of view pro-
jection using rasterization, Advances in Intelligent Systems
and Computing, https://doi.org/10.1007/978-3-319-98678-4_
58, 2019, 833, 586-595

Zhukov S., lones A., Kronin G., An Ambient Light lllumination
Model, Rendering Techniques *98, Springer Vienna, 1998, 45-55
Hendrickx Q., Scandolo L., Eisemann M., Eisemann E., Adaptively
Layered Statistical Volumetric Obscurance, Proceedings of the
7th Conference on High-Performance Graphics - HPG ’15, 2015
Loos B.)., Sloan P.-P., Volumetric obscurance, Proceedings of
the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games - 13D 10, 2010

Mittring M., Finding next gen: Cryengine 2, ACM SIGGRAPH 2007
courses on - SIGGRAPH ’07, 2007

Slomp M., Tamaki T., Kaneda K., Screen-Space Ambient Occlu-
sion Through Summed-Area Tables, First International Confer-
ence on Networking and Computing, 2010

Gataj T., Wojciechowski A., A Study on Image Comparison Metrics
for Atmospheric Scattering Phenomenon Rendering, Computer
Vision and Graphics, Springer International Publishing, https:
//doi.org/10.1007/978-3-030-00692-1_4, 2018, 38-47
RitschelT., Grosch T., Seidel H.-P., Approximating Dynamic Global
Illumination in Image Space, Proceedings of the 2009 symposiu-
mon Interactive 3D graphics and games - 13D 09, 2009

Harris M., Parallel Prefix Sum (Scan) with CUDA, NVIDIA,
2007, https://developer.nvidia.com/gpugems/GPUGems3/gpug
ems3_ch39.html

Young E., Direct Compute Optimizations and Best Practices,
NVIDIA, GPU Technology Conference, 2010, https://www.nvidia.
com/content/GTC-2010/pdfs/2260_GTC2010.pdf
Wojciechowski A., Camera navigation support in a virtual envi-
ronment, Bulletin of the Polish Academy of Sciences: Techni-
cal Sciences, https://doi.org/10.2478/bpasts-2013-0094, 2013,
871-884

https://doi.org/10.1007/978-3-319-98678-4_58
https://doi.org/10.1007/978-3-319-98678-4_58
https://doi.org/10.1007/978-3-030-00692-1_4
https://doi.org/10.1007/978-3-030-00692-1_4
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html
https://www.nvidia.com/content/GTC-2010/pdfs/2260_GTC2010.pdf
https://www.nvidia.com/content/GTC-2010/pdfs/2260_GTC2010.pdf
https://doi.org/10.2478/bpasts-2013-0094

	1 Introduction
	2 Related work
	2.1 Screen-space Ambient Occlusion
	2.2 Statistical Volumetric Obscurance
	2.3 Summed Area Table
	2.4 Screen-space Directional Occlusion

	3 Proposed solutions
	3.1 SSDO-B
	3.2 SSDO-C

	4 Test method and results
	5 Conclusions
	5.1 Future work

