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Abstract: In the paper, we research a time fractional modi-
fied KdV-type equations. We give the symmetry reductions
and exact solutions of the equations, and we investigate
the convergence of the solutions. In addition, the conser-
vation laws of the equations are constructed.
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1 Introduction

Nonlinear partial differential equation(NLPDE) is a kind
of important mathematical model for describing the natu-
ral phenomena and mathematical physics. Over the past
few years, many ordinary and partial differential equa-
tions(PDEs) were concerned by the researchers, they have
obtained many good results[1 — 10]. At present, many
approaches have been extensively studied for construct-
ing exact solutions of the equation, such as the inverse
scattering transformation(IST)[11], Darboux transforma-
tion method and Bicklund transformation method[12], Hi-
rota’s bilinear method[12-14], Lie symmetry analysis[15-
20], CK method[21], and so on. Now, there are more and
more related researches on fractional partial differential
equations(FPDEs). At the same time, those methods are
also widely used in solving the precise solution of these
equations(6, 24, 25]. In particular, the classical Korteweg-
de Vries (Kdv) equations which play an important role
in many mathematical and physical fields. In [19, 24 -
30], the authors used the power series method to solve
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the classical Kdv equations. Meanwhile, they sought the
help of the new conservation theorem which constructed
the conservation laws(Cls) for the governing equations. At
the same time, fractional calculus is also very popular,
it has been successfully used to explain many complex
nonlinear phenomena and dynamic processes in physics,
engineering, electromagnetics, viscoelasticity, and elec-
trochemistry. Inspired by the above, we considered here
to study the time-fractional modified KdV-type equations,
which are presented in the following form:

0%u
Y — Uxxx — Uvux =0, 6y

o%v
W — Vxxx — UVVx = 0,

inEq.(1),0<a<1, g—;; is the Riemann-Liouville (RL) frac-
tional derivatives. If a = 1, Eq. (1) becomes

Ut — Uxxx — Uvlx =0, )

Vi — Vxxx — Uvvy = 0.

Eqg. 2 is a modified KdV-type equations. The modified
KdV-type equations is most popular mathematical mod-
els and have been extensively investigated. And it has
been applied to describe the electromagnetic waves in size-
quantized films, interfacial waves in two-layer liquids, and
transmission lines in the Schottky barrier. It was analyzed
and studied in [24], Lie symmetry analysis, exact solutions
and CLs for Eq. 2 were investigated. And Eq. (1) comes
from the modified KdV-type equations by replacing its time
derivative with a fractional derivative. so, we will analyze
and investigate the Lie symmetries, exact solutions, CLs
and the convergence of the exact solutions for Eq. (1).

In this paper, to the best of our knowledge, we apply
Lie method to study Eq. (1), we get the optimal system and
the exact solutions for the equation, we also give the Cls
for the equations via a new conservation theorem.

This article is divided into the following sections: First
of all, in section 2, we introduce some essential knowledge
which will be used in later chapters; in section 3, we seek
the help of the Lie method which can acquire the optimal
system and the symmetry reductions of Eq. (1); in section
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4, on the basis of the third quarter, we calculate the exact

solution of the equations; in section 5, the convergence of

the exact solutions for the equations will be investigated;
in section 6, we use the symmetries and adjoint equations

to construct the conservation laws, there are some conclu-

sions and discussions in the last section.

2 Preliminaries

We introduce some essential knowledge about the RL frac-
tional derivative and the Lie symmetries in the section.

Firstly, the definition of the RL fractional derivative [22, 23]
is as follows:
d'f a=n
DUf() = {fna 3)
dt,,I f(t), 0Osn-1<ac<n,

n is a natural number and I""%f(t) is defined by

)= /asW“V®a )

" “f(t) =f(),

where I'(n - a) is the gamma function.
Let us consider the blow space-time FPDEs:

), (a>0) (5)
), (a>0)

n-a>0, n-a=0,

Dfu =F1(t,x, u, v, ux, Vx, ..

a
Dfv =Fy(t, x, u, v, ux, v, ..

next, we present the form of a one-parameter Lie group of
infinitesimal transformations is as blow:

x" =x+e<;’1(x, t,u,v) +o(e?), (6)
t=t+ e{z(x, t,u,v) +o(e?),
u=u+ enl(x, t,u,v)+o(e?),
=v+ erlz(x, t,u,v) +o(e?),
o® o0%u
atila S +en'®i(x, t,u, v) + o(e?),
oY 9%y
Spa = gt v) + o(e?),
6u ou 1x 2
aX* a*’erl (Xa ta u, V)+O(€ )’
aV ov 2x 2
% " ox +en”(x, t,u,v) +o(e),
3 3
% = 37131 +en™(x, t, u, v) + o(e?),
3% 3
% = % +en® ™ (x, t,u, v) + o(e?),
where
n™ = Dx(n") - uxDx(¢") - utDe(¢?), 7
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N = Deln?) - viDa(€") - viDy(8?),
NP = De(™) = uye Dx (1) — uxxDe(£2),
2% = Dy(™) = veeDx(EY) = vixDe(&2),
1% = D (™) = e Dx(EL) = o De(€2),
12 = Dy(n%) = Vet Dx (€)= Vi De(£2)
and the following vector can be used to derive the associ-
ated Lie algebra,

1 0 2 0
V_%’ (X, t, uyv)a"'{ (X’ t9 u’ V)E (8)

+n'(x, tu, V)% +n2(x, t, u, V)%

The V must meet the following Lie point symmetry con-
dition, and we also figure out the coefficient function of
the vector field: &*(x, t,u,v), & (x, t,u,v), ni(x, t, u,v),
r]z(x, t, u, v) via the following condition.

prOv(4) 4-0= 0. 9)

The invariance condition[34] gives

E(x, t,u,v) l-0=0, (10)
the 19 is defined by[32, 33].
0 a
Na = atf ( - aD(§ )) Uy Zx + 1)
- a\ 0%nu + -
+> K") ot ( )D? HEH| xDE ()
n=1
—Z<)m@DVM)
where u is defined by
oo n m k-1
a n k\ 1
n=2 m=2 k=2 r=0 n m r :

tn—a

‘Tn+1-a)

bl m+k
otn-moyk’
Next, we apply the above knowledge to analyze the

Eq. (1), and the Lie symmetry and optimal system of the
Eqg. (1) are received in the next chapter.

o

k-r
Sl s

x [-u

3 Lie Symmetry and optimal
system

We make full use of the above Lie symmetry analysis
method to research the Eq. (1). Firstly, taking (6) into (1),
we have that

a“u* *

o e

* Kk x

—UVus=0, (13)
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aav* * * Kk ok
Sra Vs —UV Vs =0,

substituting the third prolongation pr®® that we have pre-

viously obtained into the Eq. (1), we get the blow result

nla’t—uvnl"—vuml _qurZZ _rllxxx =0, (14)

2a

St 2x 1 2 2xxx
= —uvnT —vvknT —uvxn© - n =0,

considering the condition that variables u;, ux, Uxx, Ux¢, V¢,
Vxs Vaxs Vats ... and Df™Mu, DFMuy, DF v, DFMvy for
n=1,2,...of u are independent, substituting (7) and (11)
into consideration, let each power of the derivative of u, v
become 0, we have

§3=€}=§5=€3=Uﬁu=n5v=0,
o'n’ _ 0N
ot ot
o%n® _ 0%y
ot ot
- (rll:i - ‘f)})uv - Vrll - unz - (3’1ixx - ‘S)}xx) =0,
- (rllz/ - 5)%)“‘/ - Vrl1 - u"l2 - (3n\%xx - ‘f}%xx) =0,

3(’1)1(11 - {)}x) =0,

3(71)2(v - '{)}x) =0,

aéf -3& =0,

a\ o%nl a nel g2y _
<n> ot (n + 1> DT =0,
a a n+l/g2y _
(n) _<n+1> D (&%) =0

Solving these equations, we get:

(15)

1 1
-u = UV — Nxxx = 0,

2 2
-V = Uuvny — Nxxx = 0,

ony
ata

{1 =C1X+Cy, (16)

‘fz = %t"’(é,

n' = 6cqu,

2 —

n° =-2c1v - 2cyv,

where c1, c;, c3, €4 are arbitrary constants. So, four correl-
ative vector fields are acquired from Eq. (16)

Vl_ 6x’ (17)
0
V2 a’
0
V3—ua ZVE,
V —Xi+£3_ Vi
3 ox a ot ov’

Next, we can acquire the optimal system of the Eq. (1) via
the method that has been clearly described in Refs [35].
The first step is to get the following commutator table(see
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Table 1: Lie bracket of Eq. (1)
Lie V1 Vz V3 V4
Vi 0 0 0 Vi
v, 0 0 0 3V,
V3 0 0 0 0
Vs - =37, 0 0

Table 1) based on the commutator operators [Vs, V] =
Vs V[ - Vt Vs, we get

The second step is to get the adjoint representations
of the vector fields via using the commutator relations in
Table 1 and the Lie series

Ad (exp (eV) V; = V; - € [V3, V] (18)
" %ez Vi, [Vi, V3] ...,

we obtain the adjoint representations of the vector fields
(see Table 2).

Table 2: Adjoint representation

Ad (€ ) Vi V, V3 V4
Vl Vl V2 V3 V4 - & V1
v, Vi v, V3 V,-3v,
V3 Vi v, 178 Vs
Vs eV, es Vy Vs Vs

The final step is to get the optimal system for the Eq. (1)
from the adjoint representations of the vector fields and
the result is as follows

{V1, Vo, Vg, Vo £V, V3 £V, V3 £ V5, Vi £ V3}

4 Similarity reductions

By simple computation, the following equation

dx _adt _ dv

X 3t  -2v

show the similarity variables for the infinitesimal genera-
tor V, given by

(19)

u = f(@), (20)
v=1t3g®),
¢ = xt’s.

Summarize the above discussed in detail, Eq. (1) can
be converted to a nonlinear ordinary differential equation.
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We lead into the blow Erdély-Kober fractional (EK) differen-

tial operator [22] with the intention of achieving this goal

H

n-

() IT(6 7 ) (67 ) 0.
j=0
where
1 N,
n={[a]+ » af 22
a, aeN,
and the EK fractional integral operator is defined by
1 (oo -1+ e g5
(k§r) = {F(a)h G
f@),
letn-1<a<n,n=1,2,3,4,...According to the defini-

tion of the RL fractional derivative, we get

an
a, _ Y n-a-1
Diu =& [r(n /(t s)" " flxs™ 3)d81 ,  (24)
setting v = L, then ds = —V%dv, substituting it into the
above equation, we get
an
a -
Dfu= <o (25)
1 a1 .n-a. o-n— a
. 1)« 1n-a, a-n-1
{F(n_a) Jo-vretery f(€v3)dv] ,
1
according to Eq. (25), we have
Dfu= 0 [ (k174 )] (26)
otn : ’

Continue to simplify the above equation, consider ¢ =
xt™3, @ € (0, o), we acquire

t206)- i (-3) PO - S sp®). @)
so,

o [0 (177) ©)

n-1
_ :tn—l |:tn—tx—1 (n —a- %5%) (K%,n—af> (f)]

(28)
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. <n —a-2- g{%) x (K%’"7“f> (5)}

w

n-1

=t‘“H<1—a+j— §a€> ((1"“ )(5).

j=0
Substituting EK fractional differential operator Eq. (21) in
Eq. (28), we have

n-1

1] (1 —a+j- %{%) (k™)@ @)

j=0
=% (PL%) ().
And by the same logic, we can get:

n-1

_5a 5a .
D% = 53” 1-2¢4
tv=t ( 3 +]

j=0

Sege) (g @ () 0

So, Eq. (1) can be converted to the nonlinear ordinary dif-
ferential equation of fractional order, we obtain

(PYF) € - - F ©Fs®) =0,
(P7¥"8) (©)-£"(®) - & ©s()1(&) - 0.

D(

(30)

€3)

5 Explicit analytical power series
solutions

In the section, the exact explicit solution of the Eq. (31)
will be obtained via using the power series method [36, 37].
Power series method is a method for solving ordinary dif-
ferential equations, especially when the solution of dif-
ferential equation cannot use elementary function or or
its integral expression, we seek other solution, especially
power series solution is an approximate solution of the
commonly used. Using the power series solution and gen-
eralized power series solution can solve many important
differential equation in mathematical physics, Set

f({):Zané'", g(£)=zbn5n’ (32)
n=0 n=0
we get
F1©) => (n+Dapaé", (33)

n=0

F(€) = (n+1)(n+2)an8&",

n=0
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F7(© =) (n+D)n+2)(n+3)ans¢",

n=0

g/({) = Z(n + 1)bn+1{n’
n=0

oo

g”(‘f) = Z(n +1)(n+ Z)bn+2{ny

n=0

g’ = Z(n +1)(n+2)(n+3)by3&".

n=0
Substituting Eq. (32) and Eq. (33) into Eq. (31), we get

~T2-a+1%)

ang” (34)
e re+%) n
- Z(n +1)(n+2)(n+3)an3&"
n=0
oo n k
-3 S (n+ 1- Ragegaibieid,
n=0 k=0 i=0
(2 S5a 4+ ha
> %” £1- 0+ D+ 2)(n+ Dby
n=0 ( n=0
5] n k
- Z Z Z(n +1-1)bp1 kaibiid",
n=0 k=0 i=0
Comparing coefficients in Eq. (34), when n = 0, we have
r2-aw ,
©7%s [ re “1“0] ; (35)
1[r2-3%) }
bs =2 7b0_b1(10b0
e
when n = 1, we get
1 r@-a+4)
3 = n+1)(n+2)(n+3) [ 2+ %a Aan (36)
n k
B Z Z(n +1- k)an+1kaibki:| ,
k=0 i=0
1 r-22+mn
bz = (n+1)(n+2)(n+3) [r(z P na) bn  (37)

. Z Z(n +1- k)bn+1—kaibk—i] )

k=0 i=0

substituting (35), (36) and (37) into (32), we can get the so-

lution in the form of power series for Eq. (32),

f&)=ap+a &+ a2§2+a3{3+2an+3€"+3 (38)
n=1
=ap+ar§+ad’+ o [r(ﬁ(z)a) —alaé] &
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_ na
+Z 1 r2-a+14) )
nzl(n+1)(n+2)(n+3) re+%

n k
- Z Z(n +1- k)an+1—kaibk—i:| &3,

k=0 i=0

8(&) = bo+ b1+ by + b3 + > bp.3é™?

n=1

(39)

2 5a
(M;bo - b1aob0} &

-a0+a1£+a2£ L"(Z

- 1 Q- 511
’ ,,2:; (n+1)(n+2)(n+3) [T(Z 2a | na bn

3
n k
> > m+1- k)bn+1—kaibk—i:| &,

k=0 i=0

+ 1)

where a4, a,, as, c1, C, €3 is constants.
Finally, the exact explicit solution for Eq. (1) is ac-
quired as below

u(x, t) = ap + ajxt’3 + azxzt’%‘l +asxt (40)

> —a(n+3)

+Zan+3xn+3 -3
n=1

_a 2,2
=qag+aixt 3 +ax°t 3
r2-a 3,-a
6{ ) ao aa}xt
i r2-a+1)
+1)(n+2)(n+3) re+%) "
n k —a(n+3)
-3 (n+1-K)an-a;bi- l}x BT,
k=0 i=0
vix,t) = bot‘zTa +bhixt™+ bzxzt"% + b3x3t"53*a (41)

b —a(n+5)

+ Z bn+3Xn+3 -5 2
n=1

= bot_%a + blxt_”‘ + bzth_%
1 F(z - 5370() 3,-22

+ > | ——="bg-bragho| X’t 3
3 1"(2—23—”‘) 0~ biaobo

na)

1 [‘(2 Stx
+; (n+1)(n+2)(n+3) [T(Z 20, )"

n k
—a(n+5)
D IR k)b,,ﬂ_ka,.bk_,} T

k=0 i=0




DE GRUYTER

6 Analysis of the convergence

Here, the convergence of the PS solution equation (41) for
eq. (1) will be investigated. Consider eq. (36) and (37), such

that
|ans3] < (

n k
-3 Y1 k)|an+1k||ai|bki|>,

k=0 i=0

|bnis| < (

n k
> > ln+1- k)|bn+1_k||ai|bk_,~|>.

k=0 i=0

IrQ-a+1&

r2+ ”“) (42)

|an|

rQ-=224+1n2
F(Z 230( na)

|bn|

|T(n)]

It is known that
[F(m)]

eq. (42) becomes

< 1, for arbitrary n and m. Thus

|an+3] SM(“"| (43)
n k
_ZZ(n+1—]()|an+1k||ai||bki),
=0 i=0
n k
P N<|bn| S S - k)||bn+1k|ai|bki|>.
k=0 i=0

where M, N = max{e;, e,, e3}, where e;, e;, e3 are arbi-

trary constants. Take into consideration another PS given
as

C&)=> cnd", (44)

n=0

B(£) = dnt"
n=0

andlet ¢; = |a;|, d; = |bj|,i=0,1, 2, ... Then, we can have
n k
[Cne3| =M (Cn > > (m+1- k)Cn+1—kCidk—i> , (45)
k=0 i=0
n k
|dn+3| =N (dn -3 > (m+1- k)dn+1—kCidk-i> .
k=0 i=0

Therefore, it is easily seen that |an| < cn, |bn| < dn, n =
0, 1,.... Furthermore, the series C(¢) = > " cné™ and

B(&) = >, dné&™ are majorant series of eq. (32). We there-

fore confirm that the series C(¢) and B(¢) have a positive
radius of convergence. By some calculations, we have

C(€)=c0+c1£+c2§2+(:3§3+M(icn (46)

n=0
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c n k
- Z Z Z(n +1- k)Cn+1—kCidk-i) &,

n=0 k=0 i=0

B({) =dg+ d1<f+ dzfz + d3€3 +M (i dn

n=0
~ n k
- Z Z Z(n +1- k)dn+1—kcidk—i) &,
n=0 k=0 i=0

Let us take into consideration an implicit functional sys-
tem with regard to ¢ as follows:

F(,C)=C-co-c18 - c28* - 38 -ME (C- C'CB),
(47)

G(¢,B) =B -do - di& - dy& - ds& - N& (B- B'BC).
since F and G are analytic in a neighborhood of (0, ¢() and
(0, do), where F(0, do) = 0, G(0, ¢o) = 0 and - F(0, Co) #

0, a%G(O, dp) # 0. Then, by the implicit functlon theorem
[40], the convergence is given.

7 Conservation laws

In this part, we solve the adjoint equation and Cls by us-
ing the related formula, most of the specific knowledge
about Cls has been presented in [37-39]. The form of the
Lagrangian is as blow

L = p(x, )(DFu - Uxxx — uvity) + g(DFV — Vaxx —uvvy). (48)

In the above equation p(x, t), q(x, t) are another depen-
dent variable. The Euler-Lagrange operator [39] are

) 0 0

a
6u (D ) aDa DX au DXXX auxxx ) (49)
6 a o 0 0
Sv . ov +(DF)’ aD"‘ *ovx ~ Diox OVxx

where (D%)" is the adjoint operator of (D¥), the adjoint
equations are given by

« OL
Fl - E - 03 (50)
« OL
F2 - E - O,
combining the above equations, we get:
* 6L a *
F = S p(D?) - qvvy + pxuv + puvx + pxxx = 0. (51)
« OL
Fy = 2= =q(D)" - puux + quxv + gxuv + gxxx = 0

ov
the adjoint equations of Eq. (1) can be write as below:

P(D?)* —qVVx + pxUv + puvy + pXXX|q:¢1(x,t,u,v) (52)
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= Al(Dttxu = Uxxx — uvux).
q(D)" - puuy + quxv + qxuv + Gxxxlp-g2 e, t,u,v)

= 5DV = Vixx — UVvy)

where

qx = ¢)1( + ¢114ux + ¢11/VX
Px = ¢)2< + ¢ﬁux * ¢12/Vx
Goox = Prxx + 3Py UnVa + 3PilhVx + 3P lhxln
+ 3¢L1¢vuxVxx + 3¢L1¢vuxxVx + 3¢$viVxx + 6¢)1<uvuxVx
+ 3¢)1(Xu Ux + 3¢)1<va)( + 3¢)1<u Uxx + 3¢)1<vix + ¢1£uxxx
+ PuVooo + 3Pruutty + 3PxwVx + Puwnlly + PV
Qxxx = ¢)2cxx + 3¢3uvu)zcvx + 3¢3vvuxv)2< + 3¢3uuxllxx
+ 3¢fwuxvxx + 3¢fwuxxvx + 3¢5vavxx + 6¢,2(uvuxvx
+ 3oty + 3P Vx + 3Prullax + 3P Vax + Pillixx

2 2 2 2 2 2 .3 2 3
+ @y Vixx + 3Pty + 3P Vi + Puuulix + GryvVy
Next, we consider x, t and u(x, t), v(x, t), we get

)

X+D(&3)1+Dx (811 = Wy sut W2 % +D(N'+DN*. (53)

)

In Eq. (53) I is the identity operator, &,

X is as blow
10 20 14t O
5 5 S ey T apey O
2a,t 0 1x ) 2x 0 1xxx 0
TS T S T e T St
0
2Xxx
o OVixx
and the Wy, W, are defined by
Wy =n' - Eue - Euy, (55)
W, = 112 - Ezvt —€1vx.

To the generator V,, the corresponding Lie characteristic
function can be represented as

w, =—%ut—xux, (56)
t
Wy, =-2v- —%vt - XVx.
The operator N! is defined by [37]
0
=& +Z( D oD K WDE S O
o t U

k=0

0
vy (wy,pr—2
( )]( 1 tathtxu)

+Z( "D K W)DE 5

k=0 "Dt

is the Euler-
Lagrangian operator, N* and N! are the Noether operators,

DE GRUYTER

n 0
-(-1) ]<W2:Dt 3.0V )

with J given by

f(€ x)g(u, x) dudt.

(H {2)a+1 n (58)

1
169 1o /
[

For Eq. (1), the operator N* is defined by

gt D) [ 5| (59)

6

1)
Dyx(W
+ Dx( 1)|: uxx] 25,\'

+ Dx(W3) |:5VLXX:| + Dyx(W3) |:5Vixxj|

+ Dyx(W3) |:a (?cxx:| .

Substituting (1) into (53), we get:

(XL + De(&*)L + Dx(EML) |gg )= 0 (60)

hence, the form of the Cls for Eq. (1) can be written as

D¢(N'L) + Dx(N*L) = 0. (61)

Next, according to the basic definitions present above,
we acquire the Cls for Eq. (1), and divide into the following
cases to discuss:

Case 1. For a € (0, 1), the components of the conserved
vector are

oL
a th

“1° pelws)p? L
>+( P ot wat s L
oL

e V) — 0 WP
ot

+J(Wy,pe) + oD H(W2)g + J(W2, q0),

-t
oL

Cl = N'L = &L + (-1)° ,D* " (W)D?

oL
doDf u

xf(wl,D%

--D'xJ (Wz,Dt

X _ nX7 o _ 1 aiL aL
Ci=NL=¢L+W, {aux +Dxxauxxx]
oL oL oL
+ Dx(w1) [auxx - xm:| + Dxx(W1) |:auxxx:|
oL oL oL oL
e |:0V +Dxxa xxx] + Dulws) [anx - anxx:|
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3y = —Wi(quv + gxx) + gxDx(W1)
XXX

— gDxx(W1) — Wa(puv + pxx) + pxDx(W3) — pDxx(W3),

+DXX(W2)|: oL :|

where the functions W1, W, are given by

3t

W, = — g Yt ™ XU,

Wz =-2v - —%V[ — XVx.

Case2. When a < (1,2), the components of the con-
served vector are

oL
doDfu
aL 1
-(-1
W (-1)

)—(1)2x1<W1,Dt oL )
ao tu

oL
0,Df Vv
oL L

-(-1
.05V (-1)

oL oL
W,,D}—"= ) - (-1)? W,,D} "
X]( 2 taoD(txv) ( )X]< 2 tathV>

= oD (W1)p - oD 2 (W1)p; + J(W1, p¢)
~J(W1, ped) + oD* ' (W2)q — oD *(W2)q + J(W>, q¢)
- J(W2, g¢e),

Ct=N'L=¢L+(-1)°,0% (W,)D?

+(-1)' oD (Wy)Df ———

aL
00Dt

+(-1)° ,p* 1 (W,)D}

X] <W1)Dt

+( 1) oDa 2(W )Dt

oux

oL oL
+ Dx(wq) {au” — Dy }

[a—L aiL] + Dx(w3) {

o

c;‘=NXL=§1L+W1[

a Uxxx

oL oL
OVxx = Dx :|

> = -Wi(quv + gxx) + gxDx(W)
Vxxx

— qDxx(W1) — Wa(puv + pxx) + pxDx(W3) — pDxx(W3),

+ Dyx(W3) |:

where the functions Wy, W5 are given by
3t
Wy = — o Y~ XU

W, =-2v- —%vt - XVx.

8 Concluding remarks

In the paper, we studied the time fractional equations
which were the extension of the mkdv equations. Firstly,
the Lie symmetries and optimal systems of the equations
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are completely presented, and the equations were reduced
to the nonlinear ordinary differential equations of frac-
tional order. Then we get explicit solutions of the equa-
tions by applying the power series approach. And we study
the convergence of the exact solutions for the equations. Fi-
nally, we use the symmetries and adjoint equations to con-
struct the conservation laws of the governing equations.
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