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Abstract: In this paper, the problem of wave propagation
in a compressible half-space with an initial stress is con-
sidered. General discussion on the speed of wave in the
presence of an initial stress is presented. Furthermore, re-
flection of a homogeneous plane P-wave is also studied.
A special strain energy function dependent on this initial
stress is used to understand the response of the materi-
als. Explicit formulas for the reflection coefficients are also
presented. General nonlinear theory and the theory of in-
variants are used to derive theoretical results. Graphical il-
lustration of theoretical results for various numerical val-
ues of parameters show that initial stress has considerable
bearing on the behavior of a plane wave.
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1 Introduction

In linear theory of elasticity, the materials are mostly con-
sidered to be stress-free in their reference state [1, 2]. In real
world, however, the existence of an initial stress is proven
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and considered important for the study of wave propaga-
tion in elastic solids. In this context, many studies are pre-
sented for incompressible materials. In this paper, a com-
pressible material is considered with a homogeneous ini-
tial stress. The effect of this stress on the speed of plane
waves is analyzed using the nonlinear theory of elasticity.
In addition, the problem of plane wave reflection from the
boundary of such a material is also presented with the help
of reflection coefficients. Mainly P-waves are considered
and various cases are outlined for existence of one or two
reflected waves. This depends on the initial stress and the
incidence angle. The problem is majorly applicable but not
limited to earthquake waves which are used in seismology.
Other applications include the study of waves in biological
tissues, toughened glass etc.

The term initial stress is used here in its most general
sense which includes both the cases of prestress and resid-
ual stress. Here, the source of this initial stress is irrelevant.
A prestress is a kind of initial stress which has a related fi-
nite deformation from the reference configuration whereas
a residual stress may not occur due to a finite deforma-
tion but may be a consequence of some manufacturing or
growth process [3].

In [4], the authors studied the effect of a (homoge-
neous) pre-stress and finite deformation on the speed of
plane waves in compressible hyperelastic materials and
the reflection of plane wave from such a half-space. Few
results in this paper appear similar to those cited in [4].
However, the nature of the material constants here is con-
siderably different since these depend on the initial stress
as well. Biot [5, 6] presented major studies on various prob-
lems to see the effects of initial stress on wave propaga-
tion. Also, wave motion in an infinite and initially stressed
material medium for various special cases were consid-
ered by Tang [7]. For the basic equations for a residually-
stressed material, the reasder is referred to [8-11]. Man and
Lu [12] followed Hoger [3] and presented generalized re-
sults which can be related to Biot’s work. For discussion
on wave propagation in pre-stressed materials, we refer to
[13-16] and references therein. For general non-linear elas-
ticity theory, see [17, 18]. More recently, discussion on ini-
tial stress can be found in [19, 20] and references therein.
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Section 2 comprises of basic equations describing the
finite deformation of a compressible elastic material and
the corresponding equations which govern incremental
motion superimposed on the finite deformation. In Section

3 the effect of initial stress on infinitesimal wave propaga-

tion through the acoustic tensor is discussed. The special

case of isotropy and few examples of initial stress in com-
pressible material are also given. In Section 4, the reflec-

tion of a plane wave from the boundary of the half-space is
discussed and the cases for which either one or two waves

are reflected are observed. Reflection coefficients are cal-

culated in Section 5 for the specific strain energy function
and the results are presented graphically to examine the
behavior of reflected plane waves for an incident P-wave.

2 Basic equations, incremental
deformations and
invariant-based formulation

Let B, represents the reference configuration of an elastic

body and R = [X;, X,, X3] represents a material point in
By. It is assumed that the material has an initial stress @

from this configuration. The material is isotropic in the ab-

sence of this initial stress. Further, it is assumed that all

subsequent deformations are measured from this initially-
stressed reference configuration. This initial stress is sym-

metric and satisfies Div@ = 0 due to equilibrium, in the

absence of body forces. Here Div is the divergence opera-

tor used with respect to B,. Also, it is immaterial as to how
this initial stress is generated and the term is used in its
most generalized sense.

As the elastic body undergoes a finite deformation, the
position vector R becomes R = ¥(R), where ¥ denotes the

deformation (which is a bijection) for R in B,. Let the asso-

ciated deformation gradient tensor be denoted by K with
K = Grad ¥, where Grad is the gradient operator applied
with respect to B;.

Let B; denotes the deformed configuration, 7 the
Cauchy stress tensor and 8 the nominal stress tensor. The

tensors T and 8§ satisfy their respective equilibrium equa-

tions and the body forces are assumed as nil. The two
stresses are connected through T = (det K)'KS.

Let the strain energy function F specifies the elastic
response of the elastic material with

F =3¢, 0), )]

where we make explicit dependence of ¥ on @ and the
right Cauchy-Green deformation tensor ¢ = K'K. It should
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be noted that the presence of ® may introduce anisotropic
behavior in the material whereas the material may be ini-
tially isotropic [12]. Thus, @ affects the constitutive equa-
tions in a manner similar to that of the structure tensor in
anisotropic elasticity.

The connections of the nominal and Cauchy stress
with F are given by

_oF ive 10T
§= K. 0), T=J'KS=J'KS (K 0), ©

respectively, where J = detK > 0. When evaluated in B,
these give the connection

oF
0 - 51, 0). €)

Here I is the identity tensor.

After the finite deformation, we consider an incremen-
tal motion in the material which results in the incremental
displacement, say, u = u(R, t). In a compressible material
which is also initially-stressed, the equation of motion is
[19]

BopigiDj,pq = PDi ¢t (4)

where p is the density of the material in B,. Here, Bg;,; are
the components of the fourth order updated incremental
elasticity tensor and is related to the elasticity tensor B by
18]

Boijit =] KiaKigBajpts )
where the elasticity tensor B is defined as

T
B~ 9Kiq0Kjp’

*F

B = s

(6)
in its vector and component forms, respectively.

For the considered material, since the reference con-
figuration here is assumed to be initially-stressed, the ma-
terial response depends on the invariants of € and 0. We
may take a possible set of independent invariants given by

I, =trace(®), I, = %[I% — trace(@?)], @)

I5 = det(€), I, = trace(@),

Is = %[Iﬁ -~ trace(@?)], I, =det(®), I, = trace(CO),

Ig = trace(C?0), I = trace(CO?), I, = trace(C?63?).

This set provides the (at most) 10 independent in-
variants of € and 0. For relevant background on invari-
ants of tensors we refer to [21, 22]. After few manipula-
tions, it may be shown that invariants such as trace(COCO)
and trace(COC?O), etc. may be expressed in terms of
I1,I,,...,I1o. To prove this, Cayley-Hamilton theorem is
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applied to C + a®, where a is an arbitrary scalar. This re-

sults in
(€ +a@)® - trace(C + aO)(C + aO)? (8)
+ %[{trace(@ +a0)}?]
— trace{(C + a@)z}](e +a0) —det(C+ aB®) = 0.

The above equation is cubic in a and a comparison of co-

efficients of various powers of @ shows that the coefficient
of a® satisfies Cayley-Hamilton theorem for G whereas the

coefficient of &> satisfies Cayley-Hamilton theorem for ©.

Comparing the coefficients of a gives

C%0 +COC + 6C? ©)
— trace(C)(CO + OF) - trace(©)C?
- [trace(C)trace(@) - trace(CO)] €
+ % [(trace((?)2 - trace(Gz)} O - (det @)trace(C™1O) = 0.
Multiplication of the above equation by © and then
taking trace gives
trace(COCO) = 2I,1s + 2I,1g + 21119 + I - 211
-2L1,17,

(10)

which shows the dependence of trace(G@€0) on the invari-

antsin Eq. (7). In a similar manner, multiplication of Eq. (9)
by €O and a few mathematical steps give trace(COC?0) in
terms of the other invariants.

Evaluating the expressions in Egs. (7) in the reference
configuration, we obtain

11 = 12 = 3, Ig = 1, 14 = 17 = Ig = trace(@), (11)

Is - %[Iﬁ - trace(@?)], I, = det(@),
Iy = Lo = I} - 2I5,

where K=C =1
The function F depends on the invariants mentioned
above. Therefore

10

0T _ 35, dln 1)
m=1

oK oK’

where F, = 0F/0I,. The component form of the updated
elasticity tensor using Eq. (5), is

10 621
_ 71 m
Bopigj =J (Z TnKpaKep 3R w0k

m=1

10
olm 0ly
+ Z fTrmnKpaKqﬁaKmaKjﬁ>.

m,n=1

(13)
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In this case, Cauchy stress tensor, using Eq. (2) is
JT =KS = 2F,B + 25,8 + 295351 + 2F7v
+2F3(vB + Bv) + 2FuB 1
+2F10wB wB + BuB ),

(14)

where v = KOK” and B" = I; B - BZ. Here, B = KK is the
usual left Cauchy-Green deformation tensor. In the refer-
ence configuration, the above expression gives the expres-
sion for O as

6=2(§1+2?2+93)I+2(357+23’~8)9 (15)
+ 2(?9 + 2?10)62,
which implies that
?1+2?2+§3=0, 2(377"'23:8):1’ (16)

§9+2?10 =0

in the reference configuration (for details see, for example,
[19, 23]).

For brevity only, ¥ is assumed to depend on various
invariants except for Is, I¢, Is and I,o. Therefore, Eq. (16)3
is automatically satisfied. Taking into account these sim-
plifications in Eq. (13), the components of the fourth order
elasticity tensor are

JBopiqj = 2(F1 + [1F2)Bpadlij + 25212 By (17)
— BigBjp — AijBprBrg - Bpg Byl + 2F3124,,4),
= Aigdjp) + 2F70pgdij + 2Fg[Vpg Bij + Upy BrgAy;
+ BpyUrygdij + VijBpg + UpjBig + v4iBjp]
+4F11BipBjq + 42211 Bip — B, Byp)I1Bjg
- BiaBag) + 4331301414 + 4F12[211B iy Bj,
= BipBjaBag = BjqBiyBypl + 4T1313(Bip4jq
+ BjgAip) + 4F17(Bipvjg + BjqVip)
+4F18[Bip(VjaBag + BjaVag) + Wiy Brp
+ BiyUyp)Bjgl + 4T3 13[11(Bipljq + Bjgdip)
= AipBinBag - BWBWAM] +4F57[(I1 By
= Biy Bp)jg + Vip(I1 Bjg — BjaBag)]
+4F28[(1I1Bip — Biy Byp)WjaBag + Bjavag)

+ (ViyByp + BiyUyp)I1Bjq — BjaBag)]
+433713[Aipvjq + AjqUip) + 4T3813[A1(Vja B ag
+Bjavag) + Wiy Bop + BinUrp)Ajgl + 4F 7705504
+4378[0ip(WjaBag + Bjavag) + Wiy Brp

+ By Unp)Vjgl + 4Fs8(Viy Brp + By Urp)(WjnBag
+ BjaUag).

Since K = I in the reference configuration and using
Eq. (16) in Eq. (17), for an unconstrained compressible ma-
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terial, we have
Bopigi = 1(AijApq + Aighjp — Aipljq) (18)
+720ipAjq + AjjOpq +73(4jjOpq + Apq O + Aiq Oy
+4jy0ig) +74(4ip Ojg + AjqOsp) + 750y Ojg,

which represent the components of the elasticity tensor in
the reference configuration. Here, we have defined

11 =2(F1 +F), (19)
Y2 =2(F, +F3)
+4(§11 +43r]2 +2ff13 +43r22 +4?23 +5r33),
V3= 23:8:
Y4 = 4(F17 + 2T 18 + 2F27 + 4T 8 + T37 + 2T33),
vs = 4(TF77 + 4T 78 + 4Tgg).
When 0 = 0, Eq. (18) gives
3Opiqj = ’Yl(quAij + Aiqup - Aiijq) + ’YZAiijq: (20)

which is the linear theory expression of elasticity tensor.

A detailed discussion on the invariants and the deriva-

tives of various invariants with respect to K can be found
in [19].

3 Small amplitude wave
propagation in a compressible
half-space with initial stress

We now consider the updated configuration as a finitely de-
formed one along with a uniform initial stress. The defor-
mation is assumed to be homogeneous. It is also assumed
the principal axis of the strain (say x3) coincides with the
corresponding principal axis of the initial stress. There-
fore, any subsequent infinitesimal deformation is in the
(x1, x2)-plane which is the principal plane for the initial
stress and the finite deformation. Let (D1, D,) be the com-
ponents of displacement dependent on xq, x5, t and the

principal initial stress components 011, 6,5 in the plane.

The governing equations of motion in (D1, D,) from Eq. (4),
when expanded fori =1, 2, are

T'11D111 + 2I1 D311 +I2D1,12 +ADy 12 + TgD120 (21)
+I3D;3 ) = prDy g, fori=1,
I'1D111 + 5Dy 11 +ADq,12 + 2T4Dy 12 + I3D1 20 (22)

+ 122D 22 = prDa i, fori = 2,
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where I'11, I'»,, I's, I'g, and A are constants depending on
the material, t in subscript represents differentiation with
respect to time and p; is the density per unit reference vol-
ume. Here we have used

Boijji = Boiijj = Boijij — Tii- (23)
The various constants appearing are given by
Tii = JBoiiii»  Tij =JBoiijj» I'1=JBo1112, (24)
Iy =JBox111, I3 =JBo2221, T's=JBo1222,
I's =]Bo1212, I'¢ =JBo2121,

A=T12+F6—T22=F12+T5—T11.

Here, it is supposed that ©;; = 0, i # j which implies v;; =
0, fori # j and v is coaxial with B. This results in I'1 =
I', =I's =T, = 0and Egs. (21-22) give

I'11D1,11 +AD3 12 +T'¢D1,22 = prDy ¢, (25)

I'sDjy 11 +AD1 12 + 122D 20 = prDo ¢4, (26)

respectively. A few manipulations with Egs. (25) and (26)
give fori € (1, 2)

T'11T5D; 1111 + (1122 + TsTg — A*)D; 112, 27)

+I22T6D;j 5220 = pr(l11 + I's)Dj 114t + pr(l22 + T'e)Dj 204t
2

= Pr Di ¢eee

which is satisfied by D; and D, both.

Equation (2.7) of [4] is of the form of Eq. (27), in a dif-
ferent notation. However the two equations differ in nature
due to the dependence of material constants on the initial
stress in the latter case. For O = 0 in Eq. (27), the case for
an isotropic material can be retrieved as in [4].

An incremental plane wave is given by

(D1, Dy) = Asy, 5p)eliklxarlaxa=col (28)

where c is the wave speed, k is the wave number, I = (11, [)
is the wave normal vector, s = (s, S,) is the polarization
vector and A is the wave amplitude.

Using Eq. (28) in Egs. (25) and (26) gives the propaga-
tion equation

Qs = p,c?s, (29)

for a compressible material. Here Q(1) is the acoustic tensor
(see, for example, [18]). From Eq. (29), we also have

Sp = US1, (30)

where

_prC* Tl - Tl5 _
ALl

_ Al L
prC2 - F5l% —Fzzl% )

€3y
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The acoustic tensor Q has the component form

Qi;(D) = Bopigjlplg- (32)
Using Eq. (17) in Eq. (32), we get
Q) = [2(F; + F>1)BY - 25,820 4 25, 33)

+ 4T (wB) VN - 2(F,BY - Fou®)B + 25,80y
+2(F315 + 2F53 )1 @ 1+ 2(F5 + 2F 11 + 4F1,11)Bl
® Bl +2(Fg + 2F17)(Bl @ vl + vl @ Bl) + 4F5,B"1
® Bl - 4F1,(Bl ®@ B>l + B*1 @ Bl)

+415(F13 + Fo3 1) (Bl @ 1+ 1@ Bl)

+4F13[Bl® (VB + Bu)l + (VB + Bv)l @ Bl

- 4F A2 B+ B2 1)+ 4F5,(B 1o vl

+ul @ B'D + 4F»5[B 1 (0B + Bu)l + (uB + Bu)l
@ Bl + 4F57; A @ vl + vl @ 1) + 4F555[1 @ (B
+Bu)l+ (WB + BRI + 45770l @ vl

+4F78[ul @ (WB + Bu)l + (VB + Bu)l ® vl]
+4Fg3(VB + Bu)l ® (VB + Bu)l,

where BO = 1. B1,v® =1-vl, B2 = 1. B2l and (vB)D =
1-vBl.

Since B2! = B0 = 1,8"® = 2 and (B)?Y = 6V in
the reference configuration, we have from Eq. (33)

QD = (11 +(1+3)0N+plol+1;0
+(3+7)I210+01lx1)+v50l 0Ol,

(34)

where v1, 72, 73, 74 and s are given by Eq. (19).
For compressible materials in deformed configuration,
the strong ellipticity condition is given by

Qijsisj = BOpiqjlplqsisj >0, (35)
for all non-zero arbitrary s, 1.
Furthermore from Eq. (29), we have
prC2 = (Q(I)S) S = 'BopiqjlpquiSj (36)

and Eq. (35) thus ensures positive values for p,c2. However,
c can be of either signature.

From Egs. (29) and (34), it follows, for arbitrary 8 and
L

prc2 =T +(1+T3)00 + Ih(1-5)? + T5(s - Os)
+2(I'3 + T4)(s - O)(1 - ) + I's(s - O,

(7)

For a particular choice of 1, the wave speed is calcu-
lated by

QD) - prc’I| =0, (38)
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which is the characteristic equation. Here, I is the identity
matrix. This gives a quadratic equation in p,c?, namely

(prc®)? = Ciprc® +C5 = 0, (39)

where

C1= Q11+ Q2, (40)
Qi1 =113 + I13,

Qa2 = I'sli + T l5.

C2 = Q11Q22 - Q12Q31,
Q12 = Q21 = Ahly,

Another approach to obtain a quadratic equation for p,c?
is by using Eq. (28) into Eq. (27), given as

(prc?®)* = (11 + I's)§ + (T2 + Te)5]prc? (41)
+F11F5ll{ + 2,81%1% + F22T6lg =0,
where
2B=F11F22 +F5F6—A2. (42)

Two positive solutions for p,c? are obtained from Eq.
(41) if and only if

I'iy >0, I'y;>0, Is5>0, F6>0, (43)

and

B > (11T, TsTe) ', (44)

which are also quoted in a similar manner in [4] for pre-
stressed isotropic material. However, here these condi-
tions imply bounds on the values of the principal stress
components.

4 Reflection from a plane boundary

We consider a material body in its finitely deformed config-
uration such that the half-space is x, < 0 and x, = O is
the boundary. On the boundary, vanishing of incremental
dead load requires the incremental traction components

8021 =0-= 3022, where SOpka = BOpiquj,qu' There-
fore, after using Eq. (24), the boundary equations at x, = 0
are

8021 = D12+ D31 =0, (45)

8022 = I'12D1,1 +T22D; 5 = 0. (46)

A homogeneous plane wave is assumed to propagate
in the half-space and analogous to Eq. (28), this wave is of
the form

U = Aselikx—ctl (47)
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Let the direction of propagation of the incident wave be
1 = (11, 1), the polarization vector s = (s1, S»), 0 the angle
of incidence and c the speed of the incident wave. Due to
this incident wave, depending on the material properties
and the deformation, there may exist two (homogeneous)
reflected plane waves or just one reflected plane wave ac-
companied by a surface wave. These possibilities are dis-
cussed in the following sections. Let k denote the wave
number of the incident wave. The first reflected wave trav-
els at the same wave speed as the incident wave and makes
the angle 0 with the boundary. For the second reflected
wave, k' and ¢’ represent the wave number and speed, re-
spectively.

For x, < 0, the total displacement for two reflected
plane waves is

U= Ase[ik(bxfct)] " ARSfe[ik(l'-X—ct)] (48)

+ AR/S/e[ik’(l'-x—c’t)] ,

where R, R’ are the reflection coefficients associated with
the first and the second reflected wave, respectively. More-
over, let s, I” be the polarization vector and the direction
of propagation of the first reflected wave and s’, I be the
polarization vector and the direction of travel of the sec-
ond reflected wave, respectively. For the compatibility of
these three waves, they should bear the same frequency
and hence kc = k’c’. Also, due to the traction-free bound-
ary conditions, kl; = k’l} and therefore

c'ly =cl}, (49)
which is a statement of Snell’s law. Using Eq. (41), it is
found that for the second reflected wave that either I;* = I3
or

ZBI% - (Fzz + Fé)prcz + F22F6(IEZ + I%) =0, (50)

which gives possible values of [; in terms of I,. We may
take I; = -1, for the second reflected wave, without loss of
generality.

We may take s~ = (s1, —S3), while any difference in
sign can be adjusted within R. From Eq. (30), we have s, =
vs; for the incident wave withwv given by Eq. (31). Similarly,
we have s}, = v's/, with v’ defined analogously to v, given
by

v = (prc® -3 - Tl AL L, (51)

for the second reflected wave.
Since the polarization vectors § and m’ are assumed

to be unit vectors, we set

si=1/(1+v)7.

s1=1/(1+v2)?2, (52)
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4.1 The reflection coefficients

With Eq. (48) and the boundary conditions Eq. (45-46), we
get the reflection coefficients R, R’, which leads to

® - bP'a-lpq

- ’ (53)
lLp'q + Lpg’
f____ 204 sib
X Lparbpg s, G4
where p, q, p’, q’ are defined by
p = AT + Tyy(prc® — T BB - T63), (55)
q =Tela05 + (A -T)prc” - Tiplh),
p' = AT, + Tyy(prc? - Iy 1f - Tl5), (56)
q' =Telal? +(A-T)prc - Tiald),
silh . .
and ;12 is given by
sily _ @B + (e - Tuli - TelP)): (o)
=1 .
s (A2212 + (prc2 - T 12 — T12)2)?
Using the connection I; = l; tan 8,
Eq. (41) becomes
(F11F5 + Zﬁ tanz 0+ Fzzre, tan4 9)111‘ (58)

—prcz[l"ll +Ts + (I, + I'g) tan? 0]13 + (p,cz)2 =0,

which expresses l; in terms of the angle 0 that is the direc-
tion of the wave normal.

Differentiating Eq. (41) with respect to ;f—cl% and multi-
plying both sides by 13, we obtain

2BB13 + (ToaTs(13 + B1Y)) - Ty + T)3prc® = 0. (59)
Subtracting Eq. (59) from Eq. (41) we find
I3l = (Iali - prc?)Ts 15 - prc?), (60)

which expresses I, in terms of 6. Hence, R, R’ can be ex-
pressed as a function of 6 explicitly. Considering the con-
nection I = 1, tan 6’ and the notation

v=tanf, v =tané’, (61)
Equation (58) can be rewritten as
(I'1T's +2Bv® + I Tev™)lf - prc®[Tyq + Ts (62)
+ Ty + V212 + (prc?)? = 0.
Also, with this notation, Eq. (60) becomes
W22 - (I'alf - pre?)Is13 —PrCZ). (63)

Iy Tl
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Since {I'11,I's} > O, for a given value of the angle of inci-
dence, real v’ values exist given

min(l'y1 13, I's13)

ormax(I'1111, I's13) < prc?.

either p,c? < (64)

Using I, = l;tanf and I = 1, tan @, Egs. (53-57) be-
come
_v'p'q-vpq
X Upgrupg” (63)
2 sV’
R =- P51V (66)
v'p'q +upq s
where
p = Al +Toy(pec® - Tlf - Teliv?),  (67)
q =TI 1307 + (A - I'12)(prc® - T 13),
p/ =AF121%+F22(prC2 —F111% _F6Z%U/2)s (68)
q' =Tel12130"” + (A - T1y)(prc® - T1113),
and
Sll)/ v Azll{l}'z + (prC2 - Flll% —F6Z%U’2)2 (69)
sh A213v2 + (prc? - T1 13 - Tgl2v2)2

5 Numerical results and discussion

5.1 Compressible hyperelastic material with
a homogeneous initial stress

We now choose a prototype function & to represent the re-
sponse of a compressible elastic material with initial stress
given by

7= B L+ -3)+ (s %H)(g “1? (70
u 1
+ %(17 ~1,)%+ 5(17 - 1),

where p, A are Lame’s parameters and y is a material con-
stant (with dimensions of (stress)™!). Equation (72) gives
behavior of Neo-Hookean-type solid for & = 0. Various
other models are suggested in [24] which satisfy an addi-
tional condition on the form this function. The condition
derived in [24] is plausible, however, this simple strain en-
ergy function is used for brevity and illustration of the ef-
fect of initial stress on wave propagation in a compressible
elastic solid. For convenience, we introduce the notations

F =F/u, X =AMy, 61 =6n/y, 7
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0% =0xn/u, L=L/u, L=IL/u ¥ =pu

Using the above notations in (70), the strain energy func-
tion can be rewritten as

g-1

: (152/311 3 _3) . ()l* . %) -1?2 (72

* * * 1 * *
+ %(17 -I)%+ 5(17 - 1),

where ; = 0F7/dl; fori = {1,3} and F; = 9F"/aI; for
i={4,7}.

For the chosen material, in the deformed configura-
tion after using Eqgs. (17), (24) and (72) accordingly along-
with the assumption 8;; = 0, i # j, we get

I11 = aA}(©7)? + bA26] + ¢y, (73)

Iy = aA3(05)? + bA365 + ¢, (74)

I, = aAjA3(01)(63) + c3, (75)

I1=T,=T3=T,=0, (76)

s = 2?73 + bAdey, 77)

Te = *?13 + bA363, (78)

A = akiA3(01)(05) + c3 + A3 + bA%es, (79)
where

a=ap’,b=2u"(I;-1;) +1, (80)

o =200 + %)(51% S+ (%Il - g;@)gm +15, (81)

c=2(A"+ %)(51% -I3)+ (197411 - %/\%)I;ZB +15, (82

3= 8" + %)(2[% — 1)+ 25 (83)

4 _
+ §(z -3+ )21,

*

In the reference configuration, b = 1,c; = ¢, = 81" +
28,3 = 81" + £, the expressions (73-79) reduce to

Fi=400Y +0)+c1, Ip=4u"07+05+c,, (84)
F12=4}1*@1@§+63, Ir=rI,=I5=I,=0,
I5=1+6], T¢=1+6;,
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Figure 1: Plot of the reflection coefficients R and R’ versus angle of incidence 6 for A" = 0.2, y" = 10 and ] = 300, 6 = 0.

A=4)y"010; + 81" + 23—5 +605.

In deformed configuration, the strong ellipticity con-

ditions (433 4) require

A~ -1;%
{@1, @2} > * .

3 8
205 -T,) +1 (85)

which gives the lower bound for the values of the principal
initial stress components. Further, we additionally require
from inequalities (43 ;)

a(A307)? + bA26] +¢c1 >0, (86)
a(A305)? + bA3O5 +¢c5 > 0,

which hold if

(v/b? - tacy - 1)/2aA? < 6] (87)

< -(v/b? - 4acy +1)/2aA3,
(Vb2 - hac, - 1)/2ah3 < 05 < (/b2 - hac, + 1)/2a3,

respectively.
5.2 Incident P-wave in the reference
configuration

Considering a special class of materials where 28 = I'11 T'¢ +
I'5,Ts5, Eq. (41) gives

(I'sl + Tl5 — pc®) (1113 + Tal5 - pc?) = 0. (88)
For an incident P-wave using Eq. (88), we obtain
Il + T8 =pc?. (89)
After using Eq. (89) in Eq. (63) we deduce
v o= /M. (90)
Tg

For v’ > 0, we should have v? > Fsr‘izill

Hence, in Egs. (65) and (66), p, q,p’, q are accord-
ingly defined as

p = ATl - Taleliv + Ils, (91)
q = TeI', 0% + ATy,13 - T, 5,
p' = AT1p713 - TyllBv'? + 13,15, (92)
q' =TeI12150" + ATy, 15 - T3,
and Sé? is given by
siv/ D212 + (Tp13 - Tl2v'2)2 ©93)
sh A21302 + (I3 - Tgl2v2)2
5.3 The reflection coefficient R’
From Egs. (45-46) and Eq. (48), we get
[s1L(1 - R) + SR+ [s,11(1 = R) +s511R'] = 0, (94)
F12[8111(1+fR)+S/111R/] (95)

+T[(1 + R)sylh + sHILR'] = 0.

We now use the above expressions to look at the con-
ditions for vanishing of the reflection coefficient R’. It is
noted thatfor6 =0or 6 = 7, R’ = 0. Also, from the bound-
ary conditions, it is easy to see that if R’ = 0 then either
R = 1 (see Figure 1) with We now use the above expres-
sions to look at the conditions for vanishing of the reflec-
tion coefficient ®'. It is noted that for = 0or 6 = 5, R’ = 0.
Also, from the boundary conditions, it is easy to see that if
R’ = 0 then either R = 1 (see Figure 1) with

T1p51ly + 08215 =0, (96)
or R = —1 (see Figure 2) with
S]lz + Szll =0. (97)
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Figure 2: Plot of the reflection coefficients R and R’ for A" = 80, u* = 1, ] = 0.05 = 05,.
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Figure 3: R and R’ for A" = 5, y" = 50 and 6] = 0.2.
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Figure 4: R and R’ for " = 10, y" = 25 and 6] = 0.2.
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Figure 5: Rand R’ forA" = 1, u* = 20 and 6] = 10.

In general, these conditions depend on the incidence an-
gle and the principal initial stresses. However, from Eq.
(96) for R = 1, an incident SV wave can exist if material
properties are such that I';; = I';,. It may be noted that
R = 1 happens for larger values and R = -1 for very
small values of initial stress components. For the case of
R = -1 in the case of a pre-stressed material[4], an inci-
dent P-wave is admissible if T, = 2I'¢ and if the material

041
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0.5 10

—02}F

—04}

03¢
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10 1
—01F

-0.21

0.2

01

15
—0af

—02F
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properties allow such a wave. However, in this case from
Eq. (97), an incident P-wave is admissible for every such
material where I'q # 0.

Figures (3-7) are the graphical representation of Egs.
(65-66) for various particular values of the material con-
stants and (uniaxial case) non-zero principal stress 0].
The behavior of two reflected waves is shown. A reflected
SV-wave accompanies a reflected P-wave in most of the
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Figure 7: Rand R’ for A = 10, u* = 25 and ©] = 0.

cases. The behavior of wave velocity is similar to that ob-
served in [4] for various particular choices of the parame-
ters and the results are in good accordance with those in
[4] for pre-stressed compressible material.

6 Conclusions

In this paper, using the nonlinear theory of elasticity, for-
mulation is presented for compressible hyperelastic mate-
rials when the material is initially stressed in its reference
configuration. The speed of wave in such a material is af-
fected by the presence of this stress. The components of
the initial stress are incorporated in the components of the
fourth order elasticity tensor instead of introducing sepa-
rate terms as is done in linear elasticity following [5]. It is
assumed that the stored energy function depends on the
invariants of the deformation as well initial stress tensor
components. It is found that the wave speed depends con-
siderably on the principal initial stresses and is required
to satisfy the strong ellipticity conditions.

In particular, a study is presented to understand the
effect of a homogeneous initial stress on the reflection of
an incident P-wave. A prototype (so-called) stored energy
function for a compressible material is used to elaborate
the theoretical results and graphs are presented to observe
the effect of initial stress on the reflection of a P— wave. It
is found that a reflected SV exists in most cases of choices

Plane Wave Reflection in a Compressible Half Space with Initial Stress

— 447

03
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041

021
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of parameters. However, the amplitude of this wave may
vanish in certain cases which depend on the angle of inci-
dence 6. Other conditions depend on the material param-
eters as discussed in Section 5.3.
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