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Abstract: In this paper, the problem of wave propagation
in a compressible half-space with an initial stress is con-
sidered. General discussion on the speed of wave in the
presence of an initial stress is presented. Furthermore, re-
flection of a homogeneous plane P−wave is also studied.
A special strain energy function dependent on this initial
stress is used to understand the response of the materi-
als. Explicit formulas for the reflection coefficients are also
presented. General nonlinear theory and the theory of in-
variants are used to derive theoretical results. Graphical il-
lustration of theoretical results for various numerical val-
ues of parameters show that initial stress has considerable
bearing on the behavior of a plane wave.
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1 Introduction
In linear theory of elasticity, the materials are mostly con-
sidered to be stress-free in their reference state [1, 2]. In real
world, however, the existence of an initial stress is proven
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and considered important for the study of wave propaga-
tion in elastic solids. In this context, many studies are pre-
sented for incompressible materials. In this paper, a com-
pressible material is considered with a homogeneous ini-
tial stress. The effect of this stress on the speed of plane
waves is analyzed using the nonlinear theory of elasticity.
In addition, the problem of plane wave reflection from the
boundary of such amaterial is also presentedwith thehelp
of reflection coefficients. Mainly P−waves are considered
and various cases are outlined for existence of one or two
reflected waves. This depends on the initial stress and the
incidence angle. The problem ismajorly applicable but not
limited to earthquake waves which are used in seismology.
Other applications include the study ofwaves in biological
tissues, toughened glass etc.

The term initial stress is used here in its most general
sense which includes both the cases of prestress and resid-
ual stress. Here, the source of this initial stress is irrelevant.
A prestress is a kind of initial stress which has a related fi-
nite deformation from the reference configurationwhereas
a residual stress may not occur due to a finite deforma-
tion but may be a consequence of some manufacturing or
growth process [3].

In [4], the authors studied the effect of a (homoge-
neous) pre-stress and finite deformation on the speed of
plane waves in compressible hyperelastic materials and
the reflection of plane wave from such a half-space. Few
results in this paper appear similar to those cited in [4].
However, the nature of the material constants here is con-
siderably different since these depend on the initial stress
aswell. Biot [5, 6] presentedmajor studies on various prob-
lems to see the effects of initial stress on wave propaga-
tion. Also, wavemotion in an infinite and initially stressed
material medium for various special cases were consid-
ered by Tang [7]. For the basic equations for a residually-
stressedmaterial, the reasder is referred to [8–11].Man and
Lu [12] followed Hoger [3] and presented generalized re-
sults which can be related to Biot’s work. For discussion
on wave propagation in pre-stressed materials, we refer to
[13–16] and references therein. For general non-linear elas-
ticity theory, see [17, 18]. More recently, discussion on ini-
tial stress can be found in [19, 20] and references therein.
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Section 2 comprises of basic equations describing the
finite deformation of a compressible elastic material and
the corresponding equations which govern incremental
motion superimposedon thefinite deformation. In Section
3 the effect of initial stress on infinitesimal wave propaga-
tion through the acoustic tensor is discussed. The special
case of isotropy and few examples of initial stress in com-
pressible material are also given. In Section 4, the reflec-
tion of a planewave from the boundary of the half-space is
discussed and the cases for which either one or two waves
are reflected are observed. Reflection coefficients are cal-
culated in Section 5 for the specific strain energy function
and the results are presented graphically to examine the
behavior of reflected plane waves for an incident P−wave.

2 Basic equations, incremental
deformations and
invariant-based formulation

Let Br represents the reference configuration of an elastic
body and R = [X1, X2, X3] represents a material point in
Br. It is assumed that the material has an initial stress Θ
from this configuration. The material is isotropic in the ab-
sence of this initial stress. Further, it is assumed that all
subsequent deformations are measured from this initially-
stressed reference configuration. This initial stress is sym-
metric and satisfies DivΘ = 0 due to equilibrium, in the
absence of body forces. Here Div is the divergence opera-
tor used with respect toBr. Also, it is immaterial as to how
this initial stress is generated and the term is used in its
most generalized sense.

As the elastic bodyundergoes a finite deformation, the
position vectorR becomesR = Ψ(R), whereΨ denotes the
deformation (which is a bijection) forR inBr. Let the asso-
ciated deformation gradient tensor be denoted by K with
K = GradΨ , where Grad is the gradient operator applied
with respect toBr.

Let Bt denotes the deformed configuration, T the
Cauchy stress tensor and S the nominal stress tensor. The
tensors T and S satisfy their respective equilibrium equa-
tions and the body forces are assumed as nil. The two
stresses are connected through T = (detK)−1KS.

Let the strain energy function F specifies the elastic
response of the elastic material with

F = F(C, Θ), (1)

where we make explicit dependence of F on Θ and the
right Cauchy-Green deformation tensor C = KTK. It should

be noted that the presence of Θmay introduce anisotropic
behavior in the material whereas the material may be ini-
tially isotropic [12]. Thus, Θ affects the constitutive equa-
tions in a manner similar to that of the structure tensor in
anisotropic elasticity.

The connections of the nominal and Cauchy stress
with F are given by

S = ∂F∂K (K, Θ), T = J−1KS = J−1K∂F∂K (K, Θ), (2)

respectively, where J = detK > 0. When evaluated in Br,
these give the connection

Θ = ∂F∂K (I, Θ). (3)

Here I is the identity tensor.
After the finite deformation, we consider an incremen-

tal motion in thematerial which results in the incremental
displacement, say, u = u(R, t). In a compressible material
which is also initially-stressed, the equation of motion is
[19]

B0piqjDj,pq = ρDi,tt , (4)

where ρ is the density of thematerial inBt. Here,B0piqj are
the components of the fourth order updated incremental
elasticity tensor and is related to the elasticity tensorB by
[18]

B0ijkl = J−1KiαKkβBαjβl , (5)

where the elasticity tensorB is defined as

B = ∂2F
∂K∂K , Bαiβj =

∂2F
∂Kiα∂Kjβ

, (6)

in its vector and component forms, respectively.
For the considered material, since the reference con-

figuration here is assumed to be initially-stressed, the ma-
terial response depends on the invariants of C and Θ. We
may take a possible set of independent invariants given by

I1 = trace(C), I2 =
1
2[I

2
1 − trace(C2)], (7)

I3 = det(C), I4 = trace(Θ),

I5 =
1
2[I

2
4 − trace(Θ2)], I6 = det(Θ), I7 = trace(CΘ),

I8 = trace(C2Θ), I9 = trace(CΘ2), I10 = trace(C2Θ2).

This set provides the (at most) 10 independent in-
variants of C and Θ. For relevant background on invari-
ants of tensors we refer to [21, 22]. After few manipula-
tions, itmaybe shown that invariants such as trace(CΘCΘ)
and trace(CΘC2Θ), etc. may be expressed in terms of
I1, I2, . . . , I10. To prove this, Cayley-Hamilton theorem is
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applied to C + αΘ, where α is an arbitrary scalar. This re-
sults in

(C + αΘ)3 − trace(C + αΘ)(C + αΘ)2 (8)

+ 1
2[{trace(C + αΘ)}2]

− trace{(C + αΘ)2}](C + αΘ) − det(C + αΘ)I = 0.

The above equation is cubic in α and a comparison of co-
efficients of various powers of α shows that the coefficient
of α0 satisfies Cayley-Hamilton theorem for C whereas the
coefficient of α3 satisfies Cayley-Hamilton theorem for Θ.
Comparing the coefficients of α gives

C2Θ + CΘC + ΘC2 (9)
− trace(C)(CΘ + ΘC) − trace(Θ)C2

−
[︀
trace(C)trace(Θ) − trace(CΘ)

]︀
C

+ 1
2

[︁
(trace(C)2 − trace(C2)

]︁
Θ − (detC)trace(C−1Θ)I = 0.

Multiplication of the above equation by Θ and then
taking trace gives

trace(CΘCΘ) = 2I2I5 + 2I4I8 + 2I1I9 + I27 − 2I10 (10)
− 2I1I4I7,

which shows thedependenceof trace(CΘCΘ) on the invari-
ants in Eq. (7). In a similarmanner,multiplication of Eq. (9)
by CΘ and a fewmathematical steps give trace(CΘC2Θ) in
terms of the other invariants.

Evaluating the expressions in Eqs. (7) in the reference
configuration, we obtain

I1 = I2 = 3, I3 = 1, I4 = I7 = I8 = trace(Θ), (11)

I5 =
1
2[I

2
4 − trace(Θ2)], I6 = det(Θ),

I9 = I10 = I24 − 2I5,

where K = C = I.
The function F depends on the invariants mentioned

above. Therefore

∂F
∂K =

10∑︁
m=1

Fm
∂Im
∂K , (12)

where Fr = ∂F/∂Ir. The component form of the updated
elasticity tensor using Eq. (5), is

B0piqj = J−1
(︃ 10∑︁
m=1

FmKpαKqβ
∂2Im

∂Kiα∂Kjβ
(13)

+
10∑︁

m,n=1
FmnKpαKqβ

∂Im
∂Kiα

∂In
∂Kjβ

)︃
.

In this case, Cauchy stress tensor, using Eq. (2) is

JT = KS = 2F1B + 2F2B
* + 2F3I3I + 2F7υ (14)

+ 2F8(υB +Bυ) + 2F9υB−1υ
+ 2F10(υB−1υB +BυB−1υ),

where υ = KΘKT and B* = I1B − B2. Here, B = KKT is the
usual left Cauchy-Green deformation tensor. In the refer-
ence configuration, the above expression gives the expres-
sion for Θ as

Θ = 2(F1 + 2F2 + F3)I + 2(F7 + 2F8)Θ (15)
+ 2(F9 + 2F10)Θ2,

which implies that

F1 + 2F2 + F3 = 0, 2(F7 + 2F8) = 1, (16)
F9 + 2F10 = 0

in the reference configuration (for details see, for example,
[19, 23]).

For brevity only, F is assumed to depend on various
invariants except for I5, I6, I9 and I10. Therefore, Eq. (16)3
is automatically satisfied. Taking into account these sim-
plifications in Eq. (13), the components of the fourth order
elasticity tensor are

JB0piqj = 2(F1 + I1F2)Bpq∆ij + 2F2[2BpiBqj (17)
−BiqBjp − ∆ijBp𝛾B𝛾q −BpqBij] + 2F3I3(2∆ip∆jq
− ∆iq∆jp) + 2F7υpq∆ij + 2F8[υpqBij + υp𝛾B𝛾q∆ij
+Bp𝛾υ𝛾q∆ij + υijBpq + υpjBiq + υqiBjp]
+ 4F11BipBjq + 4F22(I1Bip −Bi𝛾B𝛾p)(I1Bjq

−Bj∆B∆q) + 4F33I23∆ip∆jq + 4F12[2I1BipBjq

−BipBj∆B∆q −BjqBi𝛾B𝛾p] + 4F13I3(Bip∆jq
+Bjq∆ip) + 4F17(Bipυjq +Bjqυip)
+ 4F18[Bip(υj∆B∆q +Bj∆υ∆q) + (υi𝛾B𝛾p

+Bi𝛾υ𝛾p)Bjq] + 4F23I3[I1(Bip∆jq +Bjq∆ip)
− ∆ipBj∆B∆q −Bi𝛾B𝛾p∆jq] + 4F27[(I1Bip

−Bi𝛾B𝛾p)υjq + υip(I1Bjq −Bj∆B∆q)]
+ 4F28[(I1Bip −Bi𝛾B𝛾p)(υj∆B∆q +Bj∆υ∆q)
+ (υi𝛾B𝛾p +Bi𝛾υ𝛾p)(I1Bjq −Bj∆B∆q)]
+ 4F37I3[∆ipυjq + ∆jqυip] + 4F38I3[∆ip(υj∆B∆q

+Bj∆υ∆q) + (υi𝛾B𝛾p +Bi𝛾υ𝛾p)∆jq] + 4F77υipυjq
+ 4F78[υip(υj∆B∆q +Bj∆υ∆q) + (υi𝛾B𝛾p

+Bi𝛾υ𝛾p)υjq] + 4F88(υi𝛾B𝛾p +Bi𝛾υ𝛾p)(υj∆B∆q

+Bj∆υ∆q).

Since K = I in the reference configuration and using
Eq. (16) in Eq. (17), for an unconstrained compressible ma-



Plane Wave Reflection in a Compressible Half Space with Initial Stress | 441

terial, we have

B0piqj = 𝛾1(∆ij∆pq + ∆iq∆jp − ∆ip∆jq) (18)
+ 𝛾2∆ip∆jq + ∆ijΘpq + 𝛾3(∆ijΘpq + ∆pqΘij + ∆iqΘjp
+ ∆jpΘiq) + 𝛾4(∆ipΘjq + ∆jqΘip) + 𝛾5ΘipΘjq ,

which represent the components of the elasticity tensor in
the reference configuration. Here, we have defined

𝛾1 = 2(F1 + F2), (19)
𝛾2 = 2(F2 + F3)

+ 4(F11 + 4F12 + 2F13 + 4F22 + 4F23 + F33),
𝛾3 = 2F8,
𝛾4 = 4(F17 + 2F18 + 2F27 + 4F28 + F37 + 2F38),
𝛾5 = 4(F77 + 4F78 + 4F88).

When Θ = 0, Eq. (18) gives

B0piqj = 𝛾1(∆pq∆ij + ∆iq∆jp − ∆ip∆jq) + 𝛾2∆ip∆jq , (20)

which is the linear theory expression of elasticity tensor.
A detailed discussion on the invariants and the deriva-

tives of various invariants with respect to K can be found
in [19].

3 Small amplitude wave
propagation in a compressible
half-space with initial stress

Wenowconsider the updated configuration as a finitely de-
formed one along with a uniform initial stress. The defor-
mation is assumed to be homogeneous. It is also assumed
the principal axis of the strain (say x3) coincides with the
corresponding principal axis of the initial stress. There-
fore, any subsequent infinitesimal deformation is in the
(x1, x2)-plane which is the principal plane for the initial
stress and the finite deformation. Let (D1, D2) be the com-
ponents of displacement dependent on x1, x2, t and the
principal initial stress components Θ11, Θ22 in the plane.
The governing equations ofmotion in (D1, D2) fromEq. (4),
when expanded for i = 1, 2, are

Γ11D1,11 + 2Γ1D2,11 + Γ2D1,12 + ∆D2,12 + Γ6D1,22 (21)
+ Γ3D2,22 = ρrD1,tt , for i = 1,

Γ1D1,11 + Γ5D2,11 + ∆D1,12 + 2Γ4D2,12 + Γ3D1,22 (22)
+ Γ22D2,22 = ρrD2,tt , for i = 2,

where Γ11, Γ22, Γ5, Γ6, and ∆ are constants depending on
the material, t in subscript represents differentiation with
respect to time and ρr is the density per unit reference vol-
ume. Here we have used

B0ijji = B0iijj = B0ijij − Tii . (23)

The various constants appearing are given by

Γii = JB0iiii , Γij = JB0iijj , Γ1 = JB01112, (24)
Γ2 = JB02111, Γ3 = JB02221, Γ4 = JB01222,
Γ5 = JB01212, Γ6 = JB02121,
∆ = Γ12 + Γ6 − T22 = Γ12 + Γ5 − T11.

Here, it is supposed that Θij = 0, i ≠ j which implies υij =
0, for i ≠ j and υ is coaxial with B. This results in Γ1 =
Γ2 = Γ3 = Γ4 = 0 and Eqs. (21-22) give

Γ11D1,11 + ∆D2,12 + Γ6D1,22 = ρrD1,tt , (25)

Γ5D2,11 + ∆D1,12 + Γ22D2,22 = ρrD2,tt , (26)

respectively. A few manipulations with Eqs. (25) and (26)
give for i ∈ (1, 2)

Γ11Γ5Di,1111 + (Γ11Γ22 + Γ5Γ6 − ∆2)Di,1122 (27)
+ Γ22Γ6Di,2222 = ρr(Γ11 + Γ5)Di,11tt + ρr(Γ22 + Γ6)Di,22tt
− ρ2r Di,tttt ,

which is satisfied by D1 and D2 both.
Equation (2.7) of [4] is of the form of Eq. (27), in a dif-

ferent notation.However the two equations differ in nature
due to the dependence of material constants on the initial
stress in the latter case. For Θ = 0 in Eq. (27), the case for
an isotropic material can be retrieved as in [4].

An incremental plane wave is given by

(D1, D2) = A(s1, s2)e[ik(l1x1+l2x2−ct)], (28)

where c is thewave speed, k is thewave number, l = (l1, l2)
is the wave normal vector, s = (s1, s2) is the polarization
vector and A is the wave amplitude.

Using Eq. (28) in Eqs. (25) and (26) gives the propaga-
tion equation

Q(l)s = ρrc2s, (29)

for a compressiblematerial.HereQ(l) is the acoustic tensor
(see, for example, [18]). From Eq. (29), we also have

s2 = υs1, (30)

where

υ = ρrc
2 − Γ11l21 − Γ6l22

∆l1l2
= ∆l1l2
ρrc2 − Γ5l21 − Γ22l22

. (31)
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The acoustic tensor Q has the component form

Qij(l) = B0piqj lp lq . (32)

Using Eq. (17) in Eq. (32), we get

Q(l) = [2(F1 + F2I1)B(l) − 2F2B
2(l) + 2F7υ(l) (33)

+ 4F8(υB)(l)]I − 2(F2B
(l) − F8υ(l))B + 2F8B(l)υ

+ 2(F3I3 + 2F33I23)l ⊗ l + 2(F2 + 2F11 + 4F12I1)Bl
⊗Bl + 2(F8 + 2F17)(Bl ⊗ υl + υl ⊗Bl) + 4F22B

*l
⊗B*l − 4F12(Bl ⊗B2l +B2l ⊗Bl)
+ 4I3(F13 + F23I1)(Bl ⊗ l + l ⊗Bl)
+ 4F18[Bl ⊗ (υB +Bυ)l + (υB +Bυ)l ⊗Bl]
− 4F23I3(l ⊗B2l +B2l ⊗ l) + 4F27(B*l ⊗ υl
+ υl ⊗B*l) + 4F28[B*l ⊗ (υB +Bυ)l + (υB +Bυ)l
⊗B*l] + 4F37I3(l ⊗ υl + υl ⊗ l) + 4F38I3[l ⊗ (υB
+Bυ)l + (υB +Bυ)l ⊗ l] + 4F77υl ⊗ υl
+ 4F78[υl ⊗ (υB +Bυ)l + (υB +Bυ)l ⊗ υl]
+ 4F88(υB +Bυ)l ⊗ (υB +Bυ)l,

where B(l) = l ·Bl, υ(l) = l · υl, B2(l) = l ·B2l and (υB)(l) =
l · υBl.

Since B2(l) = B(l) = 1,B*(l) = 2 and (υB)(l) = Θ(l) in
the reference configuration, we have from Eq. (33)

Q(l) = (𝛾1 + (1 + 𝛾3)Θ(l))I + 𝛾2l ⊗ l + 𝛾3Θ (34)
+ (𝛾3 + 𝛾4)(l ⊗ lΘ + Θl ⊗ l) + 𝛾5Θl ⊗ Θl,

where 𝛾1, 𝛾2, 𝛾3, 𝛾4 and 𝛾5 are given by Eq. (19).
For compressiblematerials in deformed configuration,

the strong ellipticity condition is given by

Qijsisj = B0piqj lp lqsisj > 0, (35)

for all non-zero arbitrary s, l.
Furthermore from Eq. (29), we have

ρrc2 = (Q(l)s) · s = B0piqj lp lqsisj (36)

andEq. (35) thus ensures positive values for ρrc2. However,
c can be of either signature.

From Eqs. (29) and (34), it follows, for arbitrary S and
l,

ρrc2 = Γ1 + (1 + Γ3)Θ(l) + Γ2(l · s)2 + Γ3(s · Θs) (37)
+ 2(Γ3 + Γ4)(s · Θl)(l · s) + Γ5(s · Θl)2.

For a particular choice of l, the wave speed is calcu-
lated by

|(Q(l) − ρrc2I| = 0, (38)

which is the characteristic equation. Here, I is the identity
matrix. This gives a quadratic equation in ρrc2, namely

(ρrc2)2 − C1ρrc2 + C2 = 0, (39)

where

C1 = Q11 + Q22, C2 = Q11Q22 − Q12Q21, (40)
Q11 = Γ11l21 + Γ6l22, Q12 = Q21 = ∆l1l2,
Q22 = Γ5l21 + Γ22l22.

Another approach to obtain a quadratic equation for ρrc2

is by using Eq. (28) into Eq. (27), given as

(ρrc2)2 − [(Γ11 + Γ5)l21 + (Γ22 + Γ6)l22]ρrc2 (41)
+ Γ11Γ5l41 + 2βl21l22 + Γ22Γ6l42 = 0,

where

2β = Γ11Γ22 + Γ5Γ6 − ∆2. (42)

Two positive solutions for ρrc2 are obtained from Eq.
(41) if and only if

Γ11 > 0, Γ22 > 0, Γ5 > 0, Γ6 > 0, (43)

and

β > −(Γ11Γ22Γ5Γ6)1/2, (44)

which are also quoted in a similar manner in [4] for pre-
stressed isotropic material. However, here these condi-
tions imply bounds on the values of the principal stress
components.

4 Reflection from a plane boundary
We consider amaterial body in its finitely deformed config-
uration such that the half-space is x2 < 0 and x2 = 0 is
the boundary. On the boundary, vanishing of incremental
dead load requires the incremental traction components

Ṡ021 = 0 = Ṡ022, where Ṡ0piDk = B0piqjDj,qDk. There-
fore, after using Eq. (24), the boundary equations at x2 = 0
are

Ṡ021 = D1,2 + D2,1 = 0, (45)

Ṡ022 = Γ12D1,1 + Γ22D2,2 = 0. (46)

A homogeneous plane wave is assumed to propagate
in the half-space and analogous to Eq. (28), this wave is of
the form

U = Ase[ik(l·x−ct)]. (47)
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Let the direction of propagation of the incident wave be
l = (l1, l2), the polarization vector s = (s1, s2), θ the angle
of incidence and c the speed of the incident wave. Due to
this incident wave, depending on the material properties
and the deformation, there may exist two (homogeneous)
reflected plane waves or just one reflected plane wave ac-
companied by a surface wave. These possibilities are dis-
cussed in the following sections. Let k denote the wave
number of the incident wave. The first reflected wave trav-
els at the samewave speed as the incidentwave andmakes
the angle θ with the boundary. For the second reflected
wave, k′ and c′ represent the wave number and speed, re-
spectively.

For x2 < 0, the total displacement for two reflected
plane waves is

U = Ase[ik(l·x−ct)] + ARs−e[ik(l
−·x−ct)] (48)

+ AR′s′e[ik
′(l′·x−c′ t)],

where R,R′ are the reflection coefficients associated with
the first and the second reflected wave, respectively. More-
over, let s−, l− be the polarization vector and the direction
of propagation of the first reflected wave and s′, l′ be the
polarization vector and the direction of travel of the sec-
ond reflected wave, respectively. For the compatibility of
these three waves, they should bear the same frequency
and hence kc = k′c′. Also, due to the traction-free bound-
ary conditions, kl1 = k′l′1 and therefore

c′l1 = cl′1, (49)

which is a statement of Snell’s law. Using Eq. (41), it is
found that for the second reflectedwave that either l−22 = l22
or

2βl21 − (Γ22 + Γ6)ρrc2 + Γ22Γ6(l−22 + l22) = 0, (50)

which gives possible values of l−2 in terms of l2. We may
take l−2 = −l2 for the second reflected wave, without loss of
generality.

We may take s− = (s1, −s2), while any difference in
sign can be adjusted withinR. From Eq. (30), we have s2 =
υs1 for the incident wavewithυ given by Eq. (31). Similarly,
we have s′2 = υ′s′1, with υ′ defined analogously to υ, given
by

υ′ = (ρrc2 − Γ11l21 − Γ6l′22 )/∆l1l′2, (51)

for the second reflected wave.
Since the polarization vectors S and m′ are assumed

to be unit vectors, we set

s1 = 1/(1 + υ2)
1
2 , s′1 = 1/(1 + υ′2)

1
2 . (52)

4.1 The reflection coeflcients

With Eq. (48) and the boundary conditions Eq. (45-46), we
get the reflection coefficients R,R′, which leads to

R = l
′
2p′q − l2pq′
l′2p′q + l2pq′

, (53)

R′ = − 2pq
l′2p′q + l2pq′

s1l′2
s′1

, (54)

where p, q, p′, q′ are defined by

p = ∆Γ12l21 + Γ22(ρrc2 − Γ11l21 − Γ6l22), (55)
q = Γ6Γ12l22 + (∆ − Γ12)(ρrc2 − Γ11l21),

p′ = ∆Γ12l21 + Γ22(ρrc2 − Γ11l21 − Γ6l′22 ), (56)
q′ = Γ6Γ12l′22 + (∆ − Γ12)(ρrc2 − Γ11l21),

and s1 l′2
s′1

is given by

s1l′2
s′1

= l2
(∆2l21l′22 + (ρrc2 − Γ11l21 − Γ6l′22 )2)

1
2

(∆2l21l22 + (ρrc2 − Γ11l21 − Γ6l22)2)
1
2
. (57)

Using the connection l2 = l1 tan θ,
Eq. (41) becomes

(Γ11Γ5 + 2β tan2 θ + Γ22Γ6 tan4 θ)l41 (58)
− ρrc2[Γ11 + Γ5 + (Γ22 + Γ6) tan2 θ]l21 + (ρrc2)2 = 0,

which expresses l1 in terms of the angle θ that is the direc-
tion of the wave normal.

Differentiating Eq. (41) with respect to Γ6 l22
ρrc2 and multi-

plying both sides by l22, we obtain

2βl21l22 + (Γ22Γ6(l42 + l22l′22 )) − (Γ22 + Γ6)l22ρrc2 = 0. (59)

Subtracting Eq. (59) from Eq. (41) we find

Γ22Γ6l22l′22 = (Γ11l21 − ρrc2)(Γ5l21 − ρrc2), (60)

which expresses l′2 in terms of θ. Hence, R, R′ can be ex-
pressed as a function of θ explicitly. Considering the con-
nection l′2 = l1 tan θ′ and the notation

υ = tan θ, υ′ = tan θ′, (61)

Equation (58) can be rewritten as

(Γ11Γ5 + 2βυ2 + Γ22Γ6υ4)l41 − ρrc2[Γ11 + Γ5 (62)
+ Γ22 + υ2]l21 + (ρrc2)2 = 0.

Also, with this notation, Eq. (60) becomes

υ2υ′2 = (Γ11l21 − ρrc2)(Γ5l21 − ρrc2)
Γ22Γ6l41

. (63)
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Since {Γ11, Γ5} > 0, for a given value of the angle of inci-
dence, real υ′ values exist given

either ρrc2 ≤ min(Γ11l21, Γ5l21) (64)
or max(Γ11l21, Γ5l21) ≤ ρrc2.

Using l2 = l1 tan θ and l′2 = l1 tan θ′, Eqs. (53-57) be-
come

R = υ
′p′q − υpq′
υ′p′q + υpq′ , (65)

R′ = − 2pq
υ′p′q + υpq′

s1υ′
s′1

, (66)

where

p = ∆Γ12l21 + Γ22(ρrc2 − Γ11l21 − Γ6l21υ2), (67)
q = Γ6Γ12l21υ2 + (∆ − Γ12)(ρrc2 − Γ11l21),

p′ = ∆Γ12l21 + Γ22(ρrc2 − Γ11l21 − Γ6l21υ′2), (68)
q′ = Γ6Γ12l21υ′2 + (∆ − Γ12)(ρrc2 − Γ11l21),

and

s1υ′
s′1

= υ

√︃
∆2l41υ′2 + (ρrc2 − Γ11l21 − Γ6l21υ′2)2
∆2l41υ2 + (ρrc2 − Γ11l21 − Γ6l21υ2)2

. (69)

5 Numerical results and discussion

5.1 Compressible hyperelastic material with
a homogeneous initial stress

We now choose a prototype function F to represent the re-
sponse of a compressible elasticmaterial with initial stress
given by

F = µ2 (I
−2/3
3 I1 + I3 − 3) + (λ +

2
3µ)(I3 − 1)

2 (70)

+ µ2 (I7 − I4)
2 + 1

2(I7 − I4),

where µ, λ are Lame’s parameters and µ is a material con-
stant (with dimensions of (stress)−1). Equation (72) gives
behavior of Neo-Hookean-type solid for Θ = 0. Various
other models are suggested in [24] which satisfy an addi-
tional condition on the form this function. The condition
derived in [24] is plausible, however, this simple strain en-
ergy function is used for brevity and illustration of the ef-
fect of initial stress onwave propagation in a compressible
elastic solid. For convenience, we introduce the notations

F* = F/µ, λ* = λ/µ, Θ*11 = Θ11/µ, (71)

Θ*22 = Θ22/µ, I*7 = I7/µ, I*4 = I4/µ, µ* = µµ.

Using the above notations in (70), the strain energy func-
tion can be rewritten as

F* = 1
2

(︁
I−2/33 I1 + I3 − 3

)︁
+
(︂
λ* + 2

3

)︂
(I3 − 1)2 (72)

+ µ
*

2 (I*7 − I*4)2 +
1
2(I

*
7 − I*4),

where F*i = ∂F*/∂Ii for i = {1, 3} and F*i = ∂F*/∂I*i for
i = {4, 7}.

For the chosen material, in the deformed configura-
tion after using Eqs. (17), (24) and (72) accordingly along-
with the assumption Θij = 0, i ≠ j, we get

Γ11 = aλ41(Θ*1)2 + bλ21Θ*1 + c1, (73)

Γ22 = aλ42(Θ*2)2 + bλ22Θ*2 + c2, (74)

Γ12 = aλ21λ22(Θ*1)(Θ*2) + c3, (75)

Γ1 = Γ2 = Γ3 = Γ4 = 0, (76)

Γ5 = I−2/33 λ21 + bλ21Θ*1, (77)

Γ6 = I−2/33 λ22 + bλ22Θ*2, (78)

∆ = aλ21λ22(Θ*1)(Θ*2) + c3 + I−2/33 λ21 + bλ22Θ*2, (79)

where

a = 4µ*, b = 2µ*(I*7 − I*4) + 1, (80)

c1 = 2(λ* + 2
3)(5I

2
3 − I3) + (

14
9 I1 −

5
3 λ

2
1)I−2/33 + I3, (81)

c2 = 2(λ* + 2
3)(5I

2
3 − I3) + (

14
9 I1 −

5
3 λ

2
2)I−2/33 + I3, (82)

c3 = 8(λ* + 2
3)(2I

2
3 − I3) + 2I3 (83)

+ 4
3(2 − (λ

2
1 + λ22))I−2/33 I1.

In the reference configuration, b = 1, c1 = c2 = 8λ* +
28
3 , c3 = 8λ* + 22

3 , the expressions (73-79) reduce to

Γ11 = 4µ*Θ*21 + Θ*1 + c1, Γ22 = 4µ*Θ*22 + Θ*2 + c2, (84)
Γ12 = 4µ*Θ*1Θ*2 + c3, Γ1 = Γ2 = Γ3 = Γ4 = 0,
Γ5 = 1 + Θ*1, Γ6 = 1 + Θ*2,
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Figure 1: Plot of the reflection coeflcients R and R′ versus angle of incidence θ for λ* = 0.2, µ* = 10 and Θ*1 = 300, Θ*2 = 0.

∆ = 4µ*Θ*1Θ*2 + 8λ* +
25
3 + Θ*2.

In deformed configuration, the strong ellipticity con-
ditions (433,4) require

{Θ*1, Θ*2} >
−I−2/33

2µ*(I*7 − I*4) + 1
, (85)

which gives the lower bound for the values of the principal
initial stress components. Further, we additionally require
from inequalities (431,2)

a(λ21Θ*1)2 + bλ21Θ*1 + c1 > 0, (86)
a(λ22Θ*2)2 + bλ22Θ*2 + c2 > 0,

which hold if

(
√︀
b2 − 4ac1 − 1)/2aλ21 < Θ*1 (87)

< −(
√︀
b2 − 4ac1 + 1)/2aλ21,

(
√︀
b2 − 4ac2 − 1)/2aλ22 < Θ*2 < −(

√︀
b2 − 4ac2 + 1)/2aλ22,

respectively.

5.2 Incident P−wave in the reference
configuration

Considering a special class ofmaterialswhere 2β = Γ11Γ6+
Γ22Γ5, Eq. (41) gives

(Γ5l21 + Γ6l22 − ρc2)(Γ11l21 + Γ22l22 − ρc2) = 0. (88)

For an incident P−wave using Eq. (88), we obtain

Γ11l21 + Γ22l22 = ρc2. (89)

After using Eq. (89) in Eq. (63) we deduce

υ′ = −
√︂
Γ22υ2 + Γ11 − Γ5

Γ6
. (90)

For υ′ > 0, we should have υ2 > Γ5−Γ11
Γ22 .

Hence, in Eqs. (65) and (66), p, q, p′, q′ are accord-
ingly defined as

p = ∆Γ12l21 − Γ22Γ6l21υ2 + Γ222l22, (91)
q = Γ6Γ12l21υ2 + ∆Γ22l22 − Γ12Γ22l22,

p′ = ∆Γ127l21 − Γ22Γ6l21υ′2 + Γ222l22, (92)
q′ = Γ6Γ12l21υ′2 + ∆Γ22l22 − Γ12Γ22l22,

and s1υ′
s′1

is given by

s1υ′
s′1

= υ

√︃
∆2l41υ′2 + (Γ22l22 − Γ6l21υ′2)2
∆2l41υ2 + (Γ22l22 − Γ6l21υ2)2

. (93)

5.3 The reflection coeflcientR′

From Eqs. (45-46) and Eq. (48), we get

[s1l2(1 −R) + s′1l′2R′] + [s2l1(1 −R) + s′2l1R′] = 0, (94)

Γ12[s1l1(1 +R) + s′1l1R′] (95)
+ Γ22[(1 +R)s2l2 + s′2l′2R′] = 0.

We now use the above expressions to look at the con-
ditions for vanishing of the reflection coefficient R′. It is
noted that for θ = 0 or θ = π

2 ,R
′ = 0. Also, from the bound-

ary conditions, it is easy to see that if R′ = 0 then either
R = 1 (see Figure 1) with We now use the above expres-
sions to look at the conditions for vanishing of the reflec-
tion coefficientR′. It is noted that for θ = 0 or θ = π

2 ,R
′ = 0.

Also, from the boundary conditions, it is easy to see that if
R′ = 0 then either R = 1 (see Figure 1) with

Γ12s1l1 + Γ22s2l2 = 0, (96)

or R = −1 (see Figure 2) with

s1l2 + s2l1 = 0. (97)
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Figure 2: Plot of the reflection coeflcients R and R′ for λ* = 80, µ* = 1, Θ*1 = 0.05 = Θ*2.
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Figure 3: R and R′ for λ* = 5, µ* = 50 and Θ*1 = 0.2.
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Figure 4: R and R′ for λ* = 10, µ* = 25 and Θ*1 = 0.2.
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Figure 5: R and R′ for λ* = 1, µ* = 20 and Θ*1 = 10.

In general, these conditions depend on the incidence an-
gle and the principal initial stresses. However, from Eq.
(96) for R = 1, an incident SV wave can exist if material
properties are such that Γ12 = Γ22. It may be noted that
R = 1 happens for larger values and R = −1 for very
small values of initial stress components. For the case of
R = −1 in the case of a pre-stressed material[4], an inci-
dent P−wave is admissible if T22 = 2Γ6 and if the material

properties allow such a wave. However, in this case from
Eq. (97), an incident P−wave is admissible for every such
material where Γ6 ≠ 0.

Figures (3-7) are the graphical representation of Eqs.
(65-66) for various particular values of the material con-
stants and (uniaxial case) non-zero principal stress Θ*1.
The behavior of two reflected waves is shown. A reflected
SV−wave accompanies a reflected P−wave in most of the
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Figure 6: R and R′ for λ = 20, µ* = 80 and Θ*1 = 30.
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Figure 7: R and R′ for λ = 10, µ* = 25 and Θ*1 = 0.

cases. The behavior of wave velocity is similar to that ob-
served in [4] for various particular choices of the parame-
ters and the results are in good accordance with those in
[4] for pre-stressed compressible material.

6 Conclusions
In this paper, using the nonlinear theory of elasticity, for-
mulation is presented for compressible hyperelastic mate-
rials when the material is initially stressed in its reference
configuration. The speed of wave in such a material is af-
fected by the presence of this stress. The components of
the initial stress are incorporated in the components of the
fourth order elasticity tensor instead of introducing sepa-
rate terms as is done in linear elasticity following [5]. It is
assumed that the stored energy function depends on the
invariants of the deformation as well initial stress tensor
components. It is found that the wave speed depends con-
siderably on the principal initial stresses and is required
to satisfy the strong ellipticity conditions.

In particular, a study is presented to understand the
effect of a homogeneous initial stress on the reflection of
an incident P−wave. A prototype (so-called) stored energy
function for a compressible material is used to elaborate
the theoretical results and graphs are presented to observe
the effect of initial stress on the reflection of a P− wave. It
is found that a reflected SV exists in most cases of choices

of parameters. However, the amplitude of this wave may
vanish in certain cases which depend on the angle of inci-
dence θ. Other conditions depend on the material param-
eters as discussed in Section 5.3.
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