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Abstract: The solution of nonlinear mathematical models
has much importance and in soliton theory its worth has
increased. In the present article, we have investigated the
Caudrey-Dodd-Gibbon and Pochhammer-Chree equations,
to discuss the physics of these equations and to attain
soliton solutions. The exp(−ϕ(ζ ))-expansion technique is
used to construct solitary wave solutions. A wave trans-
formation is applied to convert the problem into the form
of an ordinary differential equation. The drawn-out novel
type outcomes play an essential role in the transportation
of energy. It is noted that in the study, the approach is ex-
tremely reliable and it may be extended to further math-
ematical models signified mostly in nonlinear differential
equations.
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1 Introduction
Recently solitary wave theory got some great improve-
ments. Soliton wave occurrence interested a number of re-
searchers for its comprehensive applications in engineer-
ing, and mathematical physics. First, J S Russell (by pro-
fession an engineer) contemplated the solitary wave in
1834. In the formof differential equations, various physical
occurrences in nature are modeled. Scientists have made
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great efforts to determine the solution of such differential
equations. Different approaches have been used to deter-
mine soliton solutions. Modeling of various physical, bio-
chemical and biological occurrences are in forms of non-
linear PDEs. The goal is to obtain exact soliton solutions
for mathematically modelled differential equations. Differ-
ent mathematical techniques have been developed. For
the observation of physical activities of the problem, exact
solutions are vital.Wehavemore applications and the abil-
ity to examine the number of properties of the mathemati-
cal model by utilizing the exact solution.

Nonlinear equations play a very vital part in a variety
of engineering and scientific arenas, such as, heat flow,
quantum mechanics, solid state physics, chemical kine-
matics, fluid mechanics, optical fibers, plasma physics,
the wave proliferation phenomena and proliferation of
shallow water waves.

Therefore, different techniques for finding exact so-
lutions are used for a diversified field of partial differ-
ential equations for example, the homogeneous balance
technique [15, 25], Hirota’s bilinear approach [7, 8], the
auxiliary equivalence technique [14], the trial task tech-
nique [9], the jacobi elliptic task system [5], the tanh-
function technique [2], method of sine- cosine [17], the
truncated Painleve expansion technique [18], the varia-
tional iteration method (VIM) [1], the exp-function tech-
nique [3, 6], the (G′/G)-expansion approach [4, 13, 16, 23,
24, 26], and the exact soliton solution [10, 11, 27]. Several
theoretical and experimental research for solitons is de-
scribed in, [28–32]. For the exact solution some novel re-
sults and computational methods involving the travelling-
wave transformation are described in, [12, 19–22]. In recent
years, soliton theory has attracted the attention of scien-
tists from different areas of research as [33–43].

In this paper, our basic aim is to discuss the physics
of the nonlinear Caudrey-Dodd-Gibbon and Pochhammer-
Chree equations, and also to obtain soliton like solutions
of these equations through an established method that
is notable in literature as the exp(−ϕ(ζ ))-expansion tech-
nique. From the technique, the solution procedure is quite
simple and all types of nonlinear evolution equations are
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easily expanded. This technique simply emphasises that
to obtain the solution of the PDE that is indicated in the
kind of polynomial in exp(−ϕ(ζ )), ϕ(ζ ) must satisfies the
ODE:

ϕ′ (ζ ) = exp (−ϕ (ζ )) + µ exp (ϕ (ζ )) + λ. (1)

We know ζ = x + y + z − ωt.
By the homogenous principle, the degree of the poly-

nomial is obtained. We obtain a set of algebraic equations
by balancing the highest order derivative with nonlinear
terms.

The article is divided in to various segments. First,
we study the analysis of the method. Then we discuss
the physics of nonlinear equations for the application of
the exp(−ϕ(ζ ))-expansion method. We conclude by dis-
cussing the results.

2 Exp(−ϕ(ζ ))-expansion
Technique

In general, a nonlinear partial differential equation
(NPDE) can be written as:

P
(︁
η, ηx , ηy , ηz , ηxx , ηxy , ηxz , . . .

)︁
= 0. (2)

Where η (x, y, z, t) is unknown, P is the polynomial in
η(x, y, z, t) and different derivatives of η(x, y, z, t) in-
volving nonlinear terms and the highest order differential.
Using the exp(−ϕ(ζ ))-expansionmethod,we follow the de-
tailed steps given below:

Step 1: Invoking a wave transformation:

ζ = x + y + z − ωt. (3)

Hereω represents wave speed. Applying thewave transfor-
mation into equation (2) we get an ODE:

Q(η, η′, η′′, η′′′, . . .) = 0. (4)

In equation (4) the prime denotes the derivative w.r.t ζ . If
it is needed, integrate equation (4) and set the constant of
integration equal to zero.

Step 2: The solution of equation (4) is expressed in the
form of a polynomial in exp(−ϕ(ζ )) as:

η(ζ ) = an(exp(−ϕ(ζ )))n + an−1(exp(−ϕ(ζ )))n−1 + · · · , (5)

In equation (5) an , an−1, . . . are arbitrary constants which
are to be evaluated such that an ≠ 0. Also ϕ(ζ ) satisfies
equation (1).

Step 3: Calculate the value of n by using the homoge-
neous balance principle. There are five cases and in all
these cases c1 is a constant of integration.

Case 1: For λ2 − 4µ > 0 and µ ≠ 0,

ϕ(ζ ) = (6)

ln
{︃

1
2µ

(︃
−
√︀
λ2 − 4µ tanh

(︃√︀
λ2 − 4µ
2 (ζ + c1)

)︃
− λ
)︃}︃

.

Case 2: For λ2 − 4µ < 0 and µ ≠ 0,

ϕ(ζ ) = (7)

ln
{︃

1
2µ

(︃
−λ +

√︀
4µ − λ2

(︃√︀
4µ − λ2
2 (ζ + c1)

)︃)︃}︃
.

Case 3: For λ ≠ 0 and µ = 0,

ϕ(ζ ) = − ln
{︂

λ
(exp(λ(ζ + c1)) − 1)

}︂
. (8)

Case 4: For λ2 − 4µ = 0 and µ ≠ 0, λ ≠ 0,

ϕ(ζ ) = ln
{︂
2(λ(ζ + c1)) + 2
λ2(ζ + c1)

}︂
. (9)

Case 5: For λ = 0 and µ = 0,

ϕ (ζ ) = ln (ζ + c1) . (10)

Step 4: Insert the polynomial given in equation (5) into
equation (4) and then use equation (1). The left hand side
of the nonlinearODE is converted into the formof a polyno-
mial in exp−(−ϕ(ζ )). We set each coefficient of the polyno-
mial equal to zero, which results in a set of algebraic equa-
tions for an , . . . , ω, λ and µ.

Step 5: With the help of symbolic computation software
like Maple 18, the values of the constants an , . . . , ω, λ, µ
are computed. Substituting the computed values into
equation (5), results in the soliton wave solutions.

3 Solution Procedure
This section is divided into two sub sections. Both Caudrey-
Dodd-Gibbon and Pochhammer-Chree equations are stud-
ied physically, then the exp(−ϕ(ζ ))-expansion technique
is applied to obtain solitary wave solutions of these non-
linear differential equations.



Solitary Wave Solution of Nonlinear PDEs Arising in Mathematical Physics | 383

3.1 Caudrey-Dodd-Gibbon Equation

The physics of the nonlinear Caudrey-Dodd-Gibbon (CDG)
equation is discussed in this section. Solitary wave solu-
tions are also constructed via the exp(−ϕ(ζ ))-expansion
method.

The general form of the fifth order Korteweg–de Vries
equation is written as:

ηt + αηxxxxx + σηηxxx + 𝛾ηxηxx + δη
2ηx = 0. (11)

In equation (11) α, σ, 𝛾 and δ are arbitrary real parameters.
By setting α = 1, σ = β, 𝛾 = β and δ = 1

5β
2 we obtain,

ηt +
1
5β

2η2ηx + βηxηxx + βηηxxx + ηxxxxx = 0. (12)

Which is known as the CDG equation. This equation de-
scribes the evolution of quasi one dimensional shallow
water waves when it affects the surface tension; and the
viscosity is negligible. Shallow water waves are produced
when the depth of water is less than one half of the wave-
length of the wave. Their speed is independent of their
wavelength too. It depends, however, on the depth of the
water. Shallow water waves show no dispersion.

Introducing a transformation as

ζ = x + y + z − ωt. (13)

− ωη′ + 1
5β

2η2η′ + βη′η′′ + βηη′′′ + η(v) = 0.

On integrating we have,

A − ωη + 1
15β

2η3 + βηη′′ + η(iv) = 0. (14)

Here A is the constant of integration and prime symbolizes
the derivative w.r.t.ζ . To determine the value of n, we bal-
ance the highest order linear term with the highest order
non-linear term of equation (14). We obtain n = 2. So equa-
tion (5) reduces to:

η(ζ ) = a0 + a1e−ϕ(ζ ) +
(︁
e−ϕ(ζ )

)︁2
. (15)

Here a0 and a1, a2 are the constants which are to be calcu-
lated.

Bymaking use of (15) into (14), we transformed the left
hand side into a polynomial in e−ϕ(ζ ). We set each coeffi-
cient of this polynomial equal to zero, andobtain a set of al-
gebraic equations for a0, a1, a2, λ, µ, A and ω as follows:

− ωa1 +
1
5β

2a2a1 + 22a1µλ2 + 120a2µ2λ + 30a2λ3µ

+ 6βa0a2µλ + βa0a1λ2 + 2βaa1µ + 2βa1a2µ2 + βa21µλ
+ 16a1µ2 + a1λ4 = 0.
1
5β

2a02a2 +
1
5β

2a12a0 + 2βa12µ + 60a1µλ + 232a2λ2µ

+ 2βa22µ2 + βa21λ2 + 7βa1a2µλ + 8βa0a2µ + 3βa0a1λ
+ 4βa0a2λ2 + 136a2µ2 + 16a2λ4 − ωa2 + 15a1λ3 = 0.

440a2µλ + 2βa0a1 + 3βa21λ +
2
5β

2a0a1a2 + 10βa1a2µ

+ 6βa22µλ + 10βa0a2λ + 5βa1a2λ2 +
1
15β

2a31 + 40a1µ

+ 130a2λ3 + 50a1λ2 = 0.
1
5β

2a0a22 +
1
5β

2a21a2 + 8βa22µ + 6βa0a2 + 4βa22λ2

+ 13βa1a2λ + 240a2µ + 330a2λ2 + 2βa21 + 60a1λ = 0.
1
5β

2a1a22 + 8βa1a2 + 10βa22λ + 336a2λ + 24a1 = 0.

6βa22 +
1
15β

2a32 + 120a2 = 0.

A − ωa0 +
1
15β

2a30 + a1µλ3 + 8a1µ2λ + 14a2µ2λ2

+ 16a2µ3 + βa0a1µλ + 2βa0a2µ2 = 0.

With thehelp of symbolic computation software likeMaple
18, the algebraic equations are solved. Finally, we obtain
the following two solution sets:

1st Solution Set:

Consider the solution set of the form

ω = 1
5β

2a20 + βa0λ2 + 22µλ2 + 76µ2 + λ4 + 8βa0µ,

a0 = a0, a1 = −
30λ
β , a2 = −

30
β ,

A = 1
15β

⎛⎜⎜⎜⎝
2β3a30 + 15β

2a20λ
2

+780a0λ2µβ + 2040a0µ2β
+15βa0λ4 + 120β2a20µ

+450µλ4 + 9900µ2λ2 + 7200µ3

⎞⎟⎟⎟⎠ .

By inserting the above values into equation (15), we obtain:

η = −−βa0 + 30e
−ϕ(ζ )λ + 30e−2ϕ(ζ )
β . (16)

Where ζ = x + y + z − ωt.
Inserting the solutions of equation (1) into equa-

tion (16), we obtain five cases of soliton wave solutions for
the CDG equation.

Case 6: When λ2 − 4µ > 0 and µ ≠ 0, we obtain solution,

η11 (17)

= 1
β

(︃
βa0 −

(60µλ)
−
√︀
λ2 − 4µtanh

(︁
1
2
√︀
λ2 − 4µ (ζ + c1)

)︁
− λ

−
(︀
120µ2

)︀(︁
−
√︀
λ2 − 4µtanh

(︁
1
2
√︀
λ2 − 4µ (ζ + c1)

)︁
− λ
)︁2
)︃
.
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Case 7: When λ2 − 4µ < 0 and µ ≠ 0, then we have,

η12 (18)

= 1
β

(︃
βa0 −

(60µλ)√︀
−λ2 + 4µtan

(︁
1
2
√︀
−λ2 + 4µ (ζ + c1)

)︁
− λ

−
(︀
120µ2

)︀(︁√︀
−λ2 + 4µtanh

(︁
1
2
√︀
−λ2 + 4µ (ζ + c1)

)︁
− λ
)︁2
)︃
.

Case 8: When µ = 0 and λ ≠ 0, we obtain,

η13 =
1
β

(︃
βa0 −

30λ2
exp (λ (ζ + c1)) − 1

(19)

− 30λ2

(exp (λ (ζ + c1)) − 1)2

)︃
.

Case 9: When λ2 − 4µ = 0, µ = 0 and λ ≠ 0,

η14 = −
1
β

(︃
−βa0 +

30λ3 (ζ + c1)
−4 + (−2ζ − 2c1) λ

(20)

+ 30λ4 (ζ + c1)2

(−4 + (−2ζ − 2c1) λ)2

)︃
.

Case 10: When µ = 0 and λ = 0, we obtain,

η15 =
1
β

(︁
βa0 − 30e−2 ln(ζ+c1)

)︁
. (21)

Where ζ = x −
(︁
1
5β

2a20 + βa0λ
2 + 22µλ2 + 76µ2 + λ4

+8βa0µ
)︁
t.

2nd Solution Set:

Consider the solution set of the form:

ω = λ4 − 9µλ2 + 16µ2, a0 =
5(λ2 + 8µ)

β , (22)

a1 = −
60λ
β , a2 = −

60
β ,

A = −103β

(︁
−λ6 − 48µ2λ2 + 64µ3 + 12µλ4µ

)︁
.

Substituting values from equation (22) into equation (15),
we obtain

η = −
5
(︁
λ2 + 8µ + 12e−φ(ζ )λ + 12e−2φ(ζ )

)︁
β . (23)

Where ζ = x + y + z − ωt.
Inserting the solutions of equation (1) into equa-

tion (23), we get five cases of soliton wave solutions for the
Caudrey-Dodd-Gibbon equation:

Case 11: When λ2 − 4µ > 0 and µ ≠ 0, we obtain the solu-
tion,

η21 =
1
β

(︃
−5λ2 − 40µ (24)

− (120µλ)
−
√︀
λ2 − 4µtanh

(︁
1
2
√︀
λ2 − 4µ (ζ + c1)

)︁
− λ

−
(︀
240µ2

)︀(︁
−
√︀
λ2 − 4µtanh

(︁
1
2
√︀
λ2 − 4µ (ζ + c1)

)︁
λ
)︁2
⎞⎟⎠ .

Case 12: When λ2 − 4µ < 0 and µ ≠ 0, we obtain the solu-
tion,

η22 =
1
β

(︃
−5λ2 − 40µ (25)

− (120µλ)√︀
−λ2 + 4µtan

(︁
1
2
√︀
−λ2 + 4µ (ζ + c1)

)︁
− λ

−
(︀
240µ2

)︀(︁√︀
−λ2 + 4µtanh

(︁
1
2
√︀
−λ2 + 4µ (ζ + c1)

)︁
− λ
)︁2
⎞⎟⎠ .

Case 13: When µ = 0 and λ ≠ 0, we obtain the solution,

η23 =
1
β

(︃
−5λ2 − 60λ2

exp (λ (ζ + c1)) − 1
(26)

− 60λ2

(exp (λ (ζ + c1)) − 1)2

)︃
.

Case 14: When λ2 − 4µ = 0, µ = 0 and λ ≠ 0, we have the
solution,

η24 = −
1
β

(︃
5
(︃
λ2 + 8µ + 12λ3(ζ + c1)

−4 + (−2ζ − 2c1) λ
(27)

+ 12λ4 (ζ + c1)2

(−4 + (−2ζ − 2c1) λ)2

)︃)︃
.

Case 15: When µ = 0 and λ = 0, we obtain the solution,

η25 = −
60

β(ζ + c1)2
(28)

Here ζ = x −
(︀
λ4 − 8µλ2 + 16µ2

)︀
t.

3.2 Pochhammer-Chree Equation

In this section, the physics of the nonlinear Pochhammer-
Chree equation is studied and then soliton wave solutions
are obtained.
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The generalized Pochhammer-Chree equation is given
by,

ηtt − ηttxx −
(︁
aη − bηn+1 − 𝛾η2n+1

)︁
xx
= 0.

Taking n = 2, we have,

ηtt − ηttxx −
(︁
aη − bη3 − 𝛾η5

)︁
xx
= 0.

Where a, b and 𝛾 are arbitrary non-zero constants, while
the exponent n (> 1) is the power law nonlinearity param-
eter. This equation represents a nonlinear model of lon-
gitudinal wave propagation of elastic rods. Longitudinal
waves are waves in which the displacement of themedium
is in the same direction as, or in the opposite direction
to, the direction of propagation of the wave. Longitudinal
waves include sound waves and particle velocity propa-
gated in an elastic medium.

Considering 𝛾 = 0, the above equation becomes,

ηtt − ηttxx −
(︁
aη − bη3

)︁
xx
= 0. (29)

Introducing the transformation ζ = x+ y+ z−ωt, equation
(29) can be converted to an ordinary differential equation.

ω2η′′ − ω2η′′′′ − aη′′ + 6bη(η′)2 + 3bη2η′′ = 0

Integrating twice, we have,

A + Bξ + ω2η − aη + bη3 − ω2η′′ = 0 (30)

Here A and B are the constants of integration and prime
symbolizes the derivative w.r.t.ζ . Now for the value of n,
we balance the highest order linear term with the highest
order non-linear term of equation (30).We obtain n = 1. So
equation (5) reduces to,

η(ζ ) = a0a1e−φ(ζ ). (31)

Here a0 and a1 are the constants which are to be calcu-
lated.

By substituting equation (31) into equation (30), we
transform the left hand side into a polynomial in e−ϕ(ζ ).We
set each coefficient of this polynomial equal to zero, and
obtain a set of algebraic equations for a0, a1, a2, λ, µ, A, B
and ω as follows:

a1ω2 − aa1 + 3ba20a1 − 2a1ω2µ − a1ω2λ2 = 0.
3ba21α0 − 3a1ω2λ = 0.
ba31 − 2a1ω2 = 0.
A + Bζ + a0ω2 − aa0 + ba30 − a1ω2µλ = 0.

After solving these algebraic equations with the help of
computer software like Maple 18, we obtain the solution
set:

ω = −
√︀
−(−4 − 2λ2 + 8µ)a
−2 − λ2 + 4µ , A = −Bζ , B = B, (32)

a0 = −
aλ√︀

−b(−2 − λ2 + 4µ)
, a1 =

2
√︀
−b(−2 − λ2 + 4µ)a
b(−2 − λ2 + 4µ)

By substituting equation (32) into equation (31), we obtain,

η = −

(︁
λ + 2e−φ(ζ )

)︁
a√︀

−b(−2 − λ2 + 4µ)a
. (33)

Where ζ = x + y + z − ωt.
Inserting the solutions of equation (1) into equa-

tion (33), we get five cases of travelling wave solutions for
the PC equation (29).

Case 16: When λ2 − 4µ > 0 and µ ≠ 0, we obtain the soli-
ton wave solution,

η1 = −
1√︀

−b(−2 − λ2 + 4µ)a

(︃(︃
λ (34)

+ 4µ
−
√︀
λ2 − 4µtanh

(︁
1
2
√︀
λ2 − 4µ (ζ + c1)

)︁
− λ

)︃
a
)︃
.

Case 17: When λ2 − 4µ < 0 and µ ≠ 0, we obtain,

η2 = −
1√︀

−b(−2 − λ2 + 4µ)a

(︃(︃
λ (35)

+ 4µ√︀
λ2 − 4µtan

(︁
1
2
√︀
−λ2 + 4µ (ζ + c1)

)︁
− λ

)︃
a
)︃
.

Case 18: When µ = 0 and λ ≠ 0, we obtain,

η3 = −
a√︀

b(2 + λ2)a

(︃
λ + 2λ

exp
(︀
λ(ζ + c1)

)︀
− 1

)︃
. (36)

Case 19: When λ2 − 4µ = 0, µ = 0 and λ ≠ 0, we obtain,

η4 = −
2λa√︀

−b(−2 − λ2 + 4µ)a (λ (ζ + c1)) + 2
. (37)

Case 20: When µ = 0 and λ = 0, we obtain the travelling
wave solution,

η5 = −
a
√
2

(ζ + c1)
√
ba

. (38)

Here ζ = x +
√
−(−4−2λ2+8µ)a
−2−λ2+4µ t.

4 Results and Discussion
The construction of soliton waves by solving nonlinear
Caudrey-Dodd-Gibbon (CDG) andPochhammer-Chree (PC)
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Figure 1: 3D plot for λ = 0.2, µ = 1, c1 = 2, a0 = 1, −30 ≤ x ≤
30, 0 ≤ t ≤ 5.

Figure 2: 3D plot for λ = 0.2, µ = 1, c1 = 2, a0 = 1, −30 ≤ x ≤
30, 0 ≤ t ≤ 5.

equations have been examined via an analytical tech-
nique, the exp(−ϕ(ζ ))-expansionmethod. Thefindings are
summarised and discussed in this section.

Solitary waves arise due to an indirect balance of
nonlinear effects with dispersive effects. From the above
graphs, we are able to judge that a soliton is a wave which
preserves its shape after it strikes another wave of a simi-
lar kind. The waves produced by linear description tend to
experience dispersion and create a localized disturbance
in the spreading. The solitary waves can intuitively be an-
ticipated to be the outcome of two effects of steepening
and spreadingwith amarginally nonlinear amplitude. The
waves of various type of wave-number, being generated
without changing their actual shapes. Thewave speed and

Figure 3: 3D plot for λ = 1, µ = −1, c1 = 0.1, a0 = 2, −30 ≤ x ≤
30, 0 ≤ t ≤ 4.

Figure 4: 3D plot for λ = 1, µ = −1, c1 = 0.1, a0 = 2, −30 ≤ x ≤
30, 0 ≤ t ≤ 4.

amplitude depends upon the process of dispersion. We
have observed that somemedia undergo strong dispersion
and generate high amplitude waves while weak dispersive
media generate waves of small amplitude.

We obtained the desired solution through rational
functions. The hyperbolic and trigonometric function trav-
elling wave solutions of the nonlinear Caudrey-Dodd-
Gibbon equation are shown in Figure 1 and Figure 2 respec-
tively for different values of physical parameters. Figure 3
and Figure 4 show soliton solutions for various physical
parameters through exponential and rational functions.
Figure 5 shows rational function solution for different val-
ues of λ, µ and c1. In these graphical results, β = 30. By
changing the values of physical and additional free param-
eters, the velocity and amplitude of solitary waves are con-
trolled. It is observed that the displacement potential η be-
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Figure 5: 3D plot for λ = −1, µ = 2, c1 = 1, −30 ≤ x ≤ 30, 0 ≤ t ≤ 5.

Figure 6: 3D plot for λ = −1, µ = 2, c1 = 0.1, a = 3, b = 1, −30 ≤
x ≤ 30, 0 ≤ t ≤ 5.

comes sharp at leading and trailing edges. The amplitude
is proportional to the velocity of propagation and taller
solitary waves are thinner and move faster.

Figure 6 and 7 shows hyperbolic and trigonometric
function travelling wave solutions of the Pochhammer-
Chree equation respectively by setting suitable values of
physical parameterswhich control the solitarywave ampli-
tude. Figure 8 and Figure 9 show the exponential and ra-
tional function solutions respectively. Figure 10 shows the
rational function solution for different values of a, c1 and
b. The solitary wave moves towards right if the velocity is
positive and towards the left if the velocity is negative. The
amplitudes and velocities are controlled by various physi-
cal parameters. Solitary waves showmore complicated be-
haviours which are controlled by various physical and ad-
ditional free parameters. Figures indicate graphical solu-

Figure 7: 3D plot for λ = −1, µ = 2, c1 = 0.1, a = 3, b = 1, −30 ≤
x ≤ 30, 0 ≤ t ≤ 5.

Figure 8: 3D plot for λ = 1, µ = 2, a = 0.1, c1 = 1, b = 3, −30 ≤ x ≤
30, 0 ≤ t ≤ 4.

Figure 9: 3D plot for λ = 1, µ = 2, a = 0.1, c1 = 1, b = 3, −30 ≤ x ≤
30, 0 ≤ t ≤ 4.
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Figure 10: 3D plot for a = 0.1, b = 1, c1 = 2, −30 ≤ x ≤ 30, 0 ≤ t ≤
4.

tions for altered values of physical parameters. Arbitrary
functions can be affected by the solitary wave solution. It
is concluded that various constraints can be selected as an
input to our simulation. Solitary waves for various values
of physical and additional free parameters are highlighted
by the figures. From the above discussed graphical cases it
has been observed that the solution of soliton waves does
not rely completely upon the additional free parameters.
The soliton waves of different types are clearly described
by the graphical outcomes.

5 Conclusion
In this paper, the main focus was to find, test and ana-
lyze the new travellingwave solutions andphysical proper-
ties of nonlinear Caudrey-Dodd-Gibbon and Pochhammer-
Chree equations by applying a reliable mathematical tech-
nique. It is noted that these nonlinear differential equa-
tions exhibits soliton type solutions. The applied algo-
rithm is helpful to verify the results that are acquired by
the exact solution. The obtained results from this method
reveals that for solving nonlinear differential equations, it
work as a powerful method. CDG and PC equations have a
very important part in the theory of solitary waves as they
open up a variety of aspects of the solitary wave solution.
To get a grip on these equations we use an established ex-
pansion technique as a tool. Themethod has been applied
directly without the need for linearization, discretization,
or perturbation. The obtained results demonstrate the re-
liability of the algorithm and give it a wider applicability
to nonlinear differential equations. Using the Maple soft-

ware permits us to determine more solution sets, with less
computational work and less computer memory.
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