

Research Article

Bo Xu and Sheng Zhang*

Integrability, exact solutions and nonlinear dynamics of a nonisospectral integral-differential system

<https://doi.org/10.1515/phys-2019-0031>

Received Apr 24, 2018; accepted May 09, 2019

Abstract: The investigations of integrability, exact solutions and dynamics of nonlinear partial differential equations (PDEs) are vital issues in nonlinear mathematical physics. In this paper, we derive and solve a new Lax integrable nonisospectral integral-differential system. To be specific, we first generalize an eigenvalue problem and its adjoint equation by equipping it with a new time-varying spectral parameter. Based on the generalized eigenvalue problem and the adjoint equation, we then derive a new Lax integrable nonisospectral integral-differential system. Furthermore, we obtain exact solutions and their reduced forms of the derived system by extending the famous nonlinear Fourier analysis method–inverse scattering transform (IST). Finally, with graphical assistance we simulate a pair of reduced solutions, the dynamical evolutions of which show that the amplitudes of solutions vary with time.

Keywords: Integral-differential system; Integrability; Exact solution; Dynamical evolution; IST

PACS: 05.45.Yv; 02.30.Ik; 05.45.-a

1 Introduction

Nonlinear PDEs are important mathematical models describing some nonlinear natural phenomena like those in physics, biology, chemistry and mechanics. In the field of nonlinear science, the investigation of integrability, exact solutions and dynamics of nonlinear PDEs has attracted much attention [1–15]. There is no uniform definition for

the integrability of PDEs. Usually, it is necessary to indicate the type of integrability [16]. In soliton theory, the nonlinear PDEs are classified two types: the isospectral equations and the nonisospectral equations. Generally speaking, the spectral parameters of the eigenvalue problems associated with isospectral equations are time-independent. Otherwise when the spectral parameters are dependent of time, the associated equations are nonisospectral.

The purpose of this article is to study the integrability, exact solutions and nonlinear dynamics of the following new nonisospectral integral-differential system:

$$\begin{pmatrix} q \\ r \end{pmatrix}_t = \begin{pmatrix} -q_{xx} + 2q^2r + 3q_{xx} + xq_{xxx} - 2q_x\delta^{-1}(qr) \\ -4xqrr_x - 2xq^2r_x - 8q\delta^{-1}(qr) \\ -2xqrr_{xx} + 2xq^2r_{xx} - 2q_x - xq_{xx} \\ +2q\delta^{-1}(qr) + 2xq^2r + q + xq_x - xq \\ r_{xx} - 2qr^2 + 3r_{xx} + xr_{xxx} - 2r_x\delta^{-1}(qr) \\ -4xqrr_x - 2xr^2q_x - 8q\delta^{-1}(qr) \\ -2xqrr_{xx} + 2xr^2q_{xx} + 2r_x + xr_{xx} \\ -2r\delta^{-1}(qr) - 2xqr^2 + r + xr_x + xr \end{pmatrix} \quad (1)$$

In Section 2, we derive the integral-differential system (1) and prove its Lax integrability. In Section 3, we construct exact solutions and their reduced forms of system (1) by equipping the IST method [17–19] with a new time-varying spectral parameter. In Section 4, a pair of reduced solutions are simulated to offer an insight into the dynamical evolutions of solutions.

2 Derivation and Lax Integrability

To derive system (1), firstly we equip the eigenvalue problem [20]:

$$\phi_x = M\phi, \quad M = \begin{pmatrix} -ik & q \\ r & ik \end{pmatrix}, \quad \phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \quad (2)$$

and its adjoint equation

$$\phi_t = N\phi, \quad N = \begin{pmatrix} A & B \\ C & -A \end{pmatrix}, \quad (3)$$

*Corresponding Author: Sheng Zhang: School of Mathematics and Physics, Bohai University, Jinzhou 121013, PR China; Email: szhangchina@126.com

Bo Xu: School of Education and Sports, Bohai University, Jinzhou 121013, PR China

with a new spectral parameter k satisfying

$$ik_t = \frac{1}{2} \left[\sum_{n=0}^3 (2ik)^n \right]. \quad (4)$$

In Eqs. (2) and (3), the potential functions $q = q(x, t) \rightarrow 0$, $r = r(x, t) \rightarrow 0$ as $x \rightarrow \pm\infty$, all the derivatives of q and r have the same asymptotic properties, and $A = A(x, t, k, q, r)$, $B = B(x, t, k, q, r)$ and $C = C(x, t, k, q, r)$ are functions of the indicated variables to be determined later.

Secondly, using the compatibility condition of Eqs. (2) and (3) we have

$$A_x = qC - rB - ik_t, \quad (5)$$

$$q_t = B_x + 2ikB + 2qA, \quad (6)$$

$$r_t = C_x - 2ikC - 2rA. \quad (7)$$

In view of Eqs. (4) and (5), we suppose that

$$A = \partial^{-1}(r, q) \begin{pmatrix} -B \\ C \end{pmatrix} - \frac{1}{2}(2ik)^2 - \frac{1}{2} \left[\sum_{n=0}^3 (2ik)^n \right] x. \quad (8)$$

Then Eqs. (5)-(7) can be simplified as

$$\begin{pmatrix} q \\ r \end{pmatrix}_t = L \begin{pmatrix} -B \\ C \end{pmatrix} - 2ik \begin{pmatrix} -B \\ C \end{pmatrix} + (2ik)^2 \begin{pmatrix} -q \\ r \end{pmatrix} + \sum_{m=0}^3 (2ik)^m \begin{pmatrix} -xq \\ xr \end{pmatrix}, \quad (9)$$

by the usage of the operator

$$L = \begin{pmatrix} -\partial & 0 \\ 0 & \partial \end{pmatrix} + 2 \begin{pmatrix} q \\ -r \end{pmatrix} \partial^{-1}(r, q), \quad \partial = \frac{\partial}{\partial x}, \quad (10)$$

$$\partial^{-1} = \frac{1}{2} \left(\int_{-\infty}^x - \int_x^{+\infty} \right) dx.$$

Thirdly, we let

$$\begin{pmatrix} -B \\ C \end{pmatrix} = \sum_{m=1}^3 \begin{pmatrix} -b_m \\ c_m \end{pmatrix} (2ik)^{3-m}, \quad (11)$$

then the coefficients of $2ik$ in Eq. (9) give

$$(2ik)^0 : \quad \begin{pmatrix} q \\ r \end{pmatrix}_t = L \begin{pmatrix} -b_3 \\ c_3 \end{pmatrix} + \begin{pmatrix} -xq \\ xr \end{pmatrix}, \quad (12)$$

$$(2ik)^1 : \quad \begin{pmatrix} -b_3 \\ c_3 \end{pmatrix} = L \begin{pmatrix} -b_2 \\ c_2 \end{pmatrix} + \begin{pmatrix} -xq \\ xr \end{pmatrix}, \quad (13)$$

$$(2ik)^2 : \quad \begin{pmatrix} -b_2 \\ c_2 \end{pmatrix} = L \begin{pmatrix} -b_1 \\ c_1 \end{pmatrix} + \begin{pmatrix} -q \\ r \end{pmatrix} + \begin{pmatrix} -xq \\ xr \end{pmatrix}, \quad (14)$$

$$(2ik)^3 : \quad \begin{pmatrix} -b_1 \\ c_1 \end{pmatrix} = \begin{pmatrix} -xq \\ xr \end{pmatrix}. \quad (15)$$

Finally, substituting Eqs. (13)-(15) into Eq. (12) yields system (1). This shows that system (1) is Lax integrable.

3 Exact solutions and their reductions

This section has three aspects: the first aspect is to determine the scattering data for the generalized eigenvalue problem (2); the second aspect is to construct exact solutions of system (1); and the last aspect is to reduce the obtained exact solutions.

3.1 Scattering data

Theorem 1. *The generalized eigenvalue problem (2) has the following scattering data:*

$$\kappa_{jt}(t) = -\frac{i}{2} \sum_{n=0}^3 [2i\kappa_j(t)]^n \quad (16)$$

$$c_j^2(t) = c_j^2(0) e^{\int_0^t \left[\sum_{s=1}^3 s(2i\kappa_j(w))^{s-1} - 4\kappa_j^2(w) \right] dw},$$

$$R(t, k) = R(0, k) e^{-4 \int_0^t k^2(\tau) d\tau}$$

$$\bar{\kappa}_{mt}(t) = -\frac{i}{2} \sum_{n=0}^3 [2i\bar{\kappa}_m(t)]^n \quad (17)$$

$$\bar{c}_m^2(t) = \bar{c}_m^2(0) e^{-\int_0^t \left[\sum_{s=1}^3 s(2i\bar{\kappa}_m(w))^{s-1} - 4\bar{\kappa}_m^2(w) \right] dw},$$

$$\bar{R}(t, k) = \bar{R}(0, k) e^{4 \int_0^t \bar{k}^2(\tau) d\tau}$$

for $j = 1, 2, \dots, n$ and $m = 1, 2, \dots, \bar{n}$, here $c_j(0)$, $\bar{c}_m(0)$, $R(0, k)$ and $\bar{R}(0, k)$ are the scattering data of the generalized eigenvalue problem (2) in the case of $q(0, x)$ and $r(0, x)$.

Proof. When $\phi(x, k)$ satisfies Eq. (2), $\phi_t(x, k) - N\phi(x, k)$ also satisfies Eq. (2), then one has

$$\phi_t(x, k) - N\phi(x, k) = \rho(t, k)\phi(x, k) + \theta(t, k)\tilde{\phi}(x, k). \quad (18)$$

where $\phi(x, k)$ and $\tilde{\phi}(x, k)$ are a pair of fundamental solutions of Eq. (2), $\rho(t, k)$ and $\theta(t, k)$ are undetermined coefficient functions.

Firstly, we begin with the spectral parameter $k = \kappa_j(t)$ ($\text{Im}\kappa_j > 0$) of the discrete case. Then we must have $\theta(t, k) = 0$ because $\phi(x, \kappa_j(t))$ and $\tilde{\phi}(x, k)$ have opposite exponentially asymptotic properties as $x \rightarrow +\infty$. Thus Eq. (18) becomes

$$\phi_t(x, \kappa_j(t)) - N\phi(x, \kappa_j(t)) = \rho(t, \kappa_j(t))\phi(x, \kappa_j(t)), \quad (19)$$

which can be further written as [6]

$$\begin{aligned} \frac{d}{dt}\phi_1(x, \kappa_j(t))\phi_2(x, \kappa_j(t)) \\ - [C\phi_1^2(x, \kappa_j(t)) + B\phi_2^2(x, \kappa_j(t))] \\ = 2\rho(t, \kappa_j(t))\phi_1(x, \kappa_j(t))\phi_2(x, \kappa_j(t)) \end{aligned} \quad (20)$$

Supposing $\phi(x, \kappa_j(t))$ and $c_j^2(t)$ are the normalization eigenfunction and the normalization constant respectively, then we have [6]

$$\rho(t, \kappa_j(t)) = \frac{1}{2} \sum_{s=1}^3 s(2i\kappa_j(t))^{s-1}. \quad (21)$$

In view of Eqs. (3), (19), (21) and

$$A \rightarrow -\frac{1}{2} \left[\sum_{m=0}^3 (2i\kappa_j(t))^m \right] x - \frac{1}{2}(2i\kappa_j(t))^2, \quad (22)$$

$$B \rightarrow 0, \quad C \rightarrow 0,$$

$$\phi(x, \kappa_j(t)) \rightarrow c_j(t) \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{i\kappa_j(t)x}, \quad (23)$$

as $x \rightarrow +\infty$, we obtain

$$\kappa_{jt}(t) = -\frac{i}{2} \sum_{n=0}^3 (2i\kappa_j(t))^n \quad (24)$$

$$c_{jt}(t) - c_j(t) \left[\frac{1}{2} \sum_{s=1}^3 s(2i\kappa_j(t))^{s-1} + \frac{1}{2}(2i\kappa_j(t))^2 \right] = 0.$$

Similarly, we obtain

$$\bar{\kappa}_{mt}(t) = -\frac{i}{2} \sum_{n=0}^3 (2i\bar{\kappa}_m(t))^n, \quad (25)$$

$$\bar{c}_{mt} + \bar{c}_m \left[\frac{1}{2} \sum_{s=1}^3 s(2i\bar{\kappa}_m(t))^{s-1} + \frac{1}{2}(2i\bar{\kappa}_m(t))^2 \right] = 0.$$

Secondly, we consider the case when k is a real continuous spectral parameter. Since

$$\varphi_t(x, k) - N\varphi(x, k) = \varepsilon(t, k)\varphi(x, k) + \delta(t, k)\bar{\varphi}(x, k), \quad (26)$$

where $\varphi(x, k)$ and $\bar{\varphi}(x, k)$ are another pair of fundamental solutions of Eq. (2), $\varepsilon(t, k)$ and $\delta(t, k)$ are undetermined coefficient functions.

Letting $x \rightarrow -\infty$ and using

$$\varphi(x, k) \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-ikx}, \quad \bar{\varphi}(x, k) \rightarrow \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{ikx}, \quad (27)$$

from Eq. (26) we have

$$\varepsilon(t, k) = -4k^2, \quad \delta(t, k) = 0. \quad (28)$$

Taking the following Jost relationship with two undetermined coefficient functions $\lambda(t, k)$ and $\mu(t, k)$:

$$\varphi(x, k) = \lambda(t, k)\bar{\varphi}(x, k) + \mu(t, k)\varphi(x, k), \quad (29)$$

and substituting Eq. (29) into Eq. (26), we have

$$\begin{aligned} & (\lambda(t, k)\bar{\varphi}(x, k) + \mu(t, k)\varphi(x, k))_t - N(\lambda(t, k)\bar{\varphi}(x, k) \\ & + \mu(t, k)\varphi(x, k)) = -4k^2\varphi(x, k). \end{aligned} \quad (30)$$

Using Eq. (30) and the asymptotical properties

$$\begin{aligned} \varphi(x, k) \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{ikx}, \quad \bar{\varphi}(x, k) \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-ikx}, \\ x \rightarrow -\infty, \end{aligned} \quad (31)$$

yields

$$\frac{d\lambda(t, k)}{dt} = 0, \quad \frac{d\mu(t, k)}{dt} = -4k^2\mu(t, k). \quad (32)$$

With a similar process, we obtain

$$\frac{d\bar{\lambda}(t, k)}{dt} = 0, \quad \frac{d\bar{\mu}(t, k)}{dt} = 4k^2\bar{\mu}(t, k). \quad (33)$$

Directly solving Eqs. (24), (25), (32) and (33), we arrive at Eqs. (16) and (17). Thus, we finish the proof of Theorem 1.

3.2 Exact solutions

Theorem 2. *With the help of scattering data $\kappa_j(t)$, $c_j(t)$, $R(t, k)$, $\bar{\kappa}_m(t)$, $\bar{c}_m(t)$, $\bar{R}(t, k)$ in Eqs. (16) and (17), we can determine the following exact solutions of system (1):*

$$q(x, t) = -2K_1(t, x, x), \quad (34)$$

$$r(x, t) = \frac{K_{2x}(t, x, x)}{K_1(t, x, x)}, \quad (35)$$

where $K_1(t, x, y)$ and $K_2(t, x, y)$ satisfy:

$$K_1(t, x, y) - \frac{1}{2\pi} \int_{-\infty}^{\infty} \bar{R}(t, k) e^{-ik(x+y)} dk \quad (36)$$

$$\begin{aligned} & + \sum_{j=1}^{\bar{n}} \bar{c}_j^2(t) e^{-i\bar{\kappa}_j(t)(x+y)} \\ & - \int_x^{\infty} K_1(t, x, s) \sum_{j=1}^n \sum_{m=1}^{\bar{n}} \frac{i c_j^2(t) \bar{c}_m^2(t)}{\kappa_j(t) - \bar{\kappa}_m(t)} e^{i\kappa_j(t)(x+s) - i\bar{\kappa}_m(t)(x+y)} ds \\ & = 0 \end{aligned}$$

$$\begin{aligned} K_2(t, x, y) &= \sum_{j=1}^n \sum_{m=1}^{\bar{n}} \frac{i c_j^2(t) \bar{c}_m^2(t)}{\kappa_j(t) - \bar{\kappa}_m(t)} e^{2i\kappa_j(t)x - i\bar{\kappa}_m(t)(x+y)} \quad (37) \\ &- \int_x^{\infty} K_2(t, x, s) \sum_{j=1}^n \sum_{m=1}^{\bar{n}} \frac{i c_j^2(t) \bar{c}_m^2(t)}{\kappa_j(t) - \bar{\kappa}_m(t)} e^{i\kappa_j(t)(x+s) - i\bar{\kappa}_m(t)(x+y)} ds \\ &= 0 \end{aligned}$$

Proof. According to Theorem 1 and the results in [6], we can easily prove Theorem 2. Here the process of the proof is omitted for simplification.

3.3 Reduction of exact solutions

Theorem 3. System (1) has the following reduced solutions:

$$q(x, t) = 2\text{tr}(P^{-1}(x, t)\bar{\Lambda}\bar{\Lambda}^T), \quad (38)$$

$$r(x, t) = -\frac{\frac{d}{dx}\text{tr}(P^{-1}(x, t)Q(x, t)\frac{d}{dx}Q^T(x, t))}{\text{tr}(P^{-1}(x, t)\bar{\Lambda}\bar{\Lambda}^T)}, \quad (39)$$

determined by

$$P(x, t) = E + Q(x, t)Q^T(x, t), \quad (40)$$

$$Q(x, t) = \left(\frac{c_j(t)\bar{c}_m(t)}{\kappa_j(t) - \bar{\kappa}_m(t)} e^{i(\kappa_j(t) - \bar{\kappa}_m(t))x} \right)_{\bar{n} \times n}, \quad (41)$$

$$\Lambda = (c_1(t)e^{i\kappa_1(t)x}, c_2(t)e^{i\kappa_2(t)x}, \dots, c_n(t)e^{i\kappa_n(t)x})^T, \quad (42)$$

$$\bar{\Lambda} = (\bar{c}_1(t)e^{-i\bar{\kappa}_1(t)x}, \bar{c}_2(t)e^{-i\bar{\kappa}_2(t)x}, \dots, \bar{c}_n(t)e^{-i\bar{\kappa}_n(t)x})^T, \quad (43)$$

where E is unit matrix, $\kappa_j(t)$, $c_j(t)$, $\bar{\kappa}_m(t)$ and $\bar{c}_m(t)$ are determined in Eqs. (16) and (17).

Proof. In order to reduce soliton solutions from the exact solutions (38) and (39), we set $R(t, k) = \bar{R}(t, k) = 0$ and suppose that

$$K_1(x, y, t) = \sum_{p=1}^{\bar{n}} \bar{c}_p(t)g_p(t, x)e^{-i\bar{\kappa}_p(t)y}, \quad (44)$$

$$K_2(x, y, t) = \sum_{p=1}^{\bar{n}} \bar{c}_p(t)h_p(t, x)e^{-i\bar{\kappa}_p(t)y}. \quad (45)$$

Substituting Eqs. (44) and (45) into Eqs. (36) and (37), we obtain

$$K_1(x, y, t) = -\text{tr}(P^{-1}(t, x)\bar{\Lambda}\bar{\Lambda}^T), \quad (46)$$

$$K_2(x, y, t) = i\text{tr}(P^{-1}(t, x)Q(t, x)\Lambda\bar{\Lambda}^T), \quad (47)$$

and hence reach the reduced solutions (38) and (39), here $P^{-1}(t, x)$ is supposed to exist. Thus, we finish the proof Theorem 3.

As a particular case, when $n = \bar{n} = 1$, Eqs. (38) and (39) give:

$$q = \frac{2\bar{c}_1^2(0)e^{-2i\bar{\kappa}_1(t)x - \int_0^t \left[\sum_{s=1}^3 s(2i\bar{\kappa}_1(w))^{s-1} - 4\bar{\kappa}_1^2(w) \right] dw}}{1 + \frac{\bar{c}_1^2(0)\bar{c}_1^2(0)}{(\kappa_1(t) - \bar{\kappa}_1(t))^2} e^A} \quad (48)$$

where

$$\begin{aligned} A &= 2i(\kappa_1(t) - \bar{\kappa}_1(t))x + \int_0^t \left\{ \sum_{s=1}^3 s \left[(2i\kappa_1(w))^{s-1} \right. \right. \\ &\quad \left. \left. - (2i\bar{\kappa}_1(w))^{s-1} \right] - \kappa_1^2(w) + 4\bar{\kappa}_1^2(w) \right\} dw \end{aligned}$$

$$r = \frac{2c_1^2(0)e^{2i\kappa_1 x + \int_0^t \left[\sum_{s=1}^3 s(2i\kappa_1(w))^{s-1} - 4\kappa_1^2(w) \right] dw}}{1 + \frac{c_1^2(0)\bar{c}_1^2(0)}{(\kappa_1(t) - \bar{\kappa}_1(t))^2} e^B} \quad (49)$$

where

$$\begin{aligned} B &= 2i(\kappa_1(t) - \bar{\kappa}_1(t))x + \int_0^t \left\{ \sum_{s=1}^3 s \left[(2i\kappa_1(w))^{s-1} \right. \right. \\ &\quad \left. \left. - (2i\bar{\kappa}_1(w))^{s-1} \right] - 4\kappa_1^2(w) + 4\bar{\kappa}_1^2(w) \right\} dw \end{aligned}$$

where $\kappa_1(t)$ and $\bar{\kappa}_1(t)$ are respectively determined by

$$\kappa_{1t}(t) = -\frac{i}{2} + \kappa_1(t) + 2i\kappa_1^2(t) - 4\kappa_1^3(t), \quad (50)$$

$$\bar{\kappa}_{1t}(t) = -\frac{i}{2} + \bar{\kappa}_1(t) + 2i\bar{\kappa}_1^2(t) - 4\bar{\kappa}_1^3(t). \quad (51)$$

4 Nonlinear dynamics

We have gained an insight into the nonlinear dynamics of system (1) by means of solutions (50) and (51). For such purpose, with the help of Mathematica 8 we determine $\kappa_1(t)$ and $\bar{\kappa}_1(t)$ of Eqs. (50) and (51) as follows:

$$\begin{aligned} \kappa_1(t) &= \text{InverseFunction} \left[-\frac{i}{4} \text{ArcTan}[2\#1] \right] \quad (52) \\ &+ \left(\frac{1}{16} + \frac{i}{16} \right) \log \left[(1 - 2\#1)^2 \right] \\ &+ \left(\frac{1}{16} - \frac{i}{16} \right) \log \left[(1 + 2\#1)^2 \right] \\ &- \frac{1}{8} \log \left[1 + 4\#1^2 \right] \& \left[-\frac{t}{2} + C[1] \right], \end{aligned}$$

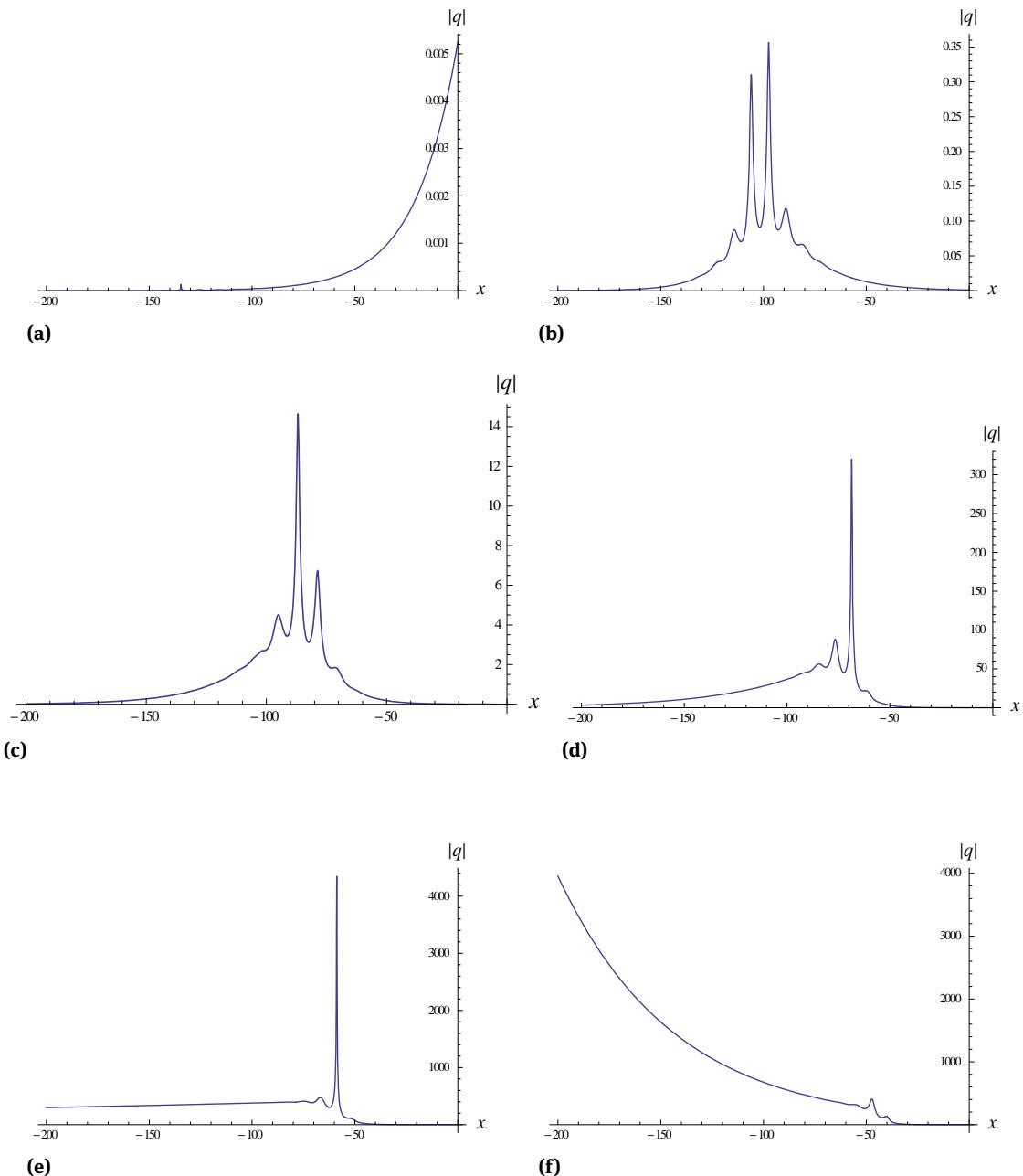


Figure 1: Dynamical evolutions of solution (48) determined by Eqs. (52)-(55) at the times: (a) $t = -0.05$, (b) $t = 0.05$, (c) $t = 0.1$, (d) $t = 0.15$, (e) $t = 0.2$, (f) $t = 0.25$

$$\begin{aligned} \bar{\kappa}_1(t) = & \text{InverseFunction} \left[-\frac{i}{4} \text{ArcTan}[2\#1] \right] \quad (53) \\ & + \left(\frac{1}{16} + \frac{i}{16} \right) \log \left[(1 - 2\#1)^2 \right] \\ & + \left(\frac{1}{16} - \frac{i}{16} \right) \log \left[(1 + 2\#1)^2 \right] \\ & - \frac{1}{8} \log \left[1 + 4\#1^2 \right] \& \left[-\frac{t}{2} + C[2] \right], \end{aligned}$$

where `InverseFunction`[\cdot] is a built-in function of Mathematica 8, and

$$\begin{aligned} C[1] = & -\frac{i}{4} \text{ArcTan}[2\kappa_1[0]] \quad (54) \\ & + \left(\frac{1}{16} + \frac{i}{16} \right) \log[(1 - 2\kappa_1[0])^2] \\ & + \left(\frac{1}{16} - \frac{i}{16} \right) \log[(1 + 2\kappa_1[0])^2] - \frac{1}{8} \log[1 + 4\kappa_1^2[0]], \end{aligned}$$

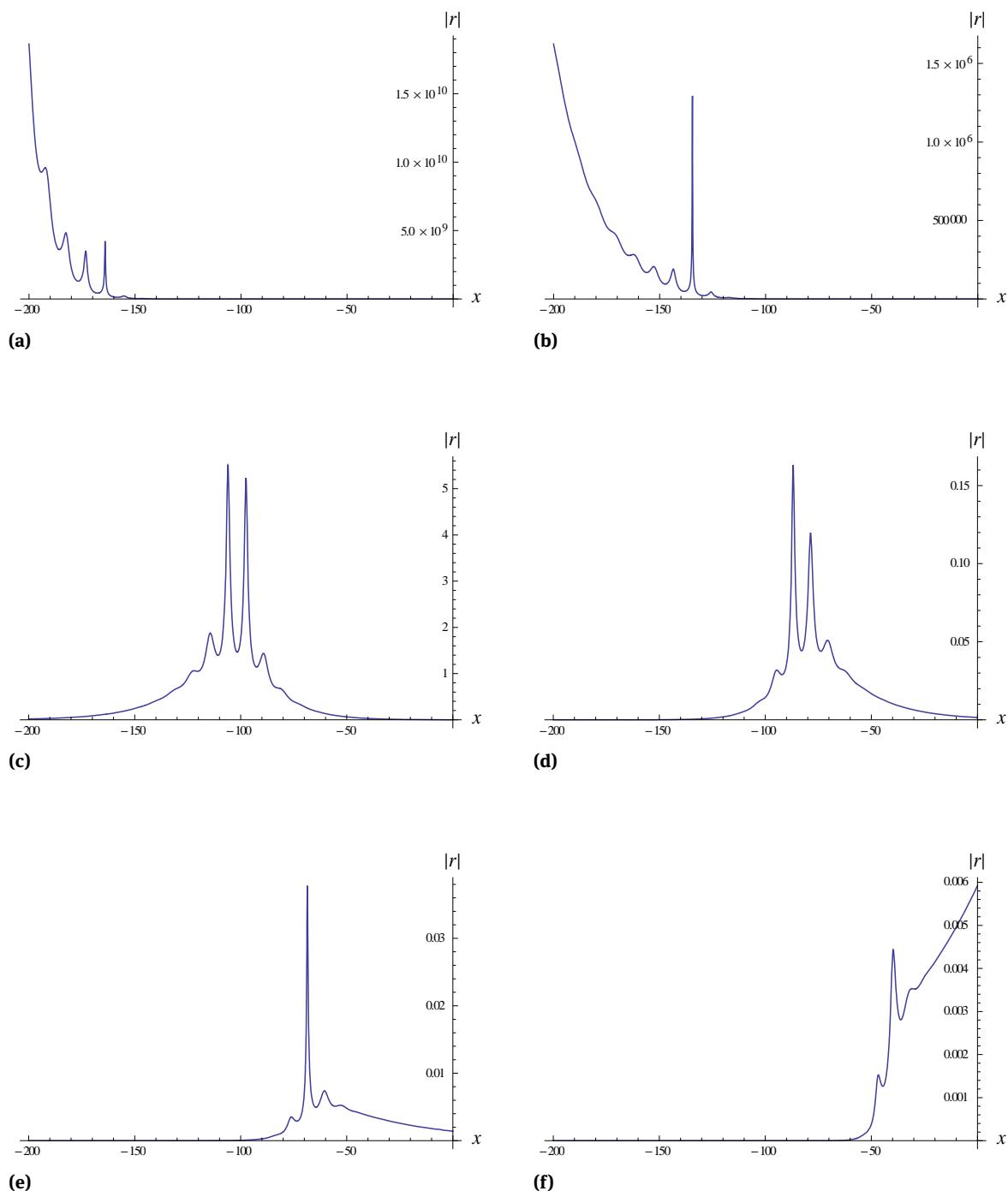


Figure 2: Dynamical evolutions of solution (49) determined by Eqs. (52)-(55) at the times: (a) $t = -0.1$, (b) $t = -0.05$, (c) $t = 0.05$, (d) $t = 0.15$, (e) $t = 0.2$, (f) $t = 0.25$

$$\begin{aligned} C[2] = & -\frac{i}{4} \text{ArcTan}[2\bar{\kappa}_1[0]] \\ & + \left(\frac{1}{16} + \frac{i}{16} \right) \log[(1 - 2\bar{\kappa}_1[0])^2] \\ & + \left(\frac{1}{16} - \frac{i}{16} \right) \log[(1 - 2\bar{\kappa}_1[0])^2] - \frac{1}{8} \log[1 + 4\bar{\kappa}_1^2[0]], \end{aligned} \quad (55)$$

In Figures 1 and 2, the dynamical evolutions of solutions (48) and (49) determined by Eqs. (52)-(55) are shown by selecting the parameters as $\kappa_1(0) = 1$, $\bar{\kappa}_1(0) = 0$, $c_1(0) = -0.2$ and , respectively. We can see from Figures 1

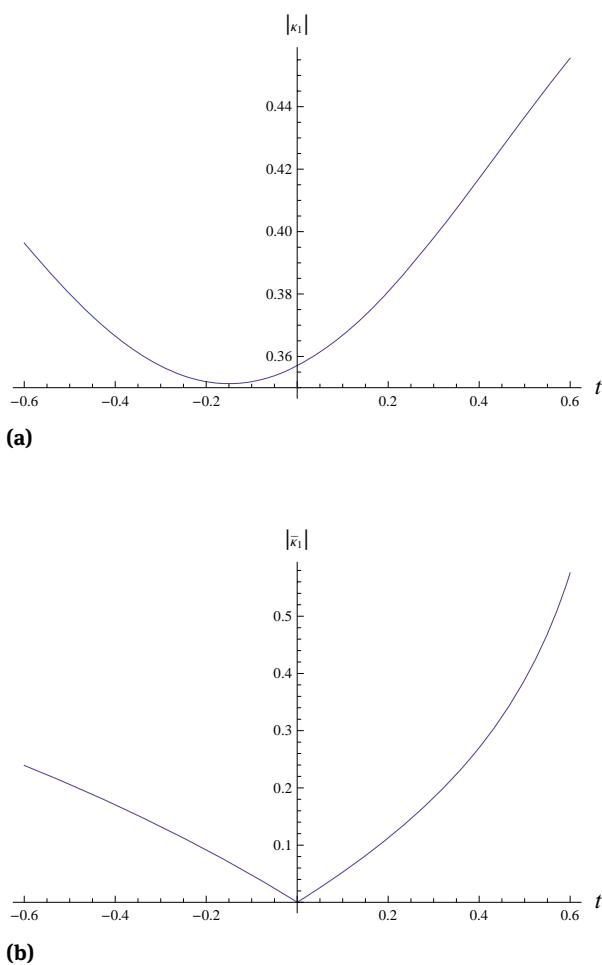


Figure 3: Graphs of the spectral parameters (52) and (53) with parameters: (a) $\kappa_1(0) = 1$, (b) $\bar{\kappa}_1(0) = 0$

and 2 that the amplitudes of solutions (48) and (49) vary with time. In Figure 3, we simulate the graphs of the spectral parameters (52) and (53) with parameters $\kappa_1(0) = 1$ and $\bar{\kappa}_1(0) = 0$.

5 Conclusion

In summary, we have derived and solved a new nonlinear integral-differential system (1) that is nonisospectral and Lax integrable. This is due to the new spectral parameter (4) embedded into the eigenvalue problem (2) and its adjoint equation (3). By extending the IST method with the spectral parameter (4), we obtain exact solutions (38) and (39) and their reduced forms (48) and (49) of the system (1). To gain further insight into the reduced solutions (48) and (49), with the help of the dynamical evolutions

we show that the amplitudes of solutions vary with time. Though there are some generalizations [21–46] of the IST method, we conclude that constructing new nonlinear systems and their exact solutions and researching the related issues [47–51] by analytical methods are worthy of study.

Acknowledgement: The authors B. Xu and S. Zhang are grateful to the anonymous reviewers for their helpful comments. This work was supported by the Natural Science Foundation of Liaoning Province of China (grant number 20170540007), the Natural Science Foundation of China (grant number 11547005), the Natural Science Foundation of Education Department of Liaoning Province of China (grant number LZ2017002) and Innovative Talents Support Program in Colleges and Universities of Liaoning Province of China (grant number LR2016021).

References

- [1] Weiss J., Tabor M., Carnevale G., The Painlevé property for partial differential equations, *J. Math. Phys.*, 1983, 24, 522-526.
- [2] Zhang S., Zhu R., KdV hierarchy with time-dependent coefficients: Lax integrability, bilinear Bäcklund transformation and soliton solutions, *Optik*, 2017, 142, 463-469.
- [3] Zhang S., Chen M.T., Painlevé integrability and new exact solutions of the (4+1)-dimensional Fokas equation, *Math. Probl. Eng.*, 2015, 2015, 367425.
- [4] Zhang S., Chen M.T., Qian W.Y., Painlevé analysis for a forced Kortevég-de Vries equation arisen in fluid dynamics of internal solitary waves, *Therm. Sci.*, 2015, 19, 1223-1226.
- [5] Ablowitz M.J., Clarkson P.A., *Solitons, Nonlinear Evolution Equations and Inverse Scattering*, Cambridge University Press, Cambridge, 1991.
- [6] Chen D.Y., *Introduction of Soliton*, Science Press, Beijing, 2006, (in Chinese).
- [7] Hirota R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, *Phys. Rev. Lett.*, 1971, 27, 1192-1194.
- [8] Fan E.G., Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems, *Phys. Lett. A*, 2002, 300, 243-249.
- [9] He J.H., Wu X.H., Exp-function method for nonlinear wave equations, *Chaos Soliton. Fract.*, 2006, 30, 700-708.
- [10] Aslan I., Rational and multi-wave solutions to some nonlinear physical models, *Rom. J. Phys.*, 2013, 58, 893-903.
- [11] Dai C.Q., Wang Y.Y., Controllable combined Peregrine soliton and Kuznetsov-Ma soliton in PT-symmetric nonlinear couplers with gain and loss, *Nonlinear Dyn.*, 2015, 80, 715-721.
- [12] Mirzazadeh M., Eslami M., Biswas A., 1-soliton solution to KdV6 equation, *Nonlinear Dyn.*, 2015, 80, 387-396.
- [13] Zhang S., Tian C., Qian W.Y., Bilinearization and new multi-soliton solutions for the (4+1)-dimensional Fokas equation, *Pramana-J. Phys.*, 2016, 86, 1259-1267.
- [14] Zhang S., Liu M.Y., Xu B., New multi-soliton solutions of Whitham-Broer-Kaup shallow-water-wave equations, *Therm. Sci.*, 2017,

214, S137-S144.

[15] Zhang S., Gao X.D., Exact N -soliton solutions and dynamics of a new AKNS equations with time-dependent coefficients, *Nonlinear Dyn.*, 2016, 83, 1043-1052.

[16] Lou S.Y., Tang X.Y., *Method of Nonlinear Mathematical Physics*, Science Press, Beijing, 2006, (in Chinese).

[17] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Method for solving the Korteweg-de Vries equation, *Phys. Rev. Lett.*, 1967, 19, 1095-1097.

[18] Chen H.H., Liu C.S., Solitons in nonuniform media, *Phys. Rev. Lett.*, 1976, 37, 693-697.

[19] Hirota R., Satsuma J., N -soliton solutions of the K-dV equation with loss and nonuniformity terms, *J. Phys. Soc. Jpn.*, 1976, 41, 2141-2142.

[20] Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., The inverse scattering transform- Fourier analysis for nonlinear problems, *Stud. Appl. Math.*, 1974, 53, 249-315.

[21] Calogero F., Degasperis A., Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron, *Lett. Nuovo Cimento*, 1976, 16, 425-433.

[22] Calogero F., Degasperis A., Exact solutions via the spectral transform method for solving nonlinear evolutions, *Lett. Nuovo Cimento*, 1978, 22, 131-137.

[23] Calogero F., Degasperis A., Extension of the spectral transform method for solving nonlinear evolutions, *Lett. Nuovo Cimento*, 1978, 22, 263-269.

[24] Calogero F., Degasperis A., Exact solution via the spectral transform of a generalization with linearly x -dependent coefficients of the modified Korteweg-de Vries equation, *Lett. Nuovo Cimento*, 1978, 22, 270-273.

[25] Nachman A.I., Ablowitz M.J., A multidimensional inverse scattering method, *Stud. Appl. Math.*, 1984, 71, 243-250.

[26] Chan W.L., Li K.S., Nonpropagating solitons of the variable coefficient and nonisospectral Korteweg-de Vries equation, *J. Math. Phys.*, 1989, 30, 2521-2526.

[27] Xu B.Z., Zhao S.Q., Inverse scattering transformation for the variable coefficient sine-Gordon type equation, *Appl. Math. J. Chinese Univ. B*, 199, 9, 331-337, (in Chinese).

[28] Zeng Y.B., Ma W.X., Lin R.L., Integration of the soliton hierarchy with selfconsistent sources, *J. Math. Phys.*, 2000, 41, 5453-5489.

[29] Serkin V.N., Hasegawa A., Novel soliton solutions of the nonlinear Schrödinger equation model, *Phys. Rev. Lett.*, 2000, 85, 4502-4505.

[30] Serkin V.N., Belyaeva T.L., The Lax representation in the problem of soliton management, *Quantum Electron.*, 2001, 31, 1007-1015.

[31] Ning T.K., Chen D.Y., Zhang D.J., The exact solutions for the nonisospectral AKNS hierarchy through the inverse scattering transform, *Physica A*, 2004, 339, 248-266.

[32] Serkin V.N., Hasegawa A., Belyaeva T.L., Nonautonomous solitons in external potentials, *Phys. Rev. Lett.*, 2007, 98, 074102.

[33] Serkin V.N., Hasegawa A., Belyaeva T.L., Solitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitons, *J. Mod. Optic.*, 2010, 57, 1456-1472.

[34] Serkin V.N., Hasegawa A., Belyaeva T.L., Nonautonomous matter-wave solitons near the Feshbach resonance, *Phys. Rev. A*, 2010, 81, 023610.

[35] Biondini G., Kovacic G., Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions, *J. Math. Phys.*, 2014, 55, 031506.

[36] S Chakravarty., Prinari B., Ablowitz M.J., Inverse scattering transform for 3-level coupled Maxwell-Bloch equations with inhomogeneous broadening, *Physica D*, 2014, 278-279, 58-78.

[37] Zhang S., Xu B., Zhang H.Q., Exact solutions of a KdV equation hierarchy with variable coefficients, *Int. J. Comput. Math.*, 2014, 91, 1601-1616.

[38] Zhang S., Wang D., Variable-coefficient nonisospectral Toda lattice hierarchy and its exact solutions, *Pramana-J. Phys.*, 2015, 85, 1143-1156.

[39] Zhang S., Gao X.D., Mixed spectral AKNS hierarchy from linear isospectral problem and its exact solutions, *Open Phys.*, 2015, 13, 310-322.

[40] Zhang S., Gao X.D., Exact solutions and dynamics of a generalized AKNS equations associated with the nonisospectral depending on exponential function, *J. Nonlinear Sci. Appl.*, 2016, 19, 4529-4541.

[41] Zhang S., Li J.H., On nonisospectral AKNS system with infinite number of terms and its exact solutions, *IAENG Int. J. Appl. Math.*, 2017, 47, 89-96.

[42] Gao X.D., Zhang S., Time-dependent-coefficient AKNS hierarchy and its exact multi-soliton solutions, *Int. J. Appl. Sci. Math.*, 2016, 3, 72-75.

[43] Zhang S., Li J.H., Soliton solutions and dynamical evolutions of a generalized AKNS system in the framework of inverse scattering transform, *Optik*, 2017, 137, 228-237.

[44] Zhang S., Hong S.Y., Lax integrability and soliton solutions for a nonisospectral integro-differential system, *Complexity*, 2017, 2017, 9457078.

[45] Zhang S., Hong S.Y., On a generalized Ablowitz-Kaup-Newell-Segur hierarchy in inhomogeneities of media: soliton solutions and wave propagation influenced from coefficient functions and scattering data, *Wave. Random Complex*, 2018, 28, 435-452.

[46] Zhang S., Hong S.Y., Lax integrability and exact solutions of a variable-coefficient and nonisospectral AKNS hierarchy, *Int. J. Nonlinear Sci. Numer. Simul.*, 2018, 19, 251-262.

[47] Ding D.J., Jin D.Q., Dai C.Q., Analytical solutions of differential-difference sine-Gordon equation, *Therm. Sci.*, 2017, 21, 1701-1705.

[48] Dai C.Q., Chen R.P., Wang Y.Y., Fan Y., Dynamics of light bullets in inhomogeneous cubic-quintic-septimal nonlinear media with PT-symmetric potentials, *Nonlinear Dyn.*, 2017, 87, 1675-1683.

[49] Wang Y.Y., Dai C.Q., Zhou G.Q., Fan Y., Chen L., Rogue wave and combined breather with repeatedly excited behaviors in the dispersion/diffraction decreasing medium, *Nonlinear Dyn.*, 2017, 87, 67-73.

[50] Dai C.Q., Zhou G.Q., Chen R.P., Lai X.J., Zheng J., Vector multipole and vortex solitons in two-dimensional Kerr media, *Nonlinear Dyn.*, 2017, 88, 2629-2635.

[51] Wang Y.Y., Zhang Y.P., Dai C.Q., Re-study on localized structures based on variable separation solutions from the modified tanh-function method, *Nonlinear Dyn.*, 2016, 83, 1331-1339.