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Abstract: The investigations of integrability, exact solu-
tions and dynamics of nonlinear partial differential equa-
tions (PDEs) are vital issues in nonlinear mathematical
physics. In this paper, we derive and solve a new Lax in-
tegrable nonisospectral integral-differential system. To be
specific, we first generalize an eigenvalue problem and its
adjoint equation by equipping it with a new time-varying
spectral parameter. Based on the generalized eigenvalue
problem and the adjoint equation, we then derive a new
Lax integrable nonisospectral integral-differential system.
Furthermore, we obtain exact solutions and their reduced
forms of the derived system by extending the famous non-
linear Fourier analysis method—inverse scattering trans-
form (IST). Finally, with graphical assistance we simulate
a pair of reduced solutions, the dynamical evolutions of
which show that the amplitudes of solutions vary with
time.
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1 Introduction

Nonlinear PDEs are important mathematical models de-
scribing some nonlinear natural phenomena like those in
physics, biology, chemistry and mechanics. In the field of
nonlinear science, the investigation of integrability, exact
solutions and dynamics of nonlinear PDEs has attracted
much attention [1-15]. There is no uniform definition for
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the integrability of PDEs. Usually, it is necessary to indi-
cate the type of integrability [16]. In soliton theory, the non-
linear PDEs are classified two types: the isospectral equa-
tions and the nonisospectral equations. Generally speak-
ing, the spectral parameters of the eigenvalue problems as-
sociated with isospectral equations are time-independent.
Otherwise when the spectral parameters are dependent of
time, the associated equations are nonisospectral.

The purpose of this article is to study the integrability,
exact solutions and nonlinear dynamics of the following
new nonisospectral integral-differential system:

—qxx + 2q2r + 3¢qxx + Xqxxx — ZQXa_l(qr)
~4xqrqx - 2xq*ry - 8q0~(qx1)
~2Xqrqxx + 2Xq* Txx = 2qx — Xqxx

+2q07Y(qr) + 2xq%r + q + xqx - xq
q)\ _
( ) 0
t

Txx — 2qr2 + 3Fxx + XTxxx — 2rx6_1(qf)
—4xqrry — 2xr*qx — 8q0~1(qry)
=2XqTTxx + 2XT Qxx + 27x + XTxx

—2ro~Y(qr) - 2xqr? + v + Xy + XT

In Section 2, we derive the integral-differential system
(1) and prove its Lax integrability. In Section 3, we con-
struct exact solutions and their reduced forms of system
(1) by equipping the IST method [17-19] with a new time-
varying spectral parameter. In Section 4, a pair of reduced
solutions are simulated to offer an insight into the dynam-
ical evolutions of solutions.

2 Derivation and Lax Integrability

To derive system (1), firstly we equip the eigenvalue prob-
lem [20]:

_ _(-ik q [ P1
¢px = Mo, M—<r ik)’ ¢—(¢2>, @)

and its adjoint equation
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with a new spectral parameter k satisfying

1 3
ike = 5 [Z(Zik)”} .
n=0

In Egs. (2) and (3), the potential functions ¢ = q(x, t) —
0, r = r(x,t) - 0as x — =+oo, all the derivatives of
g and r have the same asymptotic properties, and A =
A(x,t, k,q,7r), B = B(x,t,k,q,r)and C = C(x,t, k,q,r)
are functions of the indicated variables to be determined
later.

Secondly, using the compatibility condition of Egs. (2)
and (3) we have

(4)

Ax =qC-rB ik, (5)

q¢ = Bx + 2ikB + 2qA, (6)

= Cx - 2ikC - 2rA. @

In view of Egs. (4) and (5), we suppose that

3
A=0'(0q) (‘f) - %(Zik)z - % [Z; (2ik)"] X

Then Egs. (5)-(7) can be simplified as

q _ -B Y -B 82 [ —4
(7). -2 (&) -2 (7) - (7)
3
+ ST @ik™ "‘q),
>

by the usage of the operator

(-0 O q)\ .- 0
L—(O a)+2<_r>al(r,q), a_a,
) 1 X +

Thirdly, we let

B\ < (-bn) .p3em
(&) (e

then the coefficients of 2ik in Eq. (9) give

(Zik)o : (q> i L <_b3> ' <_Xq> ,
r ; C3 Xr
C3 Cy Xr

(8)

(10)

(1)

(12)

(13)

DE GRUYTER
ik)? : (‘b2> =L (‘b1> + (‘q> + (‘Xq> , (14)
C2 C1 r Xr
N3 -b1\ _(-xq
e (2)-(2).

Finally, substituting Egs. (13)-(15) into Eq. (12) yields
system (1). This shows that system (1) is Lax integrable.

(15)

3 Exact solutions and their
reductions

This section has three aspects: the first aspect is to deter-
mine the scattering data for the generalized eigenvalue
problem (2); the second aspect is to construct exact solu-
tions of system (1); and the last aspect is to reduce the ob-
tained exact solutions.

3.1 Scattering data

Theorem 1. The generalized eigenvalue problem (2) has
the following scattering data:

3

Kj(t) = 5 [Zixj(t)}" (16)
n=0
J 132 sikj(w))*” 1—4x (w)
c; 2(f) = c; 2(0)eo [ =S } ,
-4 f k*(t)dt
R(t, k) = R(0, k)e ©
R 3
Kmi(t) = =5 > [2iKm(6)]" (17)
n:O
t 3
S 521K (W) 433 (W)
0 -caoe |5 Jow.
_ _ 4‘/‘ (r)dr
R(t, k) = R(0, k)e ©
forj=1,2,---,nandm =1, 2,---,7, here c;(0), cm(0),
R(0, k) and R(0, k) are the scattering data of the general-

ized eigenvalue problem (2) in the case of q(0, x) and r(0, x).

Proof. When ¢(x, k) satisfies Eq. (2), ¢¢(x, k) — Np(x, k)
also satisfies Eq. (2), then one has

de(x, k) = No(x, k) = p(t, K)p(x, k) + 6(¢, K)p(x, k). (18)

where ¢(x, k) and $(x, k) are a pair of fundamental solu-
tions of Eq. (2), p(t, k) and 6(¢, k) are undetermined coeffi-
cient functions.
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Firstly, we begin with the spectral parameter k =
k;j(t)(Imx; > 0) of the discrete case. Then we must have
0(t, k) = 0 because ¢(x, x;(t)) and éb(x, k) have opposite
exponentially asymptotic properties as x — +oo. Thus
Eq. (18) becomes

de(x, k(1)) = Nop(x, k(D)) = p(&, x;(D)p(x, x;(6)),  (19)
which can be further written as [6]
L 1 )2, 10 20)

- [C 0 15(6) + B3 x, 15(6)]
= 2p(t, k(D)) P1(x, x;(0)) P2 (x, x;(t))

Supposing ¢(x, k;(f)) and cjz(t) are the normaliza-
tion eigenfunction and the normalization constant respec-

tively, then we have [6]

3
plt,15(0) = 2 3 sing ()" .

s=1

(21)

In view of Egs. (3), (19), (21) and

1 3
A3 [Z 2iK; ()™

m=

] X - %(2ix,-(t))2, 22

(
0
B—+0, C—0,

d(x, Ki(0) — ¢;(0) <‘1)> RUCES 23)
as x — +oo, we obtain
. 3
KeO) = =3 3 2in(0)" (24)
n=0
1¢e 1
cit(t) - ¢(t) [2 > sQing(0) " + Z(Zixj(t))z} =
s=1
Similarly, we obtain
. 3
Ke(0) = -5 > @ikn(o)', (25)

3

23 ik’

s=1

- 1, .
by 2(21Km)2:| =

Emt +Cm |:

Secondly, we consider the case when k is a real contin-

uous spectral parameter. Since
@e(x, k) = No(x, k) = &(t, Ko(x, k) + 8(t, K)p(x, k), (26)

where ¢(x, k) and @(x, k) are another pair of fundamental

solutions of Eq. (2), &(t, k) and 6(t, k) are undetermined co-

efficient functions.
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Letting x — —oo and using

o(x, k) — (é) e thx o(x, k) — <_01> ™ (27)

from Eq. (26) we have

e(t, k) = -4k*, 8(t, k) = 0. (28)

Taking the following Jost relationship with two unde-
termined coefficient functions A(t, k) and u(t, k):

P(x, k) = At, P(x, k) + u(t, Hp(x, k),
and substituting Eq. (29) into Eq. (26), we have

(A(t, G(x, k) + u(t, Hp(x, k))t - NQ(t, KP(x, k) (30)

+ ult, Dp(x, k) = ~4k> p(x, k).
Using Eq. (30) and the asymptotical properties

o(x, k) — <(1)> e Bx, k) — ((1)) g ik, (31)

(29)

X — —oo,
yields
dA(t, k) du(t,k) _ >
T 0, & - 4k u(t, k). (32
With a similar process, we obtain
dAt, k) _ o dEtk) s
T 0, T 4k“u(t, k). (33)

Directly solving Egs. (24), (25), (32) and (33), we arrive
at Egs. (16) and (17). Thus, we finish the proof of Theorem
1.

3.2 Exact solutions

Theorem 2. With the help of scattering data x;(t), c;(t),
R(t, k), Km (), €m(t), R(¢, k) in Egs. (16) and (17), we can de-
termine the following exact solutions of system (1):

Q(X, t) = _ZKl(t5 X, X): (34)

_ I(ZX(t5 X, X)
r(X, t) - Kl(t, X, X) ’ (35)

where K/ (t, x, y) and K> (t, x, y) satisfy:
Kit,%,9) - 5 / R(t, ke Ko (36)

—oo

t)eflk,(t)(xw)

Z

oo

n lCZ(t)Cm(t)

/K1(t X, S)ZZ K(t) Km(t)

X

lK (t)(x+s)—i?m(t)(x+)’)ds
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n

2
ic; GEAG) o2i
K> (t,x,y) - ZZ iK; (OX=Km (O (x+y) (37)
P K](t) 0N
OO
(6)(x+s)-iKm () (x+y)
/ Ka(t, x, s)gljmzl T ds

Proof. According to Theorem 1 and the results in [6], we
can easily prove Theorem 2. Here the process of the proof
is omitted for simplification.

3.3 Reduction of exact solutions

Theorem 3. System (1) has the following reduced solu-
tions:

q(x, ) = 2te(P Y (x, HAA"), (38)
d -1 d nT
r(x, £) = P (x HQlx, %TQ (x, ) (39)
tr(P-1(x, HAA )
determined by

P(x,t) = E+ Q(x, QT (x, t), (40)

_(_(®)cm(®) n(x,»(t)—fm(t))x)
Q. ) = (K] L0en0, R
A= (Cl(t)eixl(t)x’ Cz(t)eixz(t)x’ e Cn(t)eixn(t)X)T’ (42)

A= (@ (0e ™ (e ™05, oo (e ™ )T, (43)

where E is unit matrix, k;j(t), ¢j(t), Km(t) and cm(t) are deter-
mined in Egs. (16) and (17).

Proof. In order to reduce soliton solutions from the exact

solutions (38) and (39), we set R(t, k) = R(t, k) = 0 and
suppose that
Ki(x,y, ) = Y cp(Dgp(t, )e ™, (44)
p=1
ﬁ —
K06y, 8) = Y Sp(Ohp(t, e . (45)

p=1
Substituting Eqgs. (44) and (45) into Egs. (36) and (37), we
obtain

Ki(x,y, ) = ~te(P"L(¢, )AA ), (46)
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K (x,y, t) = ite(PL(t, 0)Q(t, )AL, (47)

and hence reach the reduced solutions (38) and (39), here
P1(t, x) is supposed to exist. Thus, we finish the proof The-
orem 3.

Asaparticular case, whenn = 71 = 1, Egs. (38) and (39)
give:

3
-2iK; (Ox- [ [Z s(2ik (w))* "t -4%2 (w)}
2 0 s=1
q- 2¢1(0)e (48)

c3(0)ci(0) 4
(a1 (O-%1(0)°

where
tr3
A =2i(x1() - %1 (O)x + / {Zs {(Zikl(w))s_1
0 s=1
—(21?1(w))s_1} — k(W) + zm%(w)}dw
C%(O)ezixlmfot szl s(2ix (W) -4x3 (w) | dw )
c3(0)c3(0) _p
(1 (%1 (6)?
where
t 3
B = 2i(x1(t) - k1 ()x + / {Z S [(Zixl(w))5—1
0 s=1
—(2if1(w))s_1} — 43 (w) + 4K1(w)}dw
where x1(t) and ¥, (t) are respectively determined by
Kd) = -5 + 1)+ 2040 - 430, (50)
K1¢(t) = —5 +%1(8) + 2iK3(8) - 4K1(t) (51)

4 Nonlinear dynamics

We have gained an insight into the nonlinear dynamics of
system (1) by means of solutions (50) and (51). For such pur-
pose, with the help of Mathematica 8 we determine x(t)
and ¥ (t) of Egs. (50) and (51) as follows:

(52)

k1(t) = InverseFunction —%ArcTan [2#1]

+ (% + R) log {(1 2#1) }
+ (% 16> log {(1 +2#1) }

- %log [1 +4#12} & [ -+ C[1]]

N
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Figure 1: Dynamical evolutions of solution (48) determined by Egs. (52)-(55) at the times: (a) t = —0.05, (b) t = 0.05, (c) t = 0.1, (d) t = 0.15,
(e)t=0.2,(f)t=0.25

where InverseFunction|-] is a built-in function of Mathe-

X =1 F i .
x1(t) = InverseFunction matica 8, and

—%ArcTan [2#1] (53)

. (T16 . %6) log [(1 _ 2#1)2} Cl1] = —%ArcTan[Zkl[O]] (54)
. 1 i
+ (1—16 - 1176) log [(1 + 2#1)2} * (R * E) log[(1 - 2x: [0])"]
1 i 27 1 2
— — — | log[(1 - 2k1[0])7] - % log[1 + 4x1[0]],
- élog [1 +4#12} & [—% + C[Z]} , ’ (16 16) o8 " g s T
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Figure 2: Dynamical evolutions of solution (49) determined by Egs. (52)-(55) at the times: (@) t = -0.1,(b) t = -0.05,(c) t = 0.05, (d)
t=0.15,(e)t=0.2,(f) t = 0.25

C[2] = i ArcTan[2%,[0]] (55) In Figures 1 and 2, the dynamical evolutions of solu-
4 ) tions (48) and (49) determined by Egs. (52)-(55) are shown
+ (% + 1176> log[(1 - 2%, [0])*] by selecting the parameters as k;1(0) = 1, ¥;(0) = 0,

¢1(0) = —0.2 and , respectively. We can see from Figures 1

+ <% - 1’6> log[(1 - 2%1[0])*] - %log[l + 4xi[o]],
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Figure 3: Graphs of the spectral parameters (52) and (53) with pa-
rameters: (a) k1(0) = 1, (b) ¥1(0) = 0

and 2 that the amplitudes of solutions (48) and (49) vary
with time. In Figure 3, we simulate the graphs of the spec-
tral parameters (52) and (53) with parameters x;(0) = 1
and x1(0) = 0.

5 Conclusion

In summary, we have derived and solved a new nonlinear
integral-differential system (1) that is nonisospectral and
Lax integrable. This is due to the new spectral parame-
ter (4) embedded into the eigenvalue problem (2) and its
adjoint equation (3). By extending the IST method with
the spectral parameter (4), we obtain exact solutions (38)
and (39) and their reduced forms (48) and (49) of the sys-
tem (1). To gain further insight into the reduced solutions
(48) and (49), with the help of the dynamical evolutions

Characterization of a nonisospectral integral-differential system = 305

we show that the amplitudes of solutions vary with time.
Though there are some generalizations [21-46] of the IST
method, we conclude that constructing new nonlinear sys-
tems and their exact solutions and researching the related
issues [47-51] by analytical methods are worthy of study.
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