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Abstract: The well-known low-pressure monatomic gas
thermal conductivity expression is based on the Maxwell-
Boltzmann velocity distribution and involves the mean
particle velocity, the gas heat capacity at constant volume
and the particle mean free path. The extension of the for-
mula to a free electron Fermi gas, using the Fermi velocity
along with the Sommerfeld electronic heat capacity, was
demonstrated in the literature using the Boltzmann trans-
port equation. A different formulation of heat conduction
in sufficiently pure metals, yielding the same formula for
the thermal conductivity, is provided in the present inves-
tigation using the free electron Fermi gas energy distribu-
tion with the thermal conductivity determined from the
net heat transfer occurring due to random motions of the
free electrons in the presence of temperature gradient. Po-
tential applications of this approach include extension of
the present kinetic model incorporating quantum effects
to cases in which electron scattering occurs such as in
nanowires and hollow nanowires.
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1 Introduction
Heat conduction in sufficiently pure metals is predomi-
nantly by conduction electrons [1, 2] as compared with
heat conduction by phonons [3]. The different types of
scattering are discussed in [2, 4, 5]. According to the
Wiedemann-Franz law [1, 2, 4–6], the ratio of the ther-
mal conductivity k to the electrical conductivity σ is pro-
portional to temperature T. The proportionality constant,
k/(σ × T), is independent of the solid metal. A derivation
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using the transport equation and requiring elastic scatter-
ing is given in Lifshitz and Pitaevskii [2]. Landau theory
of Fermi liquids [4–6] accounts for electron-electron colli-
sions by introducing quasiparticles of effectivemass larger
than the particle mass [5]. Inelastic collisions cause devia-
tions from the Wiedemann-Franz law [2, 4, 5].

The kinetic theory ofmonatomic gases at low pressure
provides the following expression for the thermal conduc-
tivity [1]:

kg =
1
3 vgCv,gλg (1)

where vg is the averagemolecular speed,Cv,g is the heat ca-
pacity per unit volume and λg is the gas particle mean free
path. The above formula was extended to solids while in-
cluding two contributions to the thermal conductivity, one
denoted as kph due to lattice vibrations (predominant in
the case of nonconductors) conveyed by phonons at the
speed of sound and the other ke due to the motion of free
electrons (predominant in the case of sufficiently puremet-
als) [6]. This yields the following expression for ke [3, 5, 6]:

ke =
1
3 veCeλ (2)

where the subscript e refers to electrons, Ce is the electron
heat capacity per unit volume and λ denotes the free elec-
tron mean free path.

The assumptions and limitations of the Drude free
electron theory for metals are discussed in Ashcroft and
Mermin [5]. Drude theory provides an expression for the
thermal conductivity of metals similar to the one obtained
formonatomic ideal gaseswith theMaxwell-Boltzmannve-
locity distribution. Drude theory successfully predicts the
Wiedemann-Franz law despite the fact that the electronic
heat capacity ofmetals is in disagreementwith experimen-
tal findings. TheSommerfeld theory extends theDrude the-
ory, and instead uses quantum Fermi-Dirac statistics [5,
6] leading to a linear dependency of the electronic heat
capacity on temperature in agreement with experiments,
and to satisfy the Wiedemann-Franz law, ve is taken as
the Fermi velocity vF [5, 6]. A rigorous approach using the
transport equation along with the concept of quasiparti-
cles yields ve = vF for a free electron gas [4].

Metals have high thermal conductivities. The effective
thermal conductivity of composite solids can be estimated
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using the classical formula of Maxwell [1] involving the
thermal conductivities of the two solid materials and the
volume fraction of the dispersed phase. Nanofluids con-
sist of nanoparticles dispersed in a fluid. The enhance-
ment of the thermal conductivity of the fluid has been
subject to numerous studies. Recent reviews are provided
in [7, 8] and in the references therein. Most formulas for
the effective thermal conductivities involve the thermal
conductivity of the nanoparticles material. A theoretical
model for the effective thermal conductivity of the nano-
material involving other physical properties of the nano-
material than the thermal conductivity, while not requir-
ing any empirical fitting parameter, is provided in [8]. Pos-
sible mechanisms for thermal conductivity enhancement
are discussed in [9], and in [10] based on molecular dy-
namics simulation. The impact of Brownian motion on
the thermal conductivity enhancement factor is discussed
in [9, 11]. Other newmaterials having high thermal conduc-
tivities includemetal foams,materials combiningnanoma-
terials and nanofoams [7], and metallic nanoporous mate-
rials [12].

In the present investigation, we provide a formulation
of the thermal conductivity of metals using the free elec-
tron Fermi gas energy distribution and considering the
net heat flux driven by temperature gradient and result-
ing from random motions of the energy carriers in a free
electron Fermi gas. The derivation is different from the one
given in the literature based on the Boltzmann transport
equation. A brief theoretical background is provided for
the quantumFermi-Dirac distribution used in the Sommer-
feld model for the electronic heat capacity. Next comes a
theoretical formulation of heat conduction, deriving Equa-
tion (2) for the thermal conductivity ofmetalswith ve equal
to the Fermi velocity vF and Ce equal to the Sommerfeld
electron heat capacity using the quantum Fermi-Dirac en-
ergy distribution. Potential applications of the model are
presented in the last section.

2 Theoretical Background
The free electrons are constrained to move in a cubic vol-
ume of volume V with side length L = V1/3. Applying the
Schrödinger equation while restricting the free electrons
to remain in the volume yields quantized energy levels [6]

εk⃗ =
~2
2me

(︁
k2x + k2y + k2z

)︁
(3)

whereme is the electronmass and thewave vector (k⃗) com-
ponents are quantized as

kx = nx
2π
L ; ky = ny

2π
L ; kz = nz

2π
L (4)

where nx, ny and nz are integers. Each state occupies a vol-
ume of (2π)3/V in the k⃗ space allowing for a maximum of
two electrons as limited by the Pauli Exclusion Principle.

The Fermi-Dirac probability of occupancy is given in
Kittel [6] as

f (ε, T) = 1
exp

[︀
(ε − µ) /kBT

]︀
+ 1

(5)

where µ is the chemical potential at temperature T and kB
is Boltzmann constant.

At T = 0 K, the maximum energy level is the Fermi en-
ergy ϵF, with all states of energy levels less than or equal
to ϵF fully occupied by free electrons, leading to [6]

εF =
~2
2me

(︂
3π2 NV

)︂2/3
(6)

where N is the number of free electrons which is equal to
the number of atoms for monovalent metals. Equating the
kinetic energy to the Fermi energy ϵF provides the Fermi
velocity

vF =
(︀
2εF/me

)︀1/2 (7)

Thenumber of states of energy less thanor equal to ϵ is pro-
vided by a similar equation to Equation (6), with Nϵ equal
to the number of states of energy equal to or lower than ϵ,
leading after differentiation to a state density of [6]

D (ε) = dNεdε = V
2π2

(︂
2me
~2

)︂3/2
ε1/2 (8)

Using

N =
∞∫︁
0

D (ε)f (ε, T) dε (9)

leads to µ as a function of ϵF and T [5], showing µ nearly
equal to ϵF for T/TF small, which is typically the case as
the lowest Fermi temperature TF = ϵF/kB for Cs, among
the monovalent metals considered, is 1.83×104 K [6].

The heat capacity per unit volume [6]

Ce =
1
V
d
dT

∞∫︁
0

D (ε)f (ε, T) ε dε (10)

is shown to be given, for T << TF, in [6]:

Ce ∼=
D (εF)
V

∞∫︁
0

(ε − εF)
∂f
∂T dε (11)
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∼= k2BT
D (εF)
V

∞∫︁
−TF /T

x2ex

(ex + 1)2
dx

∼= k2BT
D (εF)
V

∞∫︁
−∞

x2ex

(ex + 1)2
dx = 1

2π
2nkB

T
TF

using the change of variable x = (ε − εF)/kBT, with n de-
noting the concentration of free electrons.

3 Theoretical Formulation of Heat
Conduction and Thermal
Conductivity

Heat transfer is by conduction. The heat flux qy in the
y-direction is related to the temperature gradient by
Fourier’s law

qy = −k
∂T
∂y (12)

where k denotes the thermal conductivity, with heat con-
sidered to be transferred predominantly by free electrons
in the case of sufficiently pure metals [2, 6]. In the metal,
energy carriers (free electrons) may reach plane y from the
top or bottom (Figure 1). The numbers of free electrons of
energy in the range ϵ−ϵ+dϵ (velocity in the range v−v+dv)
are shown in Figure 1 for the top and bottom layers.

Figure 1: Schematic of the volumes enclosing free electrons of
energy ranging between ε and ε + dε, with one sixth of them crossing
the central plane y from both the lower side and upper side during
time τ. qy is the net heat flux in the y-direction.

The temperatures needed to determine f are taken at
mid distances y + τv/2 = y + λ(v/vF)/2 and y − τv/2 = y −
λ(v/vF)/2, where time τ is λ/vF . One sixth of the electrons
cross plane y in both directions, assuming the x, y and z
directions are similar, considering the case of a spherical
or nearly spherical Fermi surface. During time τ, the net

energy crossing the unit area plane y is given by

− k ∂T∂y τ (13)

=
∞∫︁
0

1
6

(︂dnε,y−λ(v/vF )/2
dε −

dnε,y+λ(v/vF )/2
dε

)︂
εdε

where
dnε,y−λ(v/vF )/2

dε = λ
(︀
v/vF

)︀ D (ε)
V f

(︁
ε, T|y−λ(v/vF )/2

)︁
; (14)

dnε,y+λ(v/vF )/2
dε = λ

(︀
v/vF

)︀ D (ε)
V f

(︁
ε, T|y+λ(v/vF )/2

)︁
Using the chain rule,

f (ε)
⃒⃒
T|y−λ(v/vF )/2 − f (ε)

⃒⃒
T|y+λ(v/vF )/2

(15)

= − ∂f∂T
∂T
∂y λ

(︀
v/vF

)︀
and then substituting into Equation (13) yields

−k ∂T∂y τ =
∂T
∂y

∞∫︁
0

−16
D (ε)
V

∂f
∂T λ

2(︀v/vF)︀2 εdε (16)

Substituting for v from ε = me v2/2 and vF from Equation
(7) into Equation (16) yields

k = λ2
6τεF

∞∫︁
0

∂f
∂T

D (ε)
V ε2dε (17)

∼= λ2
6τεF

D (εF)
V

∞∫︁
0

∂f
∂T ε

2dε

Differentiating f with respect to temperature provides

∂f
∂T = 1

T
xex

(ex + 1)2
; x = ε − µkBT

. (18)

Substituting into Equation (17) and using the assumption
T << TF (for which µ ∼= εF) gives

k ∼= λ2
6τεF

(19)

· kB
D (εF)
V

∞∫︁
−TF /T

xex

(ex + 1)2
[︁
x2(kBT)2 + 2xεFkBT + ε2F

]︁
dx

∼= λ2
6τεF

kB
D (εF)
V

⎡⎣(kBT)2 ∞∫︁
−∞

x3ex

(ex + 1)2
dx

+2εFkBT
∞∫︁

−∞

x2ex

(ex + 1)2
dx + ε2F

∞∫︁
−∞

xex

(ex + 1)2
dx

⎤⎦
Given that

e−x

(e−x + 1)2
= e−x × e2x

(e−x + 1)2 × e2x
= ex

(ex + 1)2
(20)
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Table 1: Physical properties and comparison of mean free paths with numerical simulation results at room temperature for Na, K, Cu, Ag and
Au in [14]. Electron valence = 1 [6].

Element Electron
valency

k, W/m·K at
300 K [13]

vF × 10−6,
m/s [6]

Density,
g/cm3 at 298K

[13]

λ, nm (free
electron
theory)

λ, nm [14]
(numerical)

Percent
deviation

Sodium 1 141 1.07 0.97 28.5 30.9 7.6
Potassium 1 102 0.86 0.89 31.2 31.5 0.8
Copper 1 401 1.57 8.96 35.9 39.9 10.1
Silver 1 429 1.39 10.5 49.1 53.3 7.8
Gold 1 317 1.39 19.3 36.2 37.7 3.9

Table 2: Physical properties and comparison of mean free paths with numerical simulation results at room temperature for other metals
in [14].

Element Electron
valency

k, W/m·K at
300 K [13]

vF × 10−6,
m/s [6]

Density,
g/cm3 at 298K

[13]

λ, nm (free
electron
theory)

λ, nm [14]
(numerical)

Percent
deviation

Magnesium 2 156 1.37 1.74 16.0 20 19.8
Calcium 2 200 1.28 1.54 26.9 35.4 24.0
Zinc 2 116 1.82 7.14 7.8 13.7 43.4

Cadmium 2 96.6 1.62 8.65 8.2 15.1 45.9
Aluminium 3 237 2.03 2.7 12.8 18.9 32.3

only the second integral term in Equation (19) can be kept
as the other two functions in the integration signs are odd,
reducing Equation (19) to

k ∼= λ2
6τεF

kB
D (εF)
V

⎡⎣2εFkBT ∞∫︁
−∞

x2ex

(ex + 1)2
dx

⎤⎦ (21)

Using λ/τ = vF, and substituting for Ce from Equation (11)
gives after rearrangement

k ∼= 1
3 λvFk

2
BT

D (εF)
V

∞∫︁
−∞

x2ex

(ex + 1)2
dx = 1

3 λvFCe (22)

which is consistent with Equation (2) with ve equal to vF
and Ce equal to the Sommerfeld electronic heat capacity
per unit volume.

4 Potential Applications of the
Present Approach

The results using Equation (22) (or Equation (2) with ve =
vF) are compared with the numerical results [14] for Na, K,
Cu, Ag andAu in Table 1. The free electronmean free paths
were obtained from Equation (22). Calculation of the elec-
tron heat capacity per unit volume Ce, using Equation (11),

requires the free electron concentration n, determined us-
ing the metal molar mass and density from [6]. The devia-
tions from thepublishednumerical free electronmean free
paths are found to be in the range 0.8%-10.1%with an aver-
age deviation of 6.0%. The results support the applicabil-
ity of the free electron theory to transport properties in the
case of nearly spherical Fermi surfaces [5].

For Mg, Ca, Zn, Cd (electron valence = 2 [6]) and Al
(electron valence = 3 [6]), deviations in the range 19.1%-
45.9% can be observed in Table 2. For aluminium, the de-
viation is 32.3%.

As mentioned in the first section, new materials hav-
ing large thermal conductivity and involving metals in-
clude metallic nanoporous materials, nanofluids contain-
ing metallic nanoparticles, metal foams and materials in-
cluding both nanomaterials and nanofoams. Optimizing
laser-based processing also requires the thermal conduc-
tivity of metals [15]. Main applications of the abovemen-
tionedmaterials and laser-basedprocessing are listed in [7,
15, 16]. The thermal conductivity formula, Equation (22)
(Equation (2) with ve = vF), can be used for metals of
electron valence equal to one like copper as a very good
approximation as mentioned above, and for metals of
higher electron valence like aluminium as a fairly good
approximation. Modeling of the thermal conductivity of
nanowires and hollow nanowires involves electrons trans-
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fer modeling. On the other hand, the model presented in
this paper shows a kinetic approach including quantum
effects that could be extended to treat problems involv-
ing electron scattering such as those occurring in hollow
nanowires [16], and nanowires [12, 17].

5 Conclusion
Energy carriers (mainly free electrons in the case of suffi-
ciently pure metals) reaching a plane from opposite sides
with different levels of energy permit a net flux yielding
heat transfer by conduction. The different directions are
considered equivalent (isotropic model). The validity of
Equation (2), with ve equal to the Fermi velocity vF and
Ce equal to the Sommerfeld electron heat capacity, was
demonstrated in the present investigation for a free elec-
tron Fermi gas using the free electron Fermi gas energy
distribution. The derivation is different from the one pre-
sented in the literature based on the Boltzmann transport
equation. Applications include the use of the metal ther-
mal conductivity formula in expressions estimating the
thermal conductivity of high conductivity materials, and
extension of the present kinetic approach including quan-
tum effects to cases involving electron scattering such as
those occurring in nanowires and hollow nanowires.
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