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Abstract: Finding the geodesic path defined as the short-
est paths between two points on three-dimensional sur-
face P is a well known problem in differential and com-
putational geometry. Surfaces are not differentiable in a
discrete way, hence known geometry algorithms can’t be
used directly - they have to be discretized first. Classic algo-
rithms for geodesic distance calculation such as Mitchell-
Mount-Papadimitriou method (MMP) are precise but slow.
Therefore modern solutions are developed for fast calcu-
lations. One of them is Heat Method which approximates
such paths with some accuracy. In this paper we propose
the extension of Heat Method to reduce the approximation
error. A new formula for calculating value of the parameter
t (wave propagation time step)which outperforms the orig-
inal one in terms of mean and median error is presented.
Also, correlation between mesh properties and best wave
propagation time step aswell as influence of variable node
spacing on heat map based method were thoroughly anal-
ysed.

Keywords: geodesic distances, Heat Method, three-
dimensional meshes, MMP
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1 Introduction
Finding the shortest paths and distances between two
points on the three-dimensional surface P is a well known
problem in differential and computational geometry. Such
path is called geodesic path. Surfaces are not differen-
tiable in a discrete way, hence the known differential ge-
ometry algorithms for calculating geodesic distances can
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not be used directly - they have to be discretized first.
What is more, such surfaces can be considered as three-
dimensional graphs and the algorithms from graph the-
ory can be used. Classic algorithms for geodesic distance
calculation such as Mitchell-Mount-Papadimitriou (MMP)
[10] are precise but slow. Therefore modern solutions are
developed for fast calculations. One of them is the Heat
Method [4] which approximates such paths with some ac-
curacy. In this paper, authors propose the extension of the
Heat Method to reduce the approximation error. Also, the
tests confirming the usefulness of the proposed solution
are presented.

Geodesic distances play an important role in geomet-
ric analysis. There are many applications for them: three-
dimensional meshes processing, registration of inhomo-
geneous solids, surface parameterization, segmentation
or editing shape. All of them require distance calculation
between any pair of points of the input mesh. Therefore,
geodesic paths are used inmany fields, including robotics,
geographic information systems, digital circuits designing,
three-dimensional meshes transformation, radiotherapy,
biomedicine, dentistry and computer graphics. A wide
range of applications as well as the constant demand for
fast calculations of its algorithmsmakes this area relevant
for further research.

The contributions to geodesic distances calculation re-
search presented in this article are:

– Reduction of the mean and median approximation
error in Heat Method through the use of the author’s
method of calculating the wave propagation time
step parameter (parameter t) based on mesh prop-
erties.

– Analysis of correlation between mesh properties
and best wave propagation time step as well as in-
fluence of variable node spacing on heat map based
method.

– A new formula for calculating best value of parame-
ter t (wave propagation time step) for minimal mean
approximation error.

– A new formula for calculating best value of param-
eter t (wave propagation time step) for minimal me-
dian approximation error.

https://doi.org/10.1515/phys-2019-0027
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– Tests verifying the usefulness of proposed formulas
in different scenarios as well as proposition of verifi-
cation set for future research.

We start with a discussion of related work in the field
of geodesic distance calculation methods in the next sec-
tion. This is followed by a description of the main idea
of the Heat Method and parameter t as well as the clas-
sic MMPmethod overview.We then present the evaluation
methodology and its stages construction aswell as the test
sets description (basic set and verification set). Next, test
results and their discussion are presented for both mean
and median approximation error reduction formulas. Fi-
nally, ideas for further development and final conclusions
will be given.

2 Geodesic distances
We start the analysis from the classic algorithm proposed
by three authors: J. Mitchell, D. Mount and C. Papadim-
itriou [10] (MMPmethod). Popular methods based on their
solution and compared to it were selected next. This way,
a 13 method set was created, analysed and divided into
four main categories: methods based on global wave prop-
agation, methods based on PDE (Partial Differential Equa-
tions), graph-based methods and iterative methods (Fig-
ure 1).

Figure 1: Geodesic distances algorithms classification. They were
divided into four main categories based on used technique: meth-
ods based on global wave propagation, methods based on PDE
(Partial Differential Equations), graph-based methods and iterative
methods. Algorithms used in this paper are marked with red frame.

Each algorithm, as well as its family, can calculate the
geodesic distance using a different approach. Due to this,
solutions differ in speed, accuracy, memory requirement
and time complexity. Some of the presented methods re-

turn approximate results, so it is not recommended to use
them in applications demanding high accuracy. However,
due to their speed they are often used in real-time systems,
where accuracy is not a main priority.

The classical algorithm from global wave propagation
based methods proposed by Mitchell et al. [10] (MMP) can
calculate the shortest on-surface path in O(n2logn) time
withO(n2) space required. Surazhsky et al. [12] presented a
detailed implementation of thismethod, proved that it can
return results in O(nlogn) in practice and extended it with
merging operation to obtain a solution in a shorter time
(Surazhsky method). Kappor [8] demonstrated a method
which used the Dijkstra algorithm and wavefront propa-
gation to find shortest path between pairs of points in
O(nlog2n) (Kappor method). Proposed by Chen and Han
[2, 3] this method did not require Dijkstra method and can
solve this problem in O(n2) time (CH method). Xin and
Wang [13] greatly improved this method by filtering use-
less windows and maintaining priority queue which al-
lowed this method to outperform the original version (ICH
method). Recently Xu et al. [15] presented windows orga-
nizing method for MMP [10] and CH [2, 3] algorithms and
results showed that it can improve speed by a factor of 3-10
(FWP method).

From the Partial Differential Equations (PDE) based
methods group it is worth mentioning the Heat Method
that was presented by Crane et al. [4] which used an inno-
vative way of geodesic distances calculations using heat
maps. This algorithm works on regular grids, point clouds
and triangle meshes, making it a breakthrough in practice.
Developed by Kimmel and Sethian [9] the Fast Marching
Method (FMM) for triangulated domains can also calculate
such a path but by solving Eikonal equations in O(nlogn)
steps. Solomon et al. [11] also proposed a novel method for
computing shortest paths on a surface by using optimal
transportation theory (EMD method). Spectral distance to
geodesic distance transition was also covered.

Recently, Ying et al. [16] demonstrated a completely
new graph based method which solves the geodesic prob-
lem from a local perspective by creating an undirected
graph on which one can find the shortest path using exist-
ing efficient algorithms (SVG method). Aleksandrov et al.
[1] proposed constructing a graph by placing m Steiner’s
points along each edge of the mesh therefore the short-
est path can be found by using existing graph methods in
O(mnlog(mn) + nm2). In contrast to well-studied single-
source methods Xin et al. [14] presented anefficient al-
gorithm to approximate all-pairs geodesic distances in
O(1) time with an additional processing step which takes
O(mn2logn) (Xin Ying He method).
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Kanai and Suzuki [7] developed an iterative method
which is fast, easy to implement and gives high approxi-
mation accuracy (Kanai Suzuki method). It was compared
to extended CHmethod and it calculated distance roughly
100 times faster.

3 Heat Method and MMP
Our research was based on two existingmethods for calcu-
lating distance on three-dimensional meshes:

– Heat Method [4], modern fast algorithm for geodesic
distance approximation - this method was modified
by the authors of this paper.

– MMP [10], classic and precise algorithm - used
in evaluation as reference data for calculated dis-
tances.

Both methods are important for further analysis hence
they will be described in this section in more detail.

3.1 Heat Method

The algorithm calculates distance on the surface from the
source point to all other possible points. This method is
simple to implement and can be used in awide range of ap-
plications. It does not depend onmesh representation and
can calculate distances on regular grids, point clouds or
triangle meshes. This algorithm can be applied whenever
basic derivatives known fromvector calculus are available:
gradient, divergence and Laplace operator. The method
has three main steps:

1. Integrating the heat flow u̇ = ∆u for time t.
2. Evaluating the vector field X = − ∇ut

|∇ut|
.

3. Solving the Poisson equation ∆ϕ = ∇ · X.

Every step is dependent on few differential operators
and several input parameters that can be changed by the
user. Available options are:

– input mesh (.obj format),
– text file with source vertices indices (single source

points were used in this paper),
– output mesh (extra option to visualize isolines),
– text file with reference distance values,
– boundary condition [0 − 1], where 0 yields pure-

Neumannconditions and 1 yields pure-Dirichlet con-
ditions (according to authors on surfaces without
boundaries selecting 0 is optimal),

– parameter t - time step (always positive)

Equation 1 shows value of t proposed by authors,
which was based on mean spacing between vertices
(nodes).

t = (e)2 =
(︂∑︀N−1

i=0 ei
N

)︂2
, where (1)

e - edge length
N - number of edges

Impact of the parameter t on the distance calculations
accuracywas pointed out as one of the further exploration
possibilities. Heat method relies on time step t and such
analysis could provide a different value which leads to bet-
ter approximations. Moreover, because of its short calcula-
tion time, Heat Method can be used in a real-time system
eg. rendering or pathfinding in computer games as well
as modern solution for photorealistic computer graphics
such as streamed photonmapping [17] or physically based
area lightning [18]. This gives a wide range of applications
of this method.

3.2 MMP

MMP method algorithm calculates the shortest path be-
tween the source point and the target point on the polygo-
nal surface. Thedistance ismeasuredusingEuclideanmet-
ric and the path is on the surface. Time complexity of the
algorithm isO(n2logn) while requiringO(n2) space,where
n is number of surface edges. After initialmesh processing,
the distance from source point to any other point can be
calculated using standard techniques in O(nlogn). The ac-
tual shortest path canbe returned inO(k+logn), where k is
the number of polygons passed-through by the path. This
method also generalizes the case of many source points in
order to build a Voronoi diagram on a three-dimensional
surface [10].

The algorithm parameters are:

– input mesh,
– source vertex index [0 − n), where n is number of

mesh vertices,
– destination vertex index (when it is not defined, al-

gorithm calculates distances to every possible point)

MMPmethod was used in our research to calculate ex-
act distances from the source point to all other possible
points. Results created in this way became reference data
and were used to calculate distance errors values in modi-
fied Heat Method.



266 | A.Wróblewski and J. Andrzejczak

4 Methodology
The aim of the performed research was to analyse impact
of parameter t on the accuracy of calculated distance on
surfaces with variable node spacing. Such analysis will al-
low to propose a new value of t which could lead to less
error-prone results.

Two tests were conducted. The goal of each of them
was finding the formula for calculating the value of time
step t thatminimized the geodesic distance approximation
error in Heat Method:

– the best value of parameter t for mean approxima-
tion error

– the best value of parameter t for median approxima-
tion error

Approximation error was calculated as a difference
between precise distance values calculated using MMP
method and values calculated using the Heat Methodwith
particular parameter t value. Mean approximation error
represents the mean value of approximation error for all
the vertices in particular mesh¹. By analogy, median ap-
proximation error for specific mesh is calculated².

To achieve the goal we had to develop a process which
divided tasks into smaller parts. Consequently each test
had two sessions. In the first one we wanted to obtain a
new formula for the parameter t (best or maximum one).
Second session focused on new formula verification. All
steps were as follows:

– First session:

1. Find the lowest error (mean or median) and
corresponding value of t for each mesh from
basic set.

2. Create correlation table of t value with mesh
properties.

3. Choose the most significant correlation.
4. Develop a formula for calculating the param-

eter t value based on mesh properties values
and their correlation with the parameter t val-
ues.

– Second session:

1. Verify the newly created formula on basic set
and verification set.

1 Mean approximation error will be called mean error later in the
article for short
2 Median approximation error will be calledmedian error later in the
article for short

2. Analyse the results.

For each session we prepared a set of three-
dimensionalmeshes: basic set and verification set.Models
in both sets will be triangle meshes. Basic set is a special
collection with 5 meshes of one 3D model. In order to
reduce the number of external factors that might affect
results, we focused only on edge length diversity. Verifica-
tion set is a collection of models with various shapes and
mesh topology so it was possible to check the solution in
many different cases.

It is worthmentioning that during our research two ad-
ditional tests were conducted to find a maximum param-
eter t value for both: mean and median error. This maxi-
mum value was defined as the t value that produces triple
value of minimum error (mean or median respectively) on
at least half of all mesh vertices. It can be taken as the far
right value of the search set. By using itwe canbe 95%sure
that best parameter t value is lower than it. At the same
time this value is not too big making the created set not
too big. In our research it was calculated to verify if the
parameter t value calculated using newly created formula
is not only close to best possible value but also not bigger
than the maximum value. What is more, such maximum
t value can be used as a stop condition for iterative meth-
ods that are searching for parameter t value that givesmin-
imum approximation error. Those two additional tests are
not described in detail in this paper to focus on the new
formula for the best parameter t value.

1.obj
g = 1.079

2.obj
g = 1.137

3.obj
g = 1.208

4.obj
g = 1.296

5.obj
g = 1.349

Figure 2: All meshes from basic set. Despite very similar shape,
each mesh vary in edge length what is visible in anisotropy level
and mesh topology. From left: original mesh 1.obj, mesh 2.obj with
3% of removed vertices, mesh 3.obj with 6% of removed vertices,
mesh 4.obj with 9% of removed vertices and mesh 5.obj with 12% of
removed vertices, g - anisotropy level
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4.1 Basic set

To properly test the impact of edge length diversity on pa-
rameter t the basic set was created. The model that was se-
lected is a well known in computer graphics rabbit - Stan-
ford Bunny. It has 14290 vertices, 42864 edges and 28576
faces.

Meshes from this set have various anisotropy level³
and different edge lengths. Sizes of all tested rabbits were
the same - they can be inscribed in spherewith constant di-
ameter. Itwas assumed that the shapeof allmeshes should
be as close as possible to each other (Figure 2).

Process of creating each mesh was follows:

– n * 3% of vertices were deleted from each mesh
(where n is mesh number) (Figure 3)

– Holes were filled with new polygons.
– Every newly created polygon was triangulated to

keep shape of model similar to the original one.

Sometimes a set of triangleswith high anisotropy level
were created after triangulation of new polygons. Those
cases were properly corrected to not affect shape, shading
and attributes of mesh (Figure 4).

The step of size of 3% vertices from original mesh al-
lowed to remove 12% of vertices from the last (fifth) mesh.
A bigger step caused a significant deformation of shapes
and according to assumptions allmeshes should be as sim-
ilar as they could be. What is more, from this we managed
to achieve a linear increase of mesh anisotropy and stan-
dard deviation of the edge length (Figure 5).

In order to minimize additional factors that might af-
fect results it was decided that the source point of each
mesh from the basic set will be always the most protrud-
ing vertex on left side of Y axis (Figure 6).

(1) input mesh
(100% vertices)

(2) random select
3% vertices

(3) remove selected
vertices

Figure 3: Process of removing mesh vertices in basic set. From left:
input mesh, randomly selected 3% of vertices, mesh with removed
selected vertices

3 Anisotropy levelwas calculated based on formula given in [15]where
detailed description of anisotropy for 3D meshes can be found.

Figure 4: A vertex that negatively affects shading is visible on the
left. Every vertex like that was corrected to avoid it

Figure 5: Linear increase of mesh anisotropy (on left) and standard
deviation of the edge length (on right). Trend line is marked as Red
dashed line

Figure 6: The most protruding vertex in Y axis was selected as
source point for basic set
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Table 1: Basic set meshes properties - vertices, faces and
anisotropy. By removing more and more vertices from meshes they
have less edges and triangles - due to that the anisotropy level in-
creases. Nv - number of vertices; Ne - number of edges; Nf - number
of faces; vs - source vertex index; g - anisotropy level

Model
name

Nv Ne Nf vs g

1.obj 14290 42864 28576 7649 1.079
2.obj 13848 41538 27692 7396 1.137
3.obj 13398 40188 26792 7135 1.208
4.obj 12863 38582 25720 6816 1.296
5.obj 12478 37428 24952 6560 1.349

Table 2: Basic set meshes properties - edges. Every property value
increases but it is not always linear increase - there is a significant
difference between 3.obj and 4.obj, especially in variance, standard
deviation and median absolute deviation. e - average edge length;
Var(e) - variance of edge length; σe - standard deviation of the edge
length; De - median absolute deviation of the edge length

Model
name

e Var(e) σe De

1.obj 0.21585 0.00062 0.02505 0.01959
2.obj 0.22093 0.00152 0.03904 0.02434
3.obj 0.22666 0.00265 0.05155 0.03062
4.obj 0.23393 0.00464 0.06813 0.03933
5.obj 0.23892 0.00531 0.07287 0.04502

Table 3: Edges length and angles for basic set meshes. The short-
est edge length of each mesh remains the same. 4.obj differs from
the other meshes - it has the longest edge and the biggest interior
angle of triangle from entire set therefore it does not maintain lin-
earity. mine - the shortest edge length; maxe - the longest edge
length; mine

maxe
- ratio of shortest to longest edge; minα - the small-

est interior angle of triangle; maxα - the biggest interior angle of
triangle

Model
name

mine maxe mine
maxe minα maxα

1.obj 0.1262 0.3296 0.38306 35.39 102.31
2.obj 0.1262 0.8303 0.15206 1.33 177.27
3.obj 0.1262 0.8848 0.14269 0.99 177.40
4.obj 0.1262 1.2462 0.10131 0.33 178.96
5.obj 0.1262 1.1172 0.11301 0.72 178.47

Despite increasing edge length diversity, the number
of mesh triangles was getting smaller. We did not take pro-
cessing time into account, because it should be compared
only with the same amount of input data.

Table 4: Spread of edge length values for basic set. Q1(e) - first
(lower) quartile of edge length; Q2(e) - second quartile (median)
of edge length; Q3(e) - third (upper) quartile of edge length; QDe -
quartile deviation (semi-interquartile range) of edge length

Model
name

Q1(e) Q2(e) Q3(e) QDe

1.obj 0.20017 0.21542 0.23136 0.0155
2.obj 0.20098 0.21629 0.23331 0.0161
3.obj 0.20145 0.21709 0.23566 0.0171
4.obj 0.20216 0.21824 0.23863 0.0182
5.obj 0.20289 0.21926 0.24214 0.0196

All the data from the basic set can be found in tables
Table 1, Table 2, Table 3 and Table 4. We selected those
properties to test the problem from original method - im-
pact of edge length diversity on parameter t - in the best
possible. Properties considered in this paper were:

– Nv - number of vertices,
– Ne - number of edges,
– Nf - number of faces,
– vs - source vertex index,
– g - anisotropy level,
– e - average edge length,
– Var(e) - variance of edge length,
– σe - standard deviation of the edge length,
– De - median absolute deviation of the edge length,
– mine - the shortest edge length,
– maxe - the longest edge length,
– mine

maxe - ratio of shortest to longest edge,
– minα - the smallest interior angle of triangle,
– maxα - the biggest interior angle of triangle,
– Q1(e) - first (lower) quartile of edge length,
– Q2(e) - second quartile (median) of edge length,
– Q3(e) - third (upper) quartile of edge length,
– QDe - quartile deviation (semi-interquartile range)

of edge length

4.2 Verification set

In order to check the proposed solution in different condi-
tions a verification set consisting 30 models with various
shapes were created. Each of the chosen mesh was often
used in many papers and analysis of computer graphics
algorithms⁴. Mostly they were created by scanning real ob-
jects with three-dimensional scanners. Next, from point

4 Verification set can be accessed at DOI: 10.13140/RG.2.2.34777.77923
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Table 5: Selected properties of verification set. g - anisotropy level; e - average edge length; Var(e) - variance of edge length; σe - standard
deviation of the edge length; maxe - the longest edge length

Model name g e Var(e) σe maxe

(1) armadillo 1.7725 0.503 0.0421 0.205 2.5598
(2) bee 1.5461 0.461 0.0419 0.204 2.6388
(3) bimba 1.6924 0.552 0.0422 0.205 1.4478
(4) buddha 2.5003 0.682 0.1419 0.376 3.6185
(5) camel 1.9755 0.213 0.0221 0.148 1.0632
(6) cane 1.2627 0.125 0.0015 0.039 0.6723
(7) cow 2.5022 0.437 0.1266 0.355 3.1916
(8) david 3.0191 0.340 0.0620 0.249 7.2493
(9) doll 1.5435 0.216 0.0188 0.137 2.4440
(10) duck 1.6267 0.184 0.0048 0.069 1.0212
(11) fandisk 1.3409 0.100 0.0005 0.023 0.2487
(12) fandisk2 1.3834 1.033 0.0796 0.282 2.5778
(13) fertility 1.0704 0.107 0.0003 0.018 0.1622
(14) frog 1.9705 0.298 0.1038 0.322 5.9300
(15) gargoyle 1.3510 0.164 0.0032 0.057 1.0673
(16) genus3 1.6391 0.773 0.0487 0.22 1.6547
(17) homer 1.8007 0.344 0.0475 0.218 2.5818
(18) horse 1.4912 0.096 0.0007 0.028 0.7754
(19) kitten 1.0810 0.218 0.0006 0.025 0.3157
(20) lion 3.3114 0.187 0.0453 0.212 5.4070
(21) lucy 2.1592 0.129 0.0036 0.06 0.8617
(22) max planck 1.7776 0.624 0.0559 0.236 2.9817
(23) monk 3.266 0.153 0.0146 0.121 2.1356
(24) mouse 1.6792 0.230 0.0087 0.093 0.9612
(25) pegasus 1.9811 0.561 0.0696 0.263 2.9984
(26) rockerarm 1.2696 0.123 0.0039 0.062 0.8560
(27) suzanne 1.6780 1.029 0.5095 0.713 4.4345
(28) teapot 2.6823 0.483 0.0809 0.284 0.1318
(29) torso 1.9750 0.204 0.1114 0.105 0.9234
(30) vaselion 1.6263 0.061 0.0034 0.058 5.4038

Figure 7: Examples of source points in verification set. The farther
from the source, the cooler the color gets

clouds they were converted to trianglemeshes. All of them
(as those from the basic set) were the same size - they can
be inscribed in sphere with constant diameter (Figure 8).

The number of faces of each model significantly dif-
fered and ranged from 984 to 400000. Due to this each

mesh varied by eg. number of vertices, edges, anisotropy
level, the smallest and biggest interior angles of triangles.
Some properties of thosemeshes are presented in table Ta-
ble 5.

In the verification set, the first vertex from the mesh
vertices array was selected as the source point. Thanks to
that we introduced random selection of propagation point
(Figure 7).

5 Results and analysis
The results and their analysiswill be divided into twoparts.
The aim of each part was analogical to the aim of the tests
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Figure 8: Verification set consisted of 30 models with various
shapes and mesh topologies

described in previous section - which was finding the for-
mula for calculating:

– the best value of parameter t for mean approxima-
tion error

– the best value of parameter t for median approxima-
tion error

5.1 Best value of t for mean error

5.1.1 Minimum error

First, the approximation error values for the following pa-
rameter t values were calculated. From them, the mean er-
ror was provided for each mesh from basic set. The min-
imum mean error for a given mesh is the global mini-
mum of the function of this dependence (mean error and
t value, Figure 9). Parameter t takes only positive values.
The graph of such a function is similar to modulus of loga-
rithmic function. Thanks to that we can be sure that the
minimum occurs only once and if the value of t will be
greater than it, average error will increase.

Figure 9: Parameter t ↦→mean error graph for each mesh from basic
set. It is similar to modulus of logarithmic function - there is only
one global minimum

We have noticed that in the basic set, extremum of a
function occurs at small values of parameter t. It is worth
mentioning that the minimummean error of each mesh is
getting larger, but the value of t does not converge with it
(Table 6).

5.1.2 Correlation table - mesh property choosing

As a next step, correlation coefficients betweenmesh prop-
erties and parameter t that is giving the minimum mean
error were calculated. For that purpose the Pearson cor-
relation was used. The shortest edge length was not used
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Table 6:Minimummean errors and corresponding parameter t val-
ues for each mesh from basic set. Parameter t does not increase
linearly with minimummean error value. t - time step; minη - min-
imummean error; tminη - parameter t giving the minimummean
error

Model name minη [%] tminη
1.obj 0.53031 0.0254
2.obj 0.60318 0.0361
3.obj 0.7676 0.0486
4.obj 0.85488 0.0749
5.obj 0.92221 0.064

in correlation table because it is the only property that re-
mains the same for each mesh. The strongest positive cor-
relationwaswith standarddeviation of the edge length - al-
most 96%. This property was used as the most significant
in the developed formula (Table 7).

5.1.3 Developing formula and verification

Next, a formula to calculate the value of t dependent on
standard deviation of the edge length was developed (Eq.
2).

t = σe =

√︃∑︀N−1
i=0 (ei − e)

2

N , where: (2)

e - edge length
N - number of edges
e - average edge length

The newly developed formula was tested on the basic
and verification sets. Figure 10 shows percentage gain us-
ing the proposed value of t based on standard deviation of
the edge length. Gainwas calculated by dividing twomean
approximation error values: one obtained using parame-
ter t value calculated with the new formula (Eq. 2) and the
second one obtained using t value from original formula
(Eq. 1). We choose a 95% confidence interval. For 21 mod-
els we can be 95% certain that we got a lower mean error
then the original formula used in [4]. Original value of t
provided lower mean error for 10 models. Only for 4 cases
we cannot be sure which solution is better.

5.1.4 Analysis

Figure 11 shows how best, original and calculated using
the new formula parameters t are shaped. For 16 models

Table 7: Pearson correlation coeflcients between mesh properties
and parameter t that is giving the minimummean error. ρ(tminη ) -
correlation with parameter t that is giving the minimummean
error; tminη - parameter t that is giving the minimummean error;
σe - standard deviation of the edge length; Var(e) - variance of
edge length; maxe - the longest edge length; g - anisotropy level;
e - average edge length; De - median absolute deviation of the edge
length; Q2(e) - second quartile (median) of edge length; Q1(e) - first
(lower) quartile of edge length; Q3(e) - third (upper) quartile of edge
length; QDe - quartile deviation (semi-interquartile range) of edge
length; maxα - the biggest interior angle of triangle; minα - the
smallest interior angle of triangle; minemaxe

- ratio of shortest to longest
edge; vs - source vertex index; Nv - number of vertices; Ne - number
of edges; Nf - number of faces

Mesh property ρ(tminη )

tminη 1
σe 0.9593

Var(e) 0.9501
maxe 0.942
g 0.9346
e 0.9277
De 0.9254
Q2(e) 0.9076
Q1(e) 0.8999
Q3(e) 0.8827
QDe 0.8757
maxα 0.6933
minα −0.6956
mine
maxe -0.7973
vs −0.9201
Nv −0.9279
Ne −0.928
Nf −0.9281

the value of best parameter twas between the original and
proposed one, for 10 models it was smaller than both of
them and for 9 it was larger. Extra attempt was made to
adapt formula for these cases. We developed a second for-
mula based on the average of standard deviation and aver-
age edge length (Eq. 3).

t = (e)2 + σe
2 =

(︂∑︀N−1
i=0 ei
N

)︂2
+

√︃∑︀N−1
i=0 (ei − e)

2

N
2 , (3)

where:
e - edge length
N - number of edges
e - average edge length
σe - standard deviation of the edge length
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By using the improved formula (Eq. 3) we managed to
get better results than with the first one (Eq. 2). In fact, we
still can be 95%certain thatwe got lowermean errors for 21
models (in most cases gain value is higher than 20%), but
this time original value of t is better in only 4 cases. For 10
models we cannot be sure which solution is better (Figure
12).

5.2 Best value of t for median error

5.2.1 Minimum error

For each mesh from basic set the minimum median error
and corresponding value of t were found. Median errors

Figure 10: Percentage gain within the meaning of mean approxi-
mation error of using parameter t calculated based on standard
deviation of the edge length. For 10 models it allows to obtain lower
mean errors. Gain was calculated by dividing two mean approxima-
tion error values: one obtained using parameter t value calculated
with the new formula (Eq. 2) and the second one obtained using t
value from original formula (Eq. 1). 95% confidence interval values
are also presented

Figure 11: Best, original and proposed parameters t for each mesh
from basic and verification sets. For many models value of best
parameter t is between original and proposed value.

Figure 12: Percentage gain within the meaning of mean approxi-
mation error of using parameter t calculated based on average of
standard deviation and average edge length. Only for 4 models
original value of t allows to obtain lower mean errors. Gain was
calculated by dividing two mean approximation error values: one
obtained using parameter t value calculated with the new formula
(Eq. 3) and the second one obtained using t value from original
formula (Eq. 1). 95% confidence interval values are also presented

are smaller thanmean errors but similarly parameters t do
not convergewith them. It is worth to notice thatminimum
median error for 4.obj is smaller than for 3.obj (Table 8).

Table 8:Minimummedian errors and corresponding parameter t
values for each mesh from basic set. miñ︀η - minimummedian error;
tmiñ︀η - parameter t giving the minimum median error

Model name miñ︀η [%] tmiñ︀η
1.obj 0.37351 0.0246
2.obj 0.45332 0.0365
3.obj 0.60543 0.0553
4.obj 0.59709 0.0815
5.obj 0.70536 0.0613

5.2.2 Correlation table - mesh property choosing

Eight of themesh properties strongly correlatewith param-
eter t that is giving the minimummedian error (over 80% -
positive correlation). It is worth mentioning that the order
of properties is almost the same as for mean error - only
maxe switched position with Var(e). Standard deviation
of the edge length was selected as most significant one -
96% positive correlation (Table 9).
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Table 9: Pearson correlation coeflcients between mesh properties
and parameter t that is giving the minimummedian error. ρ(tmiñ︀η ) -
correlation with parameter t that is giving the minimummedian
error; miñ︀η - parameter t that is giving the minimummedian error;
σe - standard deviation of the edge length; maxe - the longest edge
length; Var(e) - variance of edge length; g - anisotropy level; e -
average edge length; De - median absolute deviation of the edge
length; Q2(e) - second quartile (median) of edge length; Q1(e) - first
(lower) quartile of edge length; Q3(e) - third (upper) quartile of edge
length; QDe - quartile deviation (semi-interquartile range) of edge
length; maxα - the biggest interior angle of triangle; minα - the
smallest interior angle of triangle; minemaxe

- ratio of shortest to longest
edge; vs - source vertex index; Nv - number of vertices; Ne - number
of edges; Nf - number of faces

Mesh property ρ(tmiñ︀η )
tmiñ︀η 1
σe 0.9113
maxe 0.8956
Var(e) 0.8862
g 0.8708
e 0.86
De 0.8548
Q2(e) 0.832
Q1(e) 0.826
Q3(e) 0.799
QDe 0.7897
maxα 0.7017
minα −0.705
mine
maxe −0.7967
vs −0.8518
Nv −0.8638
Ne −0.8639
Nf −0.8641

5.2.3 Formula developing and verification

With usage of linear regression we developed a formula to
calculate the value of t dependent on standard deviation
of the edge length (Eq. 4). The proposed equation could
be simplified (by omitting the constant) but it stayed un-
changed during tests.

t = 1.01204σe − 0.0001 (4)

= 1.01204 *

√︃∑︀N−1
i=0 (ei − e)

2

N − 0.0001, where:

e - edge length
N - number of edges
e - average edge length

The newly developed formula was tested on the basic
and verification sets. Figure 13 shows the percentage gain
using proposed value of t based on standard deviation of
the edge length. Gain was calculated by dividing two me-
dian approximation error values: one obtained using pa-
rameter t value calculated with the new formula (Eq. 4)
and the second one obtained using t value from original
formula (Eq. 1). We choose 95% confidence interval. For
19 models we can be 95% certain that we got lower a me-
dian error then the original formula used in [4]. The origi-
nal value of t provided lower median errors for 11 models.
Only for 5 cases we cannot be sure which solution is better.

Figure 13: Percentage gain within the meaning of median approxi-
mation error from using parameter t based on standard deviation
of the edge length. For 11 models it allows to obtain lower median
errors. Gain was calculated by dividing two mean approximation
error values: one obtained using parameter t value calculated with
the new formula (Eq. 4) and the second one obtained using t value
from original formula (Eq. 1). 95% confidence interval values are
also presented

5.2.4 Analysis

Graphs of best, original and proposed parameters t were
similar for median error (Figure 14) and mean error (Fig-
ure 11).We decided to check if the solution applied for find-
ing formula for parameter t that is giving minimum mean
error could be used here. For 13 models the value of best
parameter t was between the original and proposed one,
for 12 models it was smaller than both and for 10 it was
larger. Theoretically adjusting the formula should be prof-
itable (Eq. 5).

t = (e)2 + 1.01204σe − 0.0001
2 (5)
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Figure 14: Best, original and proposed parameters t for each mesh
from basic and verification sets

=

(︂∑︀N−1
i=0 ei
N

)︂2
+ 1.01204 *

√︃∑︀N−1
i=0 (ei − e)

2

N − 0.0001

2 ,

where:
e - edge length
N - number of edges
e - average edge length

By using the improved version of the formula (Eq. 5)
we managed to get better results than with the previous
one (Eq. 4). This time we can be 95% certain that we got
lower median errors for 18 models (one less than results
with usage of Eq. 4, inmost cases gain value is higher than
30%). This time the original value of t is better in only 6
cases. For 11 models we cannot be sure which solution is
better (Figure 15).

6 Conclusion
The aim of our research was to analyse and modify a
methodwhichusedheatmaps for calculating distances on
three-dimensional surfaces. Heat Method algorithm was
modified by using a new formula for calculating the value
of parameter t. During this work, over a dozen mesh prop-
erties related to variable node spacing were analysed in
correlation with parameter t. In result, two new formu-
las for calculating parameter t based on the average of
standard deviation and average edge length for a partic-
ular mesh were proposed. Then, tests were conducted to
verify the proposed solution with various meshes. Results
have shown that both new formulas proposed in this arti-
cle provide better or similar results for mean and median
approximation errors than original one inmost cases (gain

Figure 15: Percentage gain within the meaning of median approx-
imation error of using parameter t based on average of standard
deviation and average edge length. Only for 6 models original value
of t allows to obtain lower median errors. Gain was calculated by
dividing two mean approximation error values: one obtained using
parameter t value calculated with the new formula (Eq. 5) and the
second one obtained using t value from original formula (Eq. 1).
95% confidence interval values are also presented.

value usually bigger than 20-30%). Thanks to that, we can
use a fast algorithm for calculating geodesic distance with
higher accuracy than before. Also, the verification set pro-
posed in this paper can be used for future research in the
area of geodesic distance calculation.
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