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Abstract: A qualitative comparison of three, popular and
most widely known numerical integration methods in
terms of atmospheric single scattering calculations is pre-
sented. A comparison of Midpoint, Trapezoidal and Simp-
son’s Rules taking into account quality of a clear sky gener-
ated images is performed. Methods that compute the atmo-
spheric scattering integrals use Trapezoidal Rule. Authors
try to determine which numerical integration method is
the best for determining the colors of the sky and check
if Trapezoidal Rule is in fact the best choice. The research
does not only conduct experiments with Bruneton’s frame-
work but also checks which of the selected numerical inte-
gration methods is the most appropriate and gives the low-
est error in terms of atmospheric scattering phenomenon.
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1 Introduction

Atmospheric scattering effects are very important for many
applications that require high realism of the outdoor
scenes. It becomes a crucial aspect affecting perception
quality [1] of the contemporary games and virtual environ-
ments [2]. The sky color is a natural indicator of the time
of a day. Recent methods such as [4, 6] calculate colors
of the sky in real time (16ms). These methods use Trape-
zoidal Rule for integration the single scattering equation
and then save this data into a precomputed look up table
(LUT) as to retrieve it in a real time for image synthesis.
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In this paper, a qualitative comparison of three, pop-
ular numerical integration methods to compute the sin-
gle scattering integral is presented. In provided research,
three methods have been chosen, namely Midpoint, Trape-
zoidal and Simpson’s Rules. These three methods are fairly
popular in Computer Graphics field. Atmospheric scatter-
ing is calculated using backward ray tracing algorithm tak-
ing into account variable light conditions [5]. Then, these
methods are compared with each other taking into account
quality of the generated images of the sky. As a subproduct
of this research, the fidelity of the framework presented
by Bruneton in [3] is being checked. Authors try to deter-
mine which numerical integration method is the best for
calculating the colors of the sky and check if Trapezoidal
Rule is in fact the best choice. This research does not only
conduct experiments with Bruneton’s framework but also
checks which of the selected numerical integration meth-
ods is the most appropriate and gives the lowest error in
terms of atmospheric scattering phenomenon.

2 Atmospheric scattering
background

In this section, the physical background of atmospheric
light scattering as well as mathematical model of this phe-
nomenon is described.

2.1 Physical background

In computer graphics one can distinguish two types of
light scattering — Rayleigh and Mie scattering. Rayleigh
scattering occurs for particles much smaller than the wave-
length of light and it can be described by Condition 1 [4].

A
r< o 1)

Here r is a radius of particle (e.g. oxygen, carbon diox-
ide molecules), and A is wavelength of light. On the other
hand, when particles are bigger than A, Rayleigh scattering
smoothly transitions to Mie scattering. This type of scatter-
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ing considers aerosols as well as small steam, ice, dust par-
ticles.

The major difference between these two types of scat-
tering is that intensity of Rayleigh scattering depends on
the wavelength of scattered light, whereas Mie scattering
does not. This implies that the blue sky color is the effect
of Rayleigh scattering combined with a lack of violet pho-
ton receptors in people’s retinas [7]. On the other hand, the
grey tones of halos around the sun, clouds, fog are caused
by Mie scattering.

What is more, one has to define single and multiple
scattering terms. Single scattering means that only one
light scattering event [8] is taken into account — event af-
ter which some part of light traveling towards the eye is de-
flected away from the viewing direction (out-scattering) or
is deflected back on the viewing direction (in-scattering).
On the other hand, with multiple scattering a number of
light scattering events are taken into account. In this re-
search only the single scattering term is taken into account
as it is less complex than multiple scattering and it is suffi-
cient in terms of verification of the stated hypothesis.

2.2 Mathematical model

In this section equations of physically based mathematical
model are presented that were used to calculate single at-
mospheric scattering. The equations are based on the ones
that were proposed by Nishita [4, 9].

2.2.1 Scattering intensity

Scattering intensity for Rayleigh/Mie scattering is de-
scribed by Equation 2. It expresses the amount of light that
has been scattered exactly at a point P (see Figure 1) to-
wards direction V and with incident light direction L.

Is, (4,6, P) = II(M)pr,m(M)Fr u(0)Br (V) 2

In the above equation, A is the spectral wavelength of
the light, I;(A) stands for the spectral intensity of the in-
coming light [10], pg p(h) is the Rayleigh/Mie density func-
tion, Fp y(6) is phase function for the angle 6 between v
and L, and Bx.m(A) is scattering coefficient.

The density function pg p(h) expresses how density of
air particles decreases in dependence of altitude h. This
function is defined by Equation 3.

prm(h) = exp(—%) 3

In the above equation, h is the altitude of the point P
above the ground and Hp jr are scale heights for Rayleigh
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and Mie scattering respectively. Proposed solution uses
Hi = 8000m and Hy; = 1200m as Bruneton et al. sug-
gested in [6].
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Figure 1: Schematic of how the single scattering is being calculated.
The amount of light that enters the viewer’s eye along viewing
direction ¥V (from P, to P,) is integrated. When viewer is inside

the atmosphere then P, = Pg. Next, incoming light L enters the
atmosphere at point P¢. Then the amount of light from the sun
(from P to P¢) that reaches point P (at altitude h) along viewing
direction V is integrated

2.2.2 Scattering coefficients

Rayleigh’s scattering equation provides scattering coeffi-
cients for a volume for which we know its molecular den-
sity. These coefficients are given by Equation 4.

813 (n? - 1)2

3NAG ®)

Br() =

Here superscript S indicates that it is a scattering co-
efficient, subscript R means that it is a coefficient for
Rayleigh scattering, A is the given light’s wavelength, n is
index of refraction of air and N is molecular density at sea
level. As one can see, this equation depends on the wave-
length. If the wavelength is short, the value of 53 will be
higher and if the wavelength is long, the value of 3 will
be lower.

This explains why the sky is blue during the day and
red-orange at the dawn or dusk. During the day, when the
sun is in the zenith, light has relatively short distance to
travel before reaching observer’s eye and therefore blue
light is being scattered towards the eye and sky appears
blue (green and red light need to travel bigger distance to
be scattered). On the other hand, at sunrise or sunset, light
has to travel much longer distance than in the previous
scenario. Before light reaches the observer’s eye, most of
the blue light has been scattered away, and only red-green
light will have a chance to reach observers eye.
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Mie scattering is similar to Rayleigh, but it applies to

particles that are much greater than the scattered wave-

length. These particles (aerosols) may be found on low
altitudes of the Earth’s atmosphere. Therefore, equation
for Mie scattering coefficients needs to be slightly different
(Equation 5).

s o 8m(n?-1)?
Bu0 = 3N ()

Here subscript M stands for Mie scattering and the rest

of the parameters are the same as in the Rayleigh scatter-

ing coefficient equation.

2.2.3 Phase functions

The phase function is describing angular dependency of
scattered light in respect to the direction of incoming light
when its ray collides with a particle. This function takes as
a parameter angle 6 which is the angle between scattered

light ray and incoming light ray. The result of this func-
tion reflects the amount of light that has been scattered.

Equations 6 and 7 show phase functions for Rayleigh and

Mie scattering respectively that were used in proposed so-

lution. 3
Fr(0) = mu +cos2(0)) (6)

_ 3 (1-g)(1+cos(9))
O B 2 g1 + g7 - 25c08(0)]

Here parameter g € (-1;1) is an asymmetry factor

@)

which describes the anisotropy of the medium (if it is for-

ward or backward scattering). It should be noted that Mie

phase function [11] is very complex and can not be com-

puted using single analytic function. What is shown in
Equation 7 is Henyey-Greenstein’s approximation of the
Mie phase function, which is used in proposed solution.

2.2.4 Optical depth
Optical depth, or transmittance expresses how much the
light is being attenuated after traveling the distance |P;, —

P;| in a medium. Equation 8 defines the transmittance.

h(P)

Py
t(Pa, Py, A) = B () / et dP ®)
P,

Parameter A is the wavelength of attenuated light. Op-
tical depth attenuation is the effect of out-scattering in par-

ticipating media.
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2.2.5 Single scattering

In previous sections all the components that are required
to compute the single scattering have been introduced. To
compute single scattering, Equation 9 that takes into ac-
count Rayleigh and Mie scattering is used. This equation
defines the single scattering intensity of the light beam
that reaches the observer’s eye, after exactly one scatter-
ing event.

Is, (A, 6, P) = [(OBE (D Fg 1(6) ©)

Py
/(pR’M(h(P)) . e-t(P,Pc,A)—t(P,Pu,A))dP
Pq

In the Equation 9, the term Py is location of the ob-
server’s eye, L is the direction from the light source to sam-
ple point P on V, A is the wavelength of the scattered light.
Point P is the sample point at altitude h. P, is the point
where ray from observer’s position (Pg) enters the atmo-
sphere along the viewing direction V. P, is the point where
the ray from observer’s position exits the atmosphere or
hits the ground. P, is the intersection point of L and the
atmosphere before reaching point P. Note that if the ob-
server is inside the atmosphere then P, = P, (origin of the
ray from the observer’s position is already inside the atmo-
sphere). It is also assumed that all light rays that come to
sample points along V (e.g. point P) are parallel.

The final intensity of single scattered light IlS is ob-
tained by the sum of single scattering for Rayleigh and Mie.
It is described by Equation 10.

IS:ISR+ISM (10)

2.3 Selected numerical integration methods

Three the most widely used numerical integration meth-
ods have been selected, namely Trapezoidal, Midpoint and
Simpson’s Rules [12]. These methods are used to compute
the single scattering integral (Equation 9) inside the atmo-
sphere.

Trapezoidal Rule approximates area under a function
as a trapezoid (straight line segments). Then area of the
trapezoid is being calculated. This method may be also
defined as averaging left and right Riemann Sums. Trape-
zoidal Rule is used by most of the methods computing at-
mospheric scattering integrals.

On the other hand, Midpoint Rule approximates a re-
gion under a function as a rectangle and then computes its
area. It should be noted that this method generates (gener-
ally) bigger numerical error than the Trapezoidal Rule.
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The last considered method is Simpson’s Rule. This
method approximates definite integral of a function using
parabolic arcs (quadratic polynomials). In this rule area
under parabolas are being calculated.

More on different numerical integration methods can
be found in [12].

3 Related work

One of the first papers tackling the subject of simulating
atmospheric scattering was [9]. Nishita et al. presented a
method for calculating atmospheric scattering taking into
account Rayleigh and Mie single scattering. Their method
was based on a set of physically based equations (Nishita’s
model), shown in the previous section, for calculating sin-
gle scattering in the atmosphere. This method does not en-
able user to change interactively atmosphere’s density (e.g.
to visualize different planet’s sky or to distinguish dawn
from dusk) due to precomputed values stored in a lookup
table. The model presented by Nishita et al. was a basis for
most atmospheric scattering research in the field of com-
puter graphics.

Another, the most widely used model is Preetham’s
model [13] introduced in 1999. Unlike Nishita’s model, this
is an analytical model. It was obtained by computing the
sky radiances for many view and sun directions and dif-
ferent turbidity values using Nishita’ model and then they
used nonlinear least square fitting algorithm. Therefore,
his solution was able to calculate colors of the sky in real
time, but had many major drawbacks as was pointed in
[14]. In some specific conditions Preetham’s model was giv-
ing negative values of intensity and under some circum-
stances the model was behaving incorrectly (this model
breaks down numerically and has unrealistic luminance
distribution [3, 14]).

In 2005, O’Neil [15] presented one of the first imple-
mentations of atmospheric scattering on GPU. To be able
to implement this phenomenon on GPU he had to simplify
Nishita’s model [9]. He presented a set of analytic func-
tions that he used for computing color of the sky. His so-
lution was able to perform integration in real time per ver-
tex instead of per pixel [16] as he was conducting all of the
calculations in Vertex Shader [17, 18].

The first method that used precomputed single scatter-
ing values in real time was Schafhitzel et al. [19]. The au-
thors succeeded to precompute single scattering equations
in a big 3D lookup table as O’Neil suggested [15]. However,
this 3D texture lacked one dimension as authors did not
take into account multiple scattering.
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In 2008, Bruneton et al. [6] presented a method that
based on Schafhitzel’s work. They presented the first real
time method that was taking into account multiple scatter-
ing and they successfully precomputed single and multi-
ple scattering terms in a 4D lookup table. Their method
was working for all viewing directions and virtual camera
positions at the daytime.

In 2009, Elek [4] presented a quick and memory effi-
cient atmospheric scattering method. He based his method
on the work of Schafhitzel et al. [19]. He managed to reduce
the dimensionality of the 4D multiple scattering LUT to 3D
LUT while keeping the quality of Bruneton’s method [3].

The main drawback of Elek’s and Bruneton’s method
is that texel fetches from 4D or even 3D lookup tables are
very expensive operations (in terms of efficiency) [20].

What is more, all of the before mentioned methods
have one thing in common. They all use the same numeri-
cal integration method which is the Trapezoidal Rule. One
may believe, that enhancing or carefully selecting numeri-
cal integration method will lead to obtaining better results
with the above methods. What is more, an in depth investi-
gation of numerical integration methods may lead to devel-
oping a desired method that could calculate the single scat-
tering integral with the lowest possible error in real time
without the precomputation step. Furthermore, the state
of the art methods are also fairly complex to implement in
a real life project/game, since they use some tricks/hacks
that have a strong impact on how these methods perform.

In the presented research, emphasis was put mainly
on single scattering approach since it is less complex than
multiple scattering and provides reliable verification of re-
search hypothesis.

4 Numerical integration algorithms’
comparison methodology

To compare the selected numerical integration methods
a framework was used that was developed by Bruneton
[3]. This framework was initially used to qualitatively and
quantitatively compare 8 clear sky rendering methods
which were created over the years. What this framework
does is it compares each method with each other as well
as with measurements (measured by Kider et al. [21]) and
with reference model from physics community (libRad-
tran). During comparison with the ground truth, the frame-
work generates Root Mean Square Error (RMSE) between
the current method and the method based on measure-
ments. What is more, it also generates a set of images
(skydome renders, absolute and relative luminance, chro-
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maticity and the relative error compared with the method
based on measurements) for different times of day. The
framework runs each method for the same atmospheric pa-
rameters.

The framework was not modified itself, but only the
methods that used the chosen numerical integration al-
gorithms to calculate the single scattering equations have
been added. Selected numerical integration methods have
been compared in three cases where each case had differ-
ent number of integration steps (see Table 1).

Table 1: Each selected numerical integration method is being com-
pared in three cases where each case has different number of
integration steps

Case Samples on V Samples on L
Low quality 16 8
Medium quality 128 64
High quality 512 256
5 Results

It was decided to divide the experiments into three cases.
Each case had different number of the integration samples.
All cases and their corresponding number of used integra-
tion samples are presented in Table 1.

Using the above mentioned framework, a set of results
for each case has been generated, where each set consists
of:

Fisheye skydome renders,
Absolute luminance figures,
Relative luminance figures,
Chromaticity figures,
Relative error figures,

RMSE value.

The reference method used by the Bruneton’s frame-
work is method based on measured sky data [21] which
is labelled as Measurements in the following images. It
should be noted that all the figures have been generated
for the purpose of this research using the aforementioned
framework.

5.1 Fisheye skydome renders

Fisheye skydome renders of the spectral radiance, pre-
sented in Figure 2, were obtained for each numerical in-
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Figure 2: Fisheye skydome renders of the spectral radiance ob-
tained for each numerical integration method for each considered
case: a) case 1 - low quality, b) case 2 — medium quality, c) case 3 -
high quality
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Figure 3: The absolute luminance in cd.m~2 was obtained for each
numerical integration method for each considered case: a) case 1 -
low quality, b) case 2 — medium quality, c) case 3 - high quality
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tegration method, convolved with the CIE color matching
functions, converted from XYZ to linear sRGB and finally
tone mapped using 1 — e™% function [3]. These images
were rendered for several times of day/sun zenith angle
values. The red cross indicates the sun direction. The mea-
surements were interpolated using bicubic spherical inter-
polation before rendering [21].

In the Figure 2 one can see that Trapezoidal Rule gen-
erates visibly darker skydomes than the other methods
(sun zenith angle = 87°). Moreover, the color at the hori-
zon (boundaries) is more orange/yellow than the reference
skydome generated by libRadtran and other integration
methods.

What is more, Trapezoidal and Simpson’s Rules gener-
ates highlight with bigger radius than the method based
on measurements or libRandtran (sun zenith angle =
25°). One can notice that all selected numerical integra-
tion methods generate renders that are too dark when
compared to references images (libRadtran and measure-
ments).

5.2 Absolute luminance

The absolute luminance in cd.m™? was obtained for each
numerical integration method, using the same color scale
as in [14] (logarithmic scale in cd/m?). The measurements
were interpolated using bicubic spherical interpolation be-
fore being converted to luminance values.

In Figure 3 one can notice that Trapezoidal Rule
method in case 1 (low quality) generates the worst lumi-
nance values where sun zenith angle = 87°. Furthermore,
one can see, that Simpson’s Rule gives the lowest lumi-
nance difference in all cases when compared to the refer-
ence methods.

5.3 Relative luminance

The relative luminance obtained for each numerical inte-
gration method, in percentage of the zenith luminance.
The same color scale was used as in [14] (logarithmic scale
in percent of zenith luminance). The measurements were
interpolated using bicubic spherical interpolation before
being converted to luminance values.

When one takes a closer look at the last row in Figure
4 (for all cases), it can be noticed that for the low quality
case, Trapezoidal and Simpson’s Rules are giving better rel-
ative luminance values than for the higher quality cases.
When it comes to Midpoint Rule, relative luminance vaules
are better in the higher quality cases.
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Figure 4: The relative luminance obtained for each numerical inte- Figure 5: The rg-chromaticity, (r, g, b)/max(r, g, b), computed for
gration method for each considered case: a) case 1 - low quality, b)  each numerical integration method for each considered case: a)
case 2 — medium quality, c) case 3 - high quality case 1- low quality, b) case 2 — medium quality, ¢) case 3 — high

quality
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Figure 6: The relative error compared with the measurements (in
%) computed for each numerical integration method for each con-
sidered case: a) case 1 — low quality, b) case 2 — medium quality, c)
case 3 - high quality

5.4 Chromaticity

The rg-chromaticity, (r, g, b)/max(r, g, b) [3], was com-
puted for each numerical integration method. The mea-
surements were interpolated using bicubic spherical inter-
polation before being converted to chromaticity values.
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Table 2: The resulting RMSE values in mW/(m?2 - sr - nm) for each
selected numerical integration method for each considered case.

RMSE
mw/(m? - sr-nm)
32.2
33.7
31.3
26.3
26.2
26.4
25.6
25.6
25.6

Method
Midpoint
Trapezoidal
Simpsons
Midpoint
Trapezoidal
Simpsons
Midpoint
Trapezoidal
Simpsons

Case1l
low quality

Case 2
medium quality

Case3
high quality

Looking at chromaticity values (Figure 5), for all the se-
lected methods one can notice orange color at the horizon
(boundaries) which should not be there - this is the area
where the biggest rendering artifacts occur. It also can be
noticed that for medium and high quality cases this orange
color at the horizon is slowly fading out.

5.5 Root mean square error

Here, the root mean square error relative to the measure-
ments is predented, in % and using the same color scale as
in [21], computed at the 81 sampling points (and summed
equally over the common range supported by all methods,
i.e. between 360 and 720 nm), and then interpolated with
spherical bicubic interpolation. The bottom left numbers
in Figure 6 is the RMSE in mW/(m? - sr - nm) for different
sun zenith angles.

When one takes a look at the Figure 6 and Table 2
where the RMSE values are presented, it can be noticed
that for lower number of samples the result is much worse

! - . than for bigger number of samples. This is especially visi-

ble for the low quality case (Figure 6a for Trapezoidal Rule),
where the relative error is the biggest among the selected
methods. On the other hand, for the lowest number of sam-
ples, the most accurate method was the Simpson’s Rule.

However, when one takes larger number of samples
(case 2 — medium quality) one may see that the lowest error
was obtained by Trapezoidal Rule, but it is not very differ-
ent than for the other selected methods.

Looking at the third case (high quality), where the
number of samples was the highest, all of the selected
methods obtained the same RMSE.

It can be noticed, that overally all of the selected nu-
merical integration methods underestimate the relative er-
ror.
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6 Conclusions

From the above results it can be told, that all the selected
methods perform almost the same. Midpoint and Simp-
son’s Rules are best when one would like to use lower num-
ber of samples. Trapezoidal Rule is better when using big-
ger number of samples (case 2 - medium quality). Last
but not least, when one can use arbitrary number of sam-
ples (case 3 - high quality) to, for example, precompute
some parts of the single scattering integral (Equation 9),
any of the selected methods will give accurate results, that
should not affect the final image.

Moreover, the Bruneton’s framework is a very good
tool to compare the various atmospheric scattering meth-
ods with each other. It may be very helpful during the de-
velopment of a new method to compute atmospheric scat-
tering phenomena.
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