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Abstract: The experiment design may need a stress level
higher than use condition which is called accelerate life
tests (ALTs). One of the most ALTs appears in different
applications in the life testes experiment is partially step
stress ALTs. Also, the experiment items is failure with sev-
eral fatal risk factors, the only one is caused to failure
which called competing risk model. In this paper, the par-
tially step-stress ALTs based on Type-II censoring scheme
is adopted under the different risk factors belong to Chen
lifetime distributions. Under this assumption, we will esti-
mate themodel parameters of the different causeswith the
maximum likelihood method. The two, asymptotic distri-
butions and the parametric bootstrap will be used to build
each confidence interval of themodel parameters. The pre-
cision results will be assessed through Monte Carlo simu-
lation study.
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1 Introduction
Under modern technology, products are becoming highly
reliable, this makes life-testing under use conditions is dif-
ficult and the process of collecting sufficient information
about the lifetime of the products is more expensive. The
ALTs is the effective one solution to this problem, in which
the test units are subjected to different stress levels than
the use stress to cause rapid failures. The ALTs is applied
to collect enough failure information in a shorter period of
time as well as to discuss the effect of lifetime and the ex-
ternal stress variables. According to [1–4] there are differ-
ent type of ALTs, the first one called constant stress ALTs,
in this type the stress is still in a constant level with the
life test product. Secondly, is a progressively stress ALTs,
in which the stress applied to the product items in the test
still increasing in time see Bai and Chung [5]. The final
one is the step stress ALTs, in this test condition change
for a given time or a specified number of failures, stud-
ied by some authors see Miller and Nelson [6] and Bai and
Chung [7]. For more recent research on constant stress par-
tially ALTs see Tahani and Soliman [8] and Abd-Elmougod
and Emad [9]. Partially ALTs, the experiment run at use
and stress conditions, suchas constant and step-stress par-
tially ALTs. In partially constant-stress ALTs, the experi-
ment run simultaneously at use and stress condition, but
in partially step-stress ALTs, the experiment run at use
condition and stress change at a prefixed time or number
through the experiment.

In a life testing experiment, commonly that the fail-
ure time of a product under consideration is record due to
more than one causes. Our problem in such a situation, is
assessed the effect of one cause in the presence of other
causes. This problem known as the competing risks prob-
lem. Different work is discussed the problem of the anal-
ysis of competing risks model, see, Cox [10], David and
Moeschberger [11], Crowder [12], Balakrishnan and Han
[13] and Ganguly and Kundu [14]. In this paper, the model
of the partially step-stress ALTs is applied when the units
are fails due to two risk factor. The data will be collected
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from such experiment is used to estimate the parameters
of the Chen failure time model under use stress level. For
more detial of this problem see, Guan and Tang [15], Bal-
akrishnan et al. [16], Lin and Chou [17], David and Kundu
[18] and Abd-Elmougod and Abu-Zinadah [19].

Censoring is the common phenomenon in the life time
experiments, it is applied for consideration of time and
cost. The most common censoring scheme is Type-I and
Type-II censoring schemes in life test experiments. In Type-
I censoring terminate the experiment at a prior pre-fixed
time point, but in Type-II censoring at a prior pre-fixed
number of failure. The model of competing risks under
consideration only two risk factors and Type-II censoring
scheme is presented as the follows.

Let n independent items are put in life test experiment,
and the priorm number of failurewill be observe. The time
Xi and cause of failure δi, where i = 1, 2, ...,m, δi ∈ {1, 2}
and m ≤ n has record. The likelihood function of lifetime
sample (Xi , δi), is presented by

L (θ|x) = Q
m∏︁
i=1

[︀
h1(xi)

]︀ρ(δi=1) [︀h2(xi)]︀ρ(δi=2) (1)

×
[︀
S1(xm)S2(xm)

]︀(n−m) ,
where Q = n!

(n−m)! , S(x) = 1 − F(x), h(x) = f (x)
F(x) , ρ(δi = j) ={︃

1, δi = j
0, δi ≠ j

and

0 < x1 < x2 < . . . < xm < ∞.

The problem of analyzing the Type-II competing risks sam-
ple under partially step-stress ALTs model from Chen life-
time distribution is the main objective in this paper. The
maximum likelihood estimation of the model parameters
and accelerated factor is developed. Interval estimation
with the two, approximate information matrix and boot-
strap techniques are discussed. The performances of esti-
mates are measured with average and mean squared error
(MSE) for point estimation and mean length and probabil-
ity coverage for interval estimation through Monte Carlo
simulation.

The paper is organized as follows, in Section 2, the
complete description of model formulation and the like-
lihood function for the partially step-stress ALTs of Type-
II competing risks Chen lifetime sample. In Section 3, the
MLEs of parameters and accelerated factorwith the asymp-
totic confidence intervals. In Section 4, we discussed boot-
strap confidence intervals. The quality points and interval
estimates are assessed via Monte Carlo study in Section 5.
Finally, some comment in Section 6.

2 Notation and Model Description
Somenotations that used in thiswork under consideration
failure items under independent two cause of failure and
partially step-stress ALTsmodel, as given in notation table

Notations
δi The cause of failure for i-th item.
F(.) : The cumulative distribution function of Xi.
f (.) : The probability density function function of Xi.
Fj(.) : The cumulative distribution function of Xji .
fj(.) : The probability density function of Xji .
Sj(.) : The survival density function of Xji .
Xi : The lifetime random variable presented by i-th

item.
Xji : The lifetime random variable presented by i-th

item and the cause j, j = 1, 2.

For given n identical items and the prior fixed number
m and fixed time τ, the failure times Xi and cause of failure
δi are recorded until fixed time τ is reached the items are
tested under stress condition. The experiment is running
to fixed number of failures m is observed. Under consider-
ation that, the failure time has an independent Chen dis-
tribution and two cause of failure the model considered in
the paper satisfies the following assumptions.

1. The random variable Xji is Chen distribution with
the parameter a, bj, j = 1, 2 has the pdf

fj1(x) = abjxa−1 exp
(︀
xα
)︀
exp(bj

[︀
1 − exp(xa)

]︀
) (2)

, x > 0, a, bj > 0,

and cdf, given by

Fj1(x)=1 − exp(bj
[︀
1 − exp(xa)

]︀
). (3)

Also, reliability Sj1(t) and failure rate functions
hj1(t) of Chen distribution for given time t, respec-
tively presented by

Sj1(t) = exp(bj
[︀
1 − exp(ta)

]︀
), t > 0, (4)

hj1(t) = abjxa−1 exp
(︀
ta
)︀
, t > 0. (5)

2. Item has the lifetime denoted as Xi, i = 1, 2, · · · ,m
and the time at which the item i fails due to cause j
is Xji, and Xi = min{X1i , X2i}.

3. Under consideration the total lifetime of items is
multiply of inverse of the accelerated factor which
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shorten the lifetime of test items. The total lifetime
of a test items, denoted by Z, defined under, use and
accelerated conditions. So, the lifetime of the item in
partially step-stress ALTs, is presented by

Z =
{︃
X, X < τ
τ + β−1(X − τ), X > τ,

(6)

where β is the accelerated factor, τ, is the chang time
from use to higher stress level and the lifetime of the
unit X computed at use condition. Under Chen life-
time distribution with parameters a, bj, the lifetime
distribution of Z has the pdf, given by.

fj(z) =

⎧⎪⎪⎨⎪⎪⎩
fj2(z), z > τ,
fj1(z), 0 < z ≤ τ
0, z < 0,

(7)

where

fj2(z) = abjβ exp(bj [1 (8)
− exp

{︀
(τ + β(z − τ))a

}︀
)
]︀

× (τ + β(z − τ))a−1 exp
{︀
(τ + β(z − τ))α

}︀
,

and fj1(z), is given by (2). The cdf, Sj2(z), and hazard
rate function hj2(z), is given by

Fj2(z)=1 − exp(bj
[︀
1 − exp

{︀
(τ + β(z − τ))a

}︀
)
]︀
, (9)

Sj2(z) = exp(bj
[︀
1 − exp

{︀
(τ + β(z − τ))a

}︀
)
]︀
, (10)

and

hj2(z) = abjβ(τ (11)
+ β(z − τ))a−1 exp

{︀
(τ + β(z − τ))a

}︀
.

The life test experiment is terminated with Type-II
censoring scheme when the numbers of failure is
reached to m < n. Then the random sample of the
total lifetime Z is presented by (Z1, δ1) < (Z2, δ2) <
. . . < (ZJ , δJ) < τ < (ZJ+1, δJ+1) < . . . < (Zm , δm)
where J are thenumber of items failedunder use con-
ditions and m − J at accelerated conditions.

(1) The likelihood function of observed values is re-
duced to (1) if τ > zm but, under consideration the
observed values (z1, δ1) < (z2, δ2) < . . . < (zJ , δJ) <
τ < (zJ+1, δJ+1) < . . . < (zm , δm) and the time τ < zm,
can be presented by

L (θ|z) = Q
[︀
S21(zm)S22(zm)

]︀(n−m) (12)

×
J∏︁
i=1

[︀
h11(zi)

]︀ρ(δi=1) [︀h21(zi)]︀ρ(δi=2)

×
m∏︁

i=J+1

[︀
h12(zi)

]︀ρ(δi=1) [︀h22(zi)]︀ρ(δi=2)
where 0 < (Z1, δ1) < (Z2, δ2) < . . . < (ZJ , δJ) < τ <
(ZJ+1, δJ+1) < . . . < (Zm , δm) < ∞.

3 Maximum Likelihood Estimation
In this section, we adopted the point and interval maxi-
mum likelihood estimates of model parameters and accel-
erate factor under consideration that two cause of failure
and items is failure under only one cause of failure.

3.1 The point MLEs

With the consideration that, observed random sample
(Z1, δ1) < (Z2, δ2) < . . . < (ZJ , δJ) < τ < (ZJ+1, δJ+1) <
. . . < (Zm , δm) has life time Chen distribution with param-
eters a, bj, j = 1, 2. The likelihood function in (12) without
normalized conatant is reduced to

L (a, b1, b2, β|z) = ambs11 b
s2
2 β

m−J exp
{︀
(n − m) (b1 (13)

+ b2)
[︀
1 − exp

{︀
(τ + β(zm − τ))a

}︀]︀}︀
×

J∏︁
i=1
za−1i

m∏︁
i=J+1

(τ + β(zi − τ))a−1

× exp

⎧⎨⎩
J∑︁
i=1

zai +
m∑︁

i=J+1
(τ + β(zi − τ))a

⎫⎬⎭ ,

where J is the number of items failure at the use condition,
s1 and s1 are the number of items failure under causes (δ1,
δ2) andm is the total failure time. Then after taken the nat-
ural likelihood function, we obtain

ℓ (a, b1, b2, β|z) = m log a + s1 log b1 + s2 log b2 (14)
+ (m − J)logβ + (n − m)(b1 + b2)
×
[︀
1 − exp

{︀
(τ + β(zm − τ))a

}︀]︀
+ (a − 1)

×

⎧⎨⎩
J∑︁
i=1

log zi +
m∑︁

i=J+1
log(τ + β(zi − τ))

⎫⎬⎭
+

J∑︁
i=1

zai +
m∑︁

i=J+1
(τ + β(zi − τ))a .

The likelihood equations can be obtain from (14) by taken
the first partial derivatives to a, b1, b2 and β as follows

∂ℓ (a, b1, b2, β|z)
∂b1

= s1
b1

+ (n − m) (15)

×
[︀
1 − exp

{︀
(τ + β(zm − τ))a

}︀]︀
= 0,
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∂ℓ (a, b1, b2, β|z)
∂b2

= s2
b2

+ (n − m) (16)

×
[︀
1 − exp

{︀
(τ + β(zm − τ))a

}︀]︀
= 0.

Equations (15) and (16) are reduce to the MLE of b1 and b2
as follows

b̂1(a, β) =
s1

(n − m)
[︀
exp

{︀
(τ + β(zm − τ))a

}︀
− 1

]︀ . (17)

and

b̂2(a, β) =
s2

(n − m)
[︀
exp

{︀
(τ + β(zm − τ))a

}︀
− 1

]︀ . (18)

The likelihood equations respected to a and β, are given
by

∂ℓ (a, b1, b2, β|z)
∂a = ma (19)

− (n − m)(b1 + b2) exp
{︀
(τ + β

× (zm − τ))a
}︀
log

{︀
τ + β(zm − τ)

}︀
+

J∑︁
i=1

log zi +
J∑︁
i=1

zai log zi

+
m∑︁

i=J+1
log(τ + β(zi − τ))

+
m∑︁

i=J+1
(τ + β(zi − τ))a

× log(τ + β(zi − τ)) = 0.

and

∂ℓ (a, b1, b2, β|z)
∂β = (m − J)

β − a(n − m)(b1 + b2) (20)

× (zm − τ)(τ + β(zm − τ))a−1

×
[︀
exp

{︀
(τ + β(zm − τ))a

}︀]︀
+ (a − 1)

⎧⎨⎩
m∑︁

i=J+1

(zi − τ)
τ + β(zi − τ)

⎫⎬⎭
+ a

m∑︁
i=J+1

(zi − τ)

× (τ + β(zi − τ))a−1 = 0.

Equations (19) and (20) presented the two non-linear equa-
tions of a and β, solved numerical with the iteration
method such as Newton Raphson method hence the MLE
â and β̂ of a and β are obtained. The MLE of b1 and b2 are
obtained from (17) and (18) after replace a and β by â and
β̂.

3.2 Approximate information matrix and
interval estimation

The second partial derivatives of (14) with respect to a, β,
b1 and b2 presented by

∂2ℓ (a, b1, b2, β|z)
∂b21

= −s1
b21

(21)

∂2ℓ (a, b1, b2, β|z)
∂b22

= −s2
b22

. (22)

∂2ℓ (a, b1, b2, β|z)
∂a2 = −ma2 (23)

− (n − m)(b1 + b2) exp
{︀
(τ

+ β(zm − τ))a
}︀
log2

(︀
τ + β(zm − τ)

)︀
+

J∑︁
i=1

zai (log zi)
2 +

m∑︁
i=J+1

(τ + β

× (zi − τ))a log2(τ + β(zi − τ)),

∂2ℓ (a, b1, b2, β|z)
∂β2 = −(m − J)β2 − a(n − m)(b1 + b2) (24)

× (zm − τ)2 exp
{︀
(τ + β(zm − τ))a

}︀
× (τ + β(zm − τ))a−2 {(a − 1)
+ a(τ + β(zm − τ))a

}︀
+ (a − 1)

×

⎧⎨⎩
m∑︁

i=J+1

−(zi − τ)2[︀
τ + β(zi − τ)

]︀2
⎫⎬⎭

+ a (a − 1)
m∑︁

i=J+1
(zi − τ)2

× (τ + β(zi − τ))a−2

∂2ℓ (a, b1, b2, β|z)
∂b1∂b2

=
∂2ℓ

(︀
a, b1, b2, β|y

)︀
∂b2∂b1

= 0 (25)

∂2ℓ (a, b1, b2, β|z)
∂b1∂a

=
∂2ℓ

(︀
a, b1, b2, β|y

)︀
∂a∂b1

(26)

=
∂2ℓ

(︀
a, b1, b2, β|y

)︀
∂b2∂a

=
∂2ℓ

(︀
a, b1, b2, β|y

)︀
∂a∂b2

= −(n − m)(τ + β(zm − τ))a

× log(τ + β(zm − τ))
× exp

{︀
(τ + β(zm − τ))a

}︀
,

∂2ℓ (a, b1, b2, β|z)
∂a∂β = ∂

2ℓ (a, b1, b2, β|z)
∂β∂a (27)
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= −(n − m)(b1 + b2)
(zm − τ)

τ + β(zm − τ)
× exp

{︀
(τ + β(zm − τ))a

}︀
×
{︀
a(τ + β(zm − τ))a

× log
{︀
τ + β(zm − τ)

}︀
+ 1

}︀
+

m∑︁
i=J+1

(zi − τ)
τ + β(zi − τ)

+
m∑︁

i=J+1
(zi − τ)(τ + β(zi − τ))a−1

×
{︀
a log(τ + β(zi − τ)) + 1

}︀
The expected information matrix I (a, β, b1, b2) of

parameters a, β, b1 and b2 is negative expectation of
second derivative of log likelihood function. Practice,
I−1 (a, β, b1, b2) is estimated by I−1

(︁
â, β, b̂1, b̂2

)︁
. Hence,

the normal approximation is used as follows

(â, β, b̂1, b̂2) (28)

→ N
(︁
(a, β, b1, b2), I−10 (â, β, b̂1, b̂2)

)︁
,

where I−10 (a, β, b1, b2) is the inverse of observed informa-
tion matrix, presented by

I0(â, β, b̂1, b̂2) =

⎡⎢⎢⎢⎢⎢⎣
− ∂ℓ(a,b1 ,b2 ,β|z)∂a2 − ∂2ℓ(a,b1 ,b2 ,β|z)

∂a∂β

− ∂ℓ(a,b1 ,b2 ,β|z)∂β∂β − ∂2ℓ(a,b1 ,b2 ,β|z)
∂β2

− ∂ℓ(a,b1 ,b2 ,β|z)∂b1∂a − ∂2ℓ(a,b1 ,b2 ,β|z)
∂b1∂β

− ∂ℓ(a,b1 ,b2 ,β|z)∂b2∂a − ∂2ℓ(a,b1 ,b2 ,β|z)
∂b2∂β

(29)

− ∂
2ℓ(a,b1 ,b2 ,β|z)

∂a∂b1 − ∂2ℓ(a,b1 ,b2 ,β|z)
∂a∂b1

− ∂
2ℓ(a,b1 ,b2 ,β|z)

∂β∂b1 − ∂2ℓ(a,b1 ,b2 ,β|z)
∂β∂b2

− ∂
2ℓ(a,b1 ,b2 ,β|z)

∂b21
− ∂2ℓ(a,b1 ,b2 ,β|z)

∂b1∂b2

− ∂
2ℓ(a,b1 ,b2 ,β|z)

∂b2∂b1 − ∂2ℓ(a,b1 ,b2 ,β|z)
∂b22

⎤⎥⎥⎥⎥⎥⎦
distribution with mean (a, β, b1, b2) and variance covari-
ance matrix I−10

(︁
â, β, b̂1, b̂2

)︁
is used to present the aprox-

imate confidence intervals of a, β, b1 and b2. Hence, the
100(1-2𝛾)% approximate confidence intervals of a, β, b1
and b2 presented by(︁

â ∓ z𝛾
√︀
V11

)︁
,
(︁
β̂ ∓ z𝛾

√︀
V22

)︁
, (30)(︁

b̂1 ∓ z𝛾
√︀
V33

)︁
and

(︁
b̂2 ∓ z𝛾

√︀
V44

)︁
respectively, where value V11, V22 , V33 and V44 are the el-
ements of the diagonal of I−10

(︁
â, β, b̂1, b̂2

)︁
and z𝛾 is the

percentile right-tail with probable of 𝛾 standard normal
distribution.

4 Bootstrap Confidence Intervals
Bootstrap technique is the important methods not only in
estimations of confidence intervals but can be used tomea-
sures of accuracy (defined in terms of bias, variance, pre-
diction error or some other such measure) to sample es-
timates, can be easily obtained with the bootstrap tech-
nique. Parametric andnonparametric bootstrap technique
are the important two types of bootstrap technique are
available see Davison and Hinkley [20] and Efron and Tib-
shirani [21]. In the following, we adopted to the paramet-
ric bootstrap technique to obtaining interval bootstrap es-
timations follows.

1 The original sample, (Z1, δ1) < (Z2, δ2) < . . . <
(ZJ , δJ) < τ < (ZJ+1, δJ+1) < . . . < (Zm , δm) are used
to estimates â, β̂, b̂1 and b̂2.

2 The independent bootstrap sample (z*1, δ*1) <
(z*2, δ*2) < . . . < (z*J , δ*J ) < τ < (z*J+1, δ*J+1) < . . . <
(z*m , δ*m). generate from Chen distribution with pa-
rameters values given by estimates â, β̂, b̂1 and b̂2
with prior value m and τ.

3 The bootstrap sample estimates â*, β̂*, b̂*1 and b̂*2
are computed of â, β, b̂1 and b̂2 as in step 1.

4 Steps 2 and 3 are repeted N times, then N different
bootstrap samples are represented.

5 Let the bootstrap sample estimates vector
Σ* = (â*, β̂*, b̂*1, b̂*2) put in assiding order
(Σ*[1]k , Σ*[2]k , . . . , Σ*[N]k ), k = 1, 2, 3, 4.

6 The cdf of Σ*k is given by G(x) = P(Σ̂*k 6 x) for any
given x. Then Σ̂*k−boot = G

−1(x) for given z. Then per-
centile bootstrap confidence intervals 100(1 − 2𝛾)
confidence interval of Σ̂*k is given by[︁

Σ̂*k−boot(𝛾), Σ̂*k−boot(1 − 𝛾)
]︁
. (31)

7 Let us define statistic Ω*[j]k by

Ω*(j)k =
Σ̂*(i)k − Σ̂k√︂
var

(︁
Σ̂*(i)k

)︁ , (32)

the order values of statstics Ω*(j)k defined by Ω*[j]k , we
define the cmulative distribution G(x) = P(Ω*k < x)
for any given x, define

Σ̂*k−boot-t = Σ̂k +
√︁
Var(Σ̂k)G−1(z). (33)

Then bootstrap-t confidence intervals (BTCI) of
100(1 − 2𝛾) approximate confidence intervals of Σ̂k
is given by (︁

Σ̂*k−boot-t(𝛾, Σ̂*k−boot-t(1 − 𝛾)
)︁
. (34)
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Table 1: The mean estimates and MSEs for the parameters
(a, β, b1 , b2) at (1, 1.5, 1.5, 2.0)

MLE
τ (n, m)) AV MSE

a β b1 b1 a β b1 b1
0.5 (30,15) 0.81 1.307 1.34 1.72 0.231 0.336 0.421 0.721

(30,25) 0.81 1.319 1.34 1.74 0.221 0.161 0.321 0.621
(50,25) 0.84 1.33 1.37 1.79 0.204 0.131 0.231 0.654
(50,40) 0.84 1.36 1.40 1.81 0.199 0.153 0.203 0.521
(75,50) 0.87 1.38 1.38 1.82 0.136 0.136 0.188 0.521

1.0 (30,15) 0.85 1.33 1.40 1.78 0.230 0.161 0.175 0.421
(30,25) 0.80 1.38 1.41 1.79 0.205 0.134 0.124 0.521
(50,25) 0.92 1.43 1.57 1.80 0.174 0.161 0.133 0.621
(50,40) 0.93 1.43 1.42 1.99 0.170 0.131 0.109 0.421
(75,50) 0.93 1.64 1.54 1.92 0.102 0.153 0.111 0.321

1.5 (30,15) 0.94 1.64 1.54 1.92 0.201 0.137 0.100 0.754
(30,25) 0.99 1.65 1.58 1.93 0.105 0.163 0.090 0.451
(50,25) 0.98 1.69 1.61 1.95 0.097 0.120 0.101 0.452
(50,40) 0.97 1.69 1.62 1.96 0.097 0.140 0.107 0.421
(75,50) 0.99 1.74 1.40 1.82 0.084 0.114 0.094 0.399

Bootstrap
τ (n,m) AV MSE

a β b1 b1 a β b1 b1
0.5 (30,15) 0.91 1.88 1.88 1.99 0.421 0.542 0.621 0.942

(30,25) 0.89 1.45 1.82 1.75 0.401 0.512 0.584 0.7541
(50,25) 0.84 1.354 1.81 1.94 0.365 0.499 0.542 0.771
(50,40) 0.78 1.42 1.84 1.89 0.321 0.475 0.511 0.612
(75,50) 0.84 1.30 1.38 1.93 0.213 0.421 0.421 0.600

1.0 (30,15) 0.75 1.17 1.60 1.96 0.421 0.411 0.521 0.599
(30,25) 0.82 1.75 1.77 1.85 0.321 0.385 0.478 0.583
(50,25) 0.94 1.40 1.64 1.81 0.210 0.375 0.402 0.531
(50,40) 0.99 1.43 1.69 1.90 0.199 0.321 0.339 0.466
(75,50) 0.92 1.77 1.91 1.92 0.189 0.321 0.310 0.399

1.5 (30,15) 1.04 1.64 1.88 1.99 0.210 0.199 0.254 0.623
(30,25) 100 1.62 1.78 1.88 0.23 0.189 0.213 0.509
(50,25) 0.92 1.77 1.62 1.91 0.120 0.179 0.213 0.520
(50,40) 0.94 1.69 1.69 1.92 0.110 0.160 0.188 0.499
(75,50) 0.92 1.85 1.74 1.87 0.109 0.158 0.142 0.421

5 Monte Carlo Simulations
In this section, we adopted the simulation study to assess
and compare the developed results in this paper. Some nu-
merical experiments performed for sample of sizes n, the
effective sample sizes m, accelerated time τ and model
parameters (a, β, b1, b2). In the simulation stuides,we
adopted the case, the model parameters (a, β, b1, b1) =
(1, 1.5, 1.5, 2.0) and accelerate time τ = (0.5, 1.0, 1.5).

Essentially, the simulation results are computed to com-
pare the MLEs and bootstrap estimators, mainly are com-
pared in terms of their average (AV) and MSE. The con-
fidence intervals are compared in terms of their average
lengths (AL) and the probability coverage (CP). The results
in this paper is computed with Mathematica version 9 and
reported in Tables 1-2.



198 | H. H. Abu-Zinadah and N. Sayed-Ahmed

Table 2: The AL and (CP), respectivly of MLEPBCIs and PTCIs of 95% CIs for the parameters (a, β, b1 , b2) at (1, 1.5, 1.5, 2.0)

τ (n,m) MLE PBCIs PTCIs
a β b1 b2 a β b1 b1 a β b1 b1

0.5 (30,15) 2.323 3.543 3.421 4.410 3.355 4.223 4.001 5.433 2.122 3.421 3.339 4.254
(0.89) (0.89) (0.88) (0.89) (0.87) (0.88) (0.89) (0.89) (0.89) (0.90) (0.89) (0.90)

(30,25) 2.311 3.42 3.326 4.214 3.322 4.111 4.421 5.338 2.218 3.321 3.214 4.051
(0.89) (0.90) (0.91) (0.90) (0.89) (0.89) (0.90) (0.90) (0.91) (0.91) (0.92) (0.91)

(50,25) 2.302 3.214 3.300 4.124 3.344 4.252 4.305 5.121 2.270 3.154 3.221 4.021
(0.88) (0.91) (0.91) (0.92) (0.90) (0.90) (0.90) (0.90) (0.91) (0.93) (0.94) (0.97)

(50,40) 2.198 3.109 3.002 3.950 3.125 3.999 3.998 5.050 2.100 3.025 2.902 3.741
(0.90) (0.92) (0.90) (0.93) (0.91) (0.91) (0.89) (0.91) (0.93) (0.95) (0.94) (0.93)

(75,50) 2.082 2.998 2.977 3.258 3.074 3.991 3.901 5.008 2.005 2.742 2.900 3.133
(0.91) (0.93) (0.92) (0.94) (0.92) (0.91) (0.90) (0.91) (0.91) (0.93) (0.95) (0.94)

1.0 (30,15) 2.301 3.520 3.400 4.3854 3.332 4.223 3.932 5.404 2.002 3.362 3.329 4.226
(0.87) (0.88) (0.89) (0.90) (0.88) (0.88) (0.89) (0.88) (0.89) (0.91) (0.89) (0.91)

(30,25) 2.295 3.385 3.311 4.212 3.309 4.101 4.414 5.322 2.189 3.285 3.197 4.031
(0.90) (0.89) (0.90) (0.91) (0.889) (0.88) (0.91) (0.91) (0.91) (0.93) (0.92) (0.93)

(50,25) 2.288 3.190 3.277 4.101 3.322 4.253 4.312 5.100 2.257 3.142 3.207 4.018
(0.91) (0.90) (0.91) (0.93) (0.90) (0.91) (0.91) (0.90) (0.92) (0.94) (0.92) (0.93)

(50,40) 2.171 3.111 3.011 3.938 3.114 3.987 3.975 5.041 2.099 3.019 2.910 3.738
(0.92) (0.90) (0.92) (0.91) (0.97) (0.90) (0.91) (0.97) (0.94) (0.95) (0.95) (0.96)

(75,50) 2.100 2.892 2.962 3.241 3.064 3.977 3.842 5.011 2.011 2.726 2.904 3.121
(0.921) (0.92) (0.94) (0.93) (0.91) (0.98) (0.93) (0.92) (0.93) (0.94) (0.95) (0.93)

1.5 (30,15) 2.338 3.550 3.445 4.432 3.355 4.247 4.031 5.451 2.144 3.445 3.350 4.260
(0.89) (0.88) (0.89) (0.87) (0.86) (0.88) (0.89) (0.88) (0.89) (0.91) (0.89) (0.91)

(30,25) 2.325 3.436 3.341 4.225 3.339 4.124 4.442 5.339 2.241 3.335 3.227 4.063
(0.88) (0.91) (0.90) (0.92) (0.89) (0.89) (0.910) (0.91) (0.91) (0.93) (0.91) (0.91)

(50,25) 2.314 3.227 3.313 4.137 3.350 4.211 4.314 5.128 2.269 3.166 3.240 4.017
(0.92) (0.93) (0.92) (0.93) (0.91) (0.91) (0.90) (0.91) (0.96) (0.95) (0.95) (0.93)

(50,40) 2.204 3.121 3.019 3.960 3.141 3.989 4.091 5.062 2.111 3.035 2.918 3.752
(0.92) (0.92) (0.91) (0.93) (0.91) (0.90) (0.90) (0.92) (0.93) (0.94) (0.93) (0.95)

(75,50) 2.097 3.018 2.987 3.270 3.079 3.999 3.923 5.011 2.014 2.763 2.911 3.108
(0.92) (0.93) (0.92) (0.92) (0.93) (0.91) (0.91) (0.92) (0.94) (0.93) (0.94) (0.96)

6 Conclusions
Type-II censoring competing risks model is discussed in
this paper in the presence of partially step-stress ALTs
under consideration failure times of the competing risks
follow independent Chen distributions. The MLEs of the
unknown model parameters are derived. The asymptotic
distribution of MLEs and bootstrap method for construct-
ing CIs. Results from Tables 1-2 of the simulation study re-
ported as follows

(1): From theTable 2,weobserve that PTCIs performs the
best as its CIs has a small length and coverage proba-
bilities to be much closer to the nominal levels than
ACs and PBCIs.

(2): From the Table 1, we observe the point estimate of
MLE performs the best than bootstrap estimates.

(3): From all tables, we observe that results for the value
of accelerate change time τ performs the best for the
vale of τ narrow of distribution mean

(4): For the effective m sample increases, the MSEs and
the AL of different estimators are reduced.
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