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Abstract: The article presents innovative method of de-
riving dynamics in the Special Theory of Relativity. This
method enables to derive in�nitelymany dynamics in rela-
tivistic mechanics. The authors have shown �ve examples
of these derivations. In this way, It is presented that the dy-
namics known today as the dynamics of Special Theory of
Relativity is only one of in�nitely of theoretically possible.
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1 Introduction
The currently accepted dynamics of STR have di�erent ex-
perimental con�rmations. Present article does not deal
with these experiments. They are not analyzed, nor eval-
uated. The purpose of this article is to show that the con-
crete dynamics of STR does not only result from the kine-
matics of STRonly. Formally and correctlymathematically,
many STR dynamics, which have di�erent properties, can
be derived within the kinematics STR. Relativistic dynam-
ics is derived based on the relativistic kinematics and one
additional assumption, which allows the concept of mass,
momentum and kinetic energy to be introduced into the
theory. This paper is a discussion about possible assump-
tions and the dynamics of STR resulting from these as-
sumptions. It presents the author’s method of deriving nu-
merous dynamics for this theory.

The decision, in which dynamic STR is correct, can
only result from experiments. Available publications show
that the dynamics indicated by Albert Einstein is correct,
that is for x = 3/2 (see Section 5). However, because each
experiment is fraught with errors, it is possible that more
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accurate experiments carried out in the future will show
that the optimal model of dynamics for x = 3/2 ± ∆x, where
∆x is a noticeable correction.

Kinematics deals with the movement of bodies with-
out taking their physical characteristics into account. The
basic concepts of kinematics are: time, location, transfor-
mation, speed and acceleration.

Dynamics deals with themovement ofmaterial bodies
under the action of forces. The basic concepts of dynamics
are: inertial mass, force, momentum and kinetic energy.

Kinematics and dynamics are resulting in mechanics.
This study deals with relativistic mechanics, i.e. the Spe-
cial Theory of Relativity, which unlike classical mechan-
ics, also applies to high-speed.

2 Kinematic assumptions of the
Special Theory of Relativity

The kinematics of the Special Theory of Relativity is based
on the following assumptions:
I. All inertial systems are equivalent.
This assumption means that there is no physical phe-
nomenon, which distinguishes the inertial system. In
a particular case, it means that there is no such phe-
nomenon for which the absolute rest is needed to explain.
Mathematically, it results from this assumption that each
coordinate and time transformation have coe�cients with
exactly the same numerical values as inverse transforma-
tion (with the accuracy to the sign resulting from the ve-
locity direction between the systems).
II. Velocity of light c in vacuum is the same in every
direction and in each inertial system.
III. Transformation of time and position coordinates
between the inertial systems is linear.

These assumptions are often written in other equiva-
lent forms.

Based on mentioned assumptions, it is possible to de-
rive Lorentz transformation on which the Special Theory
of Relativity is based. There are many di�erent derivation
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ways of this transformation. Twoderivations are presented
in monograph [1].

Markings adopted in Figure 1 will be convenient for
our needs. Inertial systems move along their x-axis. Sym-
bol v2/1 stands for a velocity ofU2 systemmeasured by the
observer fromU1 system, while v1/2 is a velocity ofU1 sys-
temmeasured by the observer from U2 system. In the Spe-
cial Theory of Relativity occurs that v2/1 = −v1/2.
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Figure 1: Relative movement of inertial systems U1 and U2
(v2/1 = −v1/2)

Lorentz transformation from U2 to U1 system has a
form of:

t1 =
1√

1 − (v2/1/c)
2
(t2 +

v2/1
c2 x2) (1)

x1 =
1√

1 − (v2/1/c)
2
(v2/1t2 + x2) (2)

y1 = y2, z1 = z2 (3)
Lorentz transformation from U1 to U2 system has a

form of:

t2 =
1√

1 − (v1/2/c)
2
(t1 +

v1/2
c2 x1) (4)

x2 =
1√

1 − (v1/2/c)
2
(v1/2t1 + x1) (5)

y2 = y1, z2 = z1 (6)
Transformation (1) – (3) and (4) – (6) includes com-

plete information on the relativistic kinematics.

3 Selected properties of relativistic
kinematics

In order to derive dynamics two formulas from kinematics,
i.e. (20) and (23) from kinematics will be needed. They will
be derived out of transformation (1) – (3).

3.1 Transformation of velocity

Determine the di�erentials from transformation (1) – (3)

dt1 =
1√

1 − (v2/1/c)
2
(dt2 +

v2/1
c2 dx2) (7)

dx1 =
1√

1 − (v2/1/c)
2
(v2/1dt2 + dx2) (8)

dy1 = dy2, dz1 = dz2 (9)

From the inertial system U1 and U2, the moving body
U3 is observed. InU1 system, it has a velocity of v3/1, while
in U2 system it has a velocity of v3/2. The components of
these velocities are presented in Figure 2.
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Figure 2: Movement of the body from two inertial systems U1 and
U2

The coordinates of body U3 position in U1 system are
x1, y1, z1. At the same time inU2 system these coordinates
are x2, y2, z2. Since the body U3 moves, these coordinates
change in time. When time dt1 elapses in U1 system then
time dt2 elapses in U2 system. For such indications the
changes of coordinates of bodyU3 position inU1 system in
the time interval dt1 are dx1, dy1, dz1. Changes of coordi-
nates of bodyU3 position inU2 system in the time interval
dt2 are dx2, dy2, dz2.

The body velocity U3 in inertial system U2 has the fol-
lowing components:

vx3/2 =
dx2
dt2

, vy3/2 =
dy2
dt2

, vz3/2 =
dz2
dt2

(10)

The body velocity U3 in inertial system U1 has the fol-
lowing components:

vx3/1 =
dx1
dt1

, vy3/1 =
dy1
dt1

, vz3/1 =
dz1
dt1

(11)
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When di�erentials (7) – (9) are put into Eqs. (11), one
will receive

vx3/1 =
1√

1−(v2/1/c)
2
(v2/1dt2+dx2)

1√
1−(v2/1/c)

2
(dt2+

v2/1
c2
dx2)

vy3/1 =
dy2

1√
1−(v2/1/c)

2
(dt2+

v2/1
c2
dx2)

vz3/1 =
dz2

1√
1−(v2/1/c)

2
(dt2+

v2/1
c2
dx2)

(12)

i.e. 

vx3/1 =
v2/1+dx2/dt2

1+
v2/1
c2

(dx2/dt2)

vy3/1 =
√
1 − (v2/1/c)

2 dy2/dt2
1+

v2/1
c2

(dx2/dt2)

vz3/1 =
√
1 − (v2/1/c)

2 dz2/dt2
1+

v2/1
c2

(dx2/dt2)

(13)

On the basis of (10) the desired velocity transforma-
tion from U2 to U1 system is obtained

vx3/1 =
vx3/2+v2/1

1+
vx3/2v2/1

c2

vy3/1 =
√
1 − (v2/1/c)

2 vy3/2

1+
vx3/2v2/1

c2

vz3/1 =
√
1 − (v2/1/c)

2 vz3/2

1+
vx3/2v2/1

c2

(14)

In special case, whenU3 bodymoves parallel to x-axis
then occurs

vx3/1 = v3/1, v
x
3/2 = v3/2, v

y
3/1 = v

y
3/2 = 0, vz3/1 = v

z
3/2 = 0

(15)
Then velocity transformation (14) takes the formof for-

mula to sum-up parallel velocities

v3/1 =
v3/2 + v2/1
1 + v3/2v2/1

c2
(16)

3.2 Change of velocity seen from di�erent
inertial systems

The body at rest in U3 system has momentary accelera-
tion to U3′ system. The body movement is observed from
U1 and U2 systems. The velocities of inertial systems are
parallel to each other. Markings shown in Figure 3 are
adopted.
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Figure 3: Increases in the velocity seen in inertial systems U1 and
U2

The di�erentials from formula (16)will be determined:

dv3/1 =
d v3/2+v2/1
1+(v3/2v2/1)/c2

dv3/2
dv3/2

=
1 + v3/2v2/1

c2 − (v3/2 + v2/1)
v2/1
c2(

1 + v3/2v2/1
c2

)2 dv3/2 (17)

dv3/1 =
1 − v22/1

c2(
1 + v3/2v2/1

c2
)2 dv3/2 (18)

IfU3 system isU2 system then it is necessary to replace
index 3 with 2. Then,

dv3/1 = dv2/1, v3/2 = v2/2 = 0, dv3/2 = dv2/2 (19)

On this basis, the formula (18) takes a form of

dv2/2 =
dv2/1

1 − (v2/1/c)
2 (20)

Relation (20) is related to the change of body velocity
seen in the inertial systemU2, in which the body is located
(dv2/2), and the change of velocity seen from another iner-
tial system U1 (dv2/1).

3.3 Time dilatation

If motionless body is inU2 system, then for its coordinates
occurs

dx2
dt2

= 0 (21)

Based on time transformation (7) one receives

dt1
dt2

= 1√
1 − (v2/1/c)

2
(1 +

v2/1
c2

dx2
dt2

)
dx2
dt2

=0
⇒

dt1
dt2

= 1√
1 − (v2/1/c)

2
(22)

On this basiswe receive the formula for time dilatation
of motionless body with regard to U2 system

dx2
dt2

= 0 ⇒ dt2 =
√
1 − (v2/1/c)

2 · dt1 (23)
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Recording of time dilatation in a form of (23) is more
precise than the commonly used recording, as it has a form
of implications. Such a record makes it clear that such di-
latation applies only tomotionless bodies in relation toU2
system (or for events occurring in the same position in re-
lation to U2 system).

4 Dynamics in the Special Theory
of Relativity

All dissertations will be conducted only for one-
dimensional model, i.e. all analyzed vector values will
be parallel to x-axis. Each derived dynamic can easily be
generalized into three-dimensional cases.

In order to derive dynamics in the Special Theory of
Relativity (STR), it is necessary to adopt an additional as-
sumption, which allows the concept of mass, momentum
and kinetic energy to be introduced into the theory. De-
pending on the assumption, di�erent dynamics of bodies
are received.

The inertial mass body resting in inertial frame of ref-
erence is determined by m0 (rest mass). The rest mass is
determined on the base unit of mass and the method of
comparing anymass with this base unit. The inertial mass
body at rest in U2, as seen from U1 system, is determined
by m2/1 (relativistic mass). It is worth to note that the rel-
ativistic mass in this case is an inertial mass that occurs
in the Newton’s second law, rather than mass occurring
in the formula for momentum, as assumed in the STR. In
this way, a di�erent de�nition of relativisticmass has been
adopted, than one in the STR. Such a de�nition of the rel-
ativistic mass is more convenient in deriving dynamics.

The body of m0 inertial mass is in U2 system. It is af-
fected by force F2/2 that causes acceleration of dv2/2/dt2.
Therefore, for the observer from U2 system, the Newton’s
second law takes a form of

F2/2 := m0 · a2/2 = m0
dv2/2
dt2

(24)

For the observer from U1 system, inertial mass of the
same body ism2/1. For this observer, the force F2/1 acts on
the body, causing acceleration of dv2/1/dt1. Therefore, for
the observer from U1 the Newton’s second law takes the
form of

F2/1 := f (v2/1) · m0 · a2/1 = m2/1(v2/1) · a2/1

= m2/1 · a2/1 = m2/1
dv2/1
dt1

(25)

Equation (25) means that a generalized form of the
Newton’s second law is postulated. This generalized form

contains an additional parameter f (v). From the formula
(24) shows that always f (0) = 1. In classical mechanics
f (v) = 1, while in the current dynamics STR f (v) = γ3 (for-
mula (32)). Determining another form of parameter f (v)
leads to other dynamics for STR. The inertial relativistic
mass m2/1 is the product of this additional parameter f (v)
and the inertialmass body at restm0. In this article, the pa-
rameter f (v) will not be used, only the inertial relativistic
mass m2/1.

De�nitions identical as in classical mechanics apply
for momentum and kinetic energy.

For the observer from U2 system, the change of this
body momentum can be recorded in the following forms

dp2/2 := F2/2 · dt2 = m0 · a2/2 · dt2 = m0
dv2/2
dt2

dt2

= m0 · dv2/2 (26)

For the observer from U1 system, the change of this
body momentum can be recorded in the following forms

dp2/1 := F2/1 · dt1 = m2/1 · a2/1 · dt1 = m2/1
dv2/1
dt1

dt1

= m2/1 · dv2/1 (27)

where:
– dp2/2 is a change of body momentum with rest mass m0
in the inertial system U2, measured by the observer from
the same inertial system U2,
– dp2/1 is a change of body momentum in the inertial sys-
tem U2, measured by the observer from the same inertial
system U1.

Kinetic energy of the body is equal of the work into its
acceleration. For the observer from U1 system, the change
of kinetic energy of this body is as follows

dE2/1 := F2/1 · dx2/1 = m2/1 · a2/1 · dx2/1

= m2/1
dv2/1
dt1

dx2/1 = m2/1
dx2/1
dt1

dv2/1

= m2/1 · v2/1 · dv2/1 (28)

where:
– dE2/1 is a change of kinetic energy of the body in iner-
tial system U2, measured by the observer from the inertial
system U1.

4.1 STR dynamics with constant force
(STR/F )

In this section, amodel of dynamics of bodies based on the
assumption that the force accelerating of the body (paral-
lel to x-axis) is the same for an observer from every inertial
system will be derived (hence indication F).
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4.1.1 The relativistic mass in STR/F

In the model STR/F it is assumed, that

FF2/1 := F2/2 (29)

Having introduced (24) and (25), one obtains

mF
2/1
dv2/1
dt1

= m0
dv2/2
dt2

(30)

On the base (20) and (23), one has

mF
2/1
dv2/1
dt1

= m0

dv2/1
1−(v2/1/c)2√

1 − (v2/1/c)
2 · dt1

(31)

Hence, a formula for relativistic mass of the body that
is located in the system U2 and is seen from the system U1
is obtained, when assumption (29) is satis�ed, as below

mF
2/1 = m0

[
1

1 − (v2/1/c)
2

]3/2
(32)

4.1.2 The momentum in STR/F

The body of rest massm0 is associated with the systemU2.
Todetermine themomentumof thebody relative to the sys-
tem U1 a substitution of (32) to (27)

dpF2/1 = m
F
2/1 · dv2/1 = m0

[
1

1 − (v2/1/c)
2

]3/2
dv2/1

= m0c3
1

(c2 − v22/1)
3/2 dv2/1 (33)

The body momentum is a sum of increases in its mo-
mentum, when the body is accelerated from the inertial
system U1 (the body has velocity 0) to the inertial system
U2 (the body has velocity v2/1), i.e.

pF2/1 = m0c3
v2/1∫
0

1
(c2 − v22/1)

3/2 dv2/1 (34)

From the work [2] (formula 72, p. 167) it is possible to
read out, that∫

dx
(a2 − x2)3/2

= x
a2
√
a2 − x2

, a ≠ 0 (35)

After applying the integral (35) to (34) the formula for
the body momentum in U2 system is received and mea-
sured by the observer from U1 system in a form of

pF2/1 = m0c3
v2/1

c2
√
c2 − v22/1

= m0√
1 − (v2/1/c)

2
v2/1 (36)

This formula is identical to the formula formomentum
known from the STR, for the same reasons as in the case of
momentum. This is because the dynamics known from the
STR is derived from the assumption (29). It was adopted
unconsciously, because it was considered as necessary.
The awareness of this assumption allows to its change and
derives other dynamics.

As already mentioned above, the de�nition of rel-
ativistic mass adopted is di�erent from the de�nition
adopted in the STR. In this case, the relativistic mass is the
one, which occurs in the Newton’s second law (25). In this
particular case, it is expressed in termsof dependency (32).
In the STR, the relativisticmass is the one, which occurs in
the formula (36) per momentum.

4.1.3 The momentum in STR/F for small velocities

For small velocity v2/1 << c momentum (36) comes down
to the momentum from classical mechanics, because

v2/1 << c ⇒ pF2/1 ≈ m0v2/1 (37)

4.1.4 The kinetic energy in STR/F

A determination of the formula for kinetic energy will be
given. The dependence for the relativistic mass (32) is in-
troduced to the formula (28)

dEF2/1 = m
F
2/1 · v2/1 · dv2/1 = m0

[
1

1 − (v2/1/c)
2

]3/2
v2/1dv2/1

= m0c3
v2/1

(c2 − v22/1)
3/2 dv2/1 (38)

The kinetic energy of body is a sum of increases in its
kinetic energy, when the body is accelerated from the in-
ertial system U1 (the body has velocity 0) to the inertial
system U2 (the body has velocity v2/1), i.e.

EF2/1 = m0c3
v2/1∫
0

v2/1
(c2 − v22/1)

3/2 dv2/1 (39)

From the work [2] (formula 74, p. 167) it is possible to
read out, that ∫

xdx
(a2 − x2)3/2

= 1√
a2 − x2

(40)

After applying the integral (40) to (39) the formula for
the kinetic energy of the body in U2 system and measured
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by the observer from U1 system in a form of

EF2/1 = m0c3
1√

c2 − x2

∣∣∣∣v2/1
0

= m0c3
 1√

c2 − v22/1
− 1
c


= m0c2

1√
1 − (v2/1/c)

2
− m0c2 (41)

This formula is identical to the formula for kinetic en-
ergy known from the STR, for the same reasons as in the
case of momentum (36).

4.1.5 The kinetic energy in STR/F for small velocities

Formula (41) can be written in the form

EF2/1 = m0c2
1 −
√
1 − (v2/1/c)

2√
1 − (v2/1/c)

2
·
1 +
√
1 − (v2/1/c)

2

1 +
√
1 − (v2/1/c)

2
(42)

EF2/1 =
m0v22/1

2
2

1 − v22/1
c2 +

√
1 − v22/1

c2

(43)

On this basis, for small values v2/1� c one receives

v2/1 � c ⇒ EF2/1 ≈
m0v22/1

2
2

1 + 1 =
m0v22/1

2 (44)

4.1.6 The force in STR/F

Due to the assumption (29) valuemeasurement of the same
force by two di�erent observers is identical.

4.2 STR dynamics with constant momentum
change (STR/∆p)

In this section, a model of dynamics of bodies based on
the assumption that the change in momentum of the body
(parallel to x-axis) is the same for an observer from every
inertial system will be derived (hence indication ∆p).

These dynamics seem particularly interesting, be-
cause the conservation law of momentum is a fundamen-
tal law. Assumption that the change of bodymomentum is
the same for every observer seems to be a natural exten-
sion of this law.

4.2.1 The relativistic mass in STR/∆p

In the model STR/∆p it is assumed, that

dp∆p2/1 := dp2/2 (45)

Having introduced (26) and (27), one obtains

m∆p
2/1dv2/1 = m0dv2/2 (46)

On the base (20), one has

m∆p
2/1dv2/1 = m0

dv2/1
1 − (v2/1/c)

2 (47)

Hence, a formula for relativistic mass of the body that
is located in the system U2 and is seen from the system U1
is obtained, when assumption (45) is satis�ed, as below

m∆p
2/1 = m0

1
1 − (v2/1/c)

2 (48)

4.2.2 The momentum in STR/∆p

The body of rest massm0 is associated with the systemU2.
Todetermine themomentumof thebody relative to the sys-
tem U1 a substitution of (48) to (27) is made

dp∆p2/1 = m
∆p
2/1 · dv2/1 = m0

1
1 − (v2/1/c)

2 dv2/1

= m0c2
1

c2 − v22/1
dv2/1 (49)

The body momentum is a sum of increases in its mo-
mentum, when the body is accelerated from the inertial
system U1 (the body has velocity 0) to the inertial system
U2 (the body has velocity v2/1), i.e.

p∆p2/1 = m0c2
v2/1∫
0

1
c2 − v22/1

dv2/1 (50)

From the work [2] (formula 52, p. 160) it is possible to
read out, that∫

dx
a2 − x2 = 1

2a ln
∣∣∣a + xa − x

∣∣∣, a ≠ 0 (51)

After applying the integral (51) to (50) the formula for
the body momentum in U2 system and measured by the
observer from U1 system is received in a form of

p∆p2/1 = m0c2
1
2c ln

∣∣∣ c + xc − x

∣∣∣∣∣∣∣v2/1
0

= m0c
2 ln

( c + v2/1
c − v2/1

)
(52)

4.2.3 The momentum in STR/∆p for small velocities

Formula (52) can be written in the form

p∆p2/1 =
m0v2/1

2
c
v2/1

ln
( c + v2/1
c − v2/1

)
=
m0v2/1

2 ln
(
(1 + v2/1/c)

c/v2/1

(1 − v2/1/c)
c/v2/1

)
(53)
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p∆p2/1 =
m0v2/1

2 ln


(
1 + 1

c/v2/1

)c/v2/1
(
1 − 1

c/v2/1

)c/v2/1
 (54)

On this basis, for small values v2/1 << c one receives

v2/1 � c ⇒ p∆p2/1 ≈
m0v2/1

2 ln
(

e
1/e

)
=
m0v2/1

2 ln(e2) = m0v2/1 (55)

4.2.4 The kinetic energy in STR/∆p

A determination of the formula for kinetic energy will be
given. The dependence for the relativistic mass (48) is in-
troduced to the formula (28)

dE∆p2/1 = m
∆p
2/1 · v2/1 · dv2/1 = m0

1
1 − (v2/1/c)

2 v2/1dv2/1

= m0c2
v2/1

c2 − v22/1
dv2/1 (56)

The kinetic energy of body is a sum of increases in its
kinetic energy, when the body is accelerated from the in-
ertial system U1 (the body has velocity 0) to the inertial
system U2 (the body has velocity v2/1), i.e.

E∆p2/1 = m0c2
v2/1∫
0

v2/1
c2 − v22/1

dv2/1 (57)

From the work [2] (formula 56, p. 160) it is possible to
read out, that∫

x
a2 − x2 dx = −

1
2 ln

∣∣∣a2 − x2∣∣∣ (58)

After applying the integral (58) to (57) the formula for
the kinetic energy of the body in U2 system and measured
by the observer from U1 system in a form of

E∆p2/1 = −m0c2
1
2 ln

∣∣∣c2 − x2∣∣∣∣∣∣∣v2/1
0

= −m0c2
2 ln(c2 − v22/1) +

m0c2
2 ln(c2) (59)

E∆p2/1 =
m0c2
2 ln c2

c2 − v22/1
= m0c2

2 ln 1
1 − (v2/1/c)

2 (60)

4.2.5 The kinetic energy in STR/∆p for small velocities

Formula (60) can be written in the form

E∆p2/1 =
m0v22/1

2
c2

v22/1
ln 1

1 − (v2/1/c)
2

=
m0v22/1

2 ln 1

[1 − (v2/1/c)
2]
(c/v2/1)2

(61)

E∆p2/1 =
m0v22/1

2 ln 1[
1 − 1

(c/v2/1)2
](c/v2/1)2 (62)

On this basis, for small values v2/1 << c one receives

v2/1 � c ⇒ E∆p2/1 ≈
m0v22/1

2 ln 1
1/e =

m0v22/1
2 (63)

4.2.6 The force in STR/∆p

Body with rest mass m0 is related to U2 system. It is af-
fected by force that causes acceleration. For the observer
from this system, the acceleration force has in accordance
with (24) the following value

F2/2 = m0
dv2/2
dt2

(64)

For the observer from U1 system, acceleration force
has in accordance with (25) the following value

F∆p2/1 = m
∆p
2/1
dv2/1
dt1

(65)

If to divide parties’ equation (65) by (64), then on the
basis of (20) and (23) one will receive

F∆p2/1
F2/2

=
m∆p

2/1
m0

· dt2dt1
·
dv2/1
dv2/2

=
m∆p

2/1
m0

(1 − (v2/1/c)2)3/2 (66)

On the basis of (48) a relation between measurements
of the same force by two di�erent observers is obtained

F∆p2/1 =
√
1 − (v2/1/c)

2 · F2/2 (67)

The highest value of force is measured by the observer
from the inertial system in which the body is located.

4.3 STR dynamics with constant mass
(STR/m)

In this section, a model of dynamics of bodies, based on
the assumption that body weight is the same for an ob-
server from each inertial reference system, will be derived
(hence indicationm).
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4.3.1 The relativistic mass in STR/m

In the model STR/m it is assumed, that

mm
2/1 := m0 (68)

Therefore, for the observer from inertial systemU1, the
body mass in U2 system is the same as the rest mass.

4.3.2 The momentum in STR/m

The body of rest massm0 is associated with the systemU2.
Todetermine themomentumof thebody relative to the sys-
tem U1 a substitution of (68) to (27)

dpm2/1 = m
m
2/1 · dv2/1 = m0dv2/1 (69)

The body momentum is a sum of increases in its mo-
mentum, when the body is accelerated from the inertial
system U1 (the body has velocity 0) to the inertial system
U2 (the body has velocity v2/1), i.e.

pm2/1 = m0

v2/1∫
0

dv2/1 = m0v2/1 (70)

In this relativistic dynamics the momentum is ex-
pressed with the same equation as in classical mechanics.

4.3.3 The kinetic energy in STR/m

A determination of the formula for kinetic energy will be
given. The dependence for the relativistic mass (68) is in-
troduced to the formula (28)

dEm2/1 = m
m
2/1 · v2/1 · dv2/1 = m0v2/1dv2/1 (71)

The kinetic energy of body is a sum of increases in its
kinetic energy, when the body is accelerated from the in-
ertial system U1 (the body has velocity 0) to the inertial
system U2 (the body has velocity v2/1), i.e.

Em2/1 = m0

v2/1∫
0

v2/1dv2/1 =
m0v22/1

2 (72)

In this relativistic dynamics the kinetic energy is ex-
pressed with the same equation as in classical mechanics.

4.3.4 The force in STR/m

Body with rest mass m0 is related to U2 system. It is af-
fected by force that causes acceleration. For the observer

from this system, the acceleration force has in accordance
with (24) the following value

F2/2 = m0
dv2/2
dt2

(73)

For the observer from U1 system, acceleration force
has in accordance with (25) the following value

Fm2/1 = m
m
2/1
dv2/1
dt1

= m0
dv2/1
dt1

(74)

If to divide parties’ equation (74) by (73), then on the
basis of (20) and (23) one will receive

Fm2/1
F2/2

= dt2dt1
·
dv2/1
dv2/2

= (1 − (v2/1/c)2)3/2 (75)

i.e.
Fm2/1 = (1 − (v2/1/c)2)3/2 · F2/2 (76)

The highest value of force is measured by the observer
from the inertial system in which the body is located.

4.3.5 Discussion on the STR/m dynamics

Obtaining a relativistic dynamics, in which there is no rel-
ativistic mass, and equations for kinetic energy and mo-
mentum are identical as in classicalmechanics can be sur-
prising, because in relativisticmechanics it is believed that
the accelerated body can achievemaximum speed c. How-
ever, this dynamics is formally correct.

If the body velocity v2/1 reaches c value, then accord-
ing to (76)

Fm2/1 = (1 − 1−)3/2 · F2/2 ≈ 0 (77)
In the inertial systemU2, in which the body is located,

can be a�ected by acceleration force F2/2 of any, but �nite
value. However, from a perspective of the inertial system
U1, towards which the body has c velocity, the same force
is zero. This means that from a perspective of U1 system,
it is not possible to perform work on the body, which will
increase its kinetic energy inde�nitely. From the relation
(72) it results that the kinetic energy, that a bodywithmass
m0 and velocity c has, a value has

Emmax =
m0c2
2 (78)

4.4 STR dynamics with constant force to its
operation time (STR/F/∆t)

In this section, a model of dynamics of bodies based on
the assumption that the force that accelerates of the body
(parallel to x-axis) divided by the time of operation of this
force is the same for an observer from every inertial system
will be derived (hence indication F/∆t).
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4.4.1 The relativistic mass in STR/F/∆t

In the model STR/F/∆t it is assumed, that

FF/∆t2/1
dt1

:=
F2/2
dt2

(79)

Having introduced (24) and (25), one obtains

mF/∆t
2/1

dv2/1
dt1

1
dt1

= m0
dv2/2
dt2

1
dt2

(80)

On the base (20) and (23), one has

mF/∆t
2/1

dv2/1
dt21

= m0

dv2/1
1−(v2/1/c)2

(1 − (v2/1/c)
2)dt21

(81)

Hence, a formula for relativistic mass of the body that
is located in the system U2 and is seen from the system U1
is obtained, when assumption (79) is satis�ed, as below

mF/∆t
2/1 = m0

[
1

1 − (v2/1/c)
2

]2
(82)

4.4.2 The momentum in STR/F/∆t

The body of rest massm0 is associated with the systemU2.
Todetermine themomentumof thebody relative to the sys-
tem U1 a substitution of (82) to (27)

dpF/∆t2/1 = mF/∆t
2/1 · dv2/1 = m0

[
1

1 − (v2/1/c)
2

]2
dv2/1

= m0c4
1

(c2 − v22/1)
2 dv2/1 (83)

The body momentum is a sum of increases in its mo-
mentum, when the body is accelerated from the inertial
system U1 (the body has velocity 0) to the inertial system
U2 (the body has velocity v2/1), i.e.

pF/∆t2/1 = m0c4
v2/1∫
0

1
(c2 − v22/1)

2 dv2/1 (84)

From the work [2] (formula 54, p. 160) it is possible to
read out, that∫

dx
(a2 − x2)2

= x
2a2(a2 − x2) +

1
4a3 ln

∣∣∣a + xa − x

∣∣∣ , a ≠ 0

(85)
After applying the integral (85) to (84) the formula for

the body momentum in U2 system and measured by the
observer from U1 system in a form of

pF/∆t2/1 = m0c4
[

x
2c2(c2 − x2) +

1
4c3 ln

(c + x)
(c − x)

]∣∣∣∣v2/1
0

= m0c
[

cv2/1
2(c2 − v22/1)

+ 1
4 ln

(c + v2/1)
(c − v2/1)

]
(86)

pF/∆t2/1 = m0v2/1
1
2

[
1

1 − (v2/1/c)
2 + ln

( c + v2/1
c − v2/1

) c
2v2/1

]
(87)

4.4.3 The momentum in STR/F/∆t for small velocities

Formula (87) can be written in the form

pF/∆t2/1 =

m0v2/1

[
1

2(1 − (v2/1/c)
2)

+ 1
4 ln

(
(1 + v2/1/c)

c/v2/1

(1 − v2/1/c)
c/v2/1

)]
(88)

pF/∆t2/1 =

m0v2/1

 1
2(1 − (v2/1/c)

2)
+ 1
4 ln


(
1 + 1

c/v2/1

)c/v2/1
(
1 − 1

c/v2/1

)c/v2/1


(89)

On this basis, for small values v2/1 << c one receives

v2/1 � c ⇒ pF/∆t2/1 ≈ m0v2/1
[
1
2 + 1

4 ln
(

e
1/e

)]
= m0v2/1

[
1
2 + 1

4 ln(e2)
]
= m0v2/1

(90)

4.4.4 The kinetic energy in STR/F/∆t

A determination of the formula for kinetic energy will be
given. The dependence for the relativistic mass (82) is in-
troduced to the formula (28)

dEF/∆t2/1 = mF/∆t
2/1 · v2/1 · dv2/1

= m0

[
1

1 − (v2/1/c)
2

]2
v2/1dv2/1

= m0c4
v2/1

(c2 − v22/1)
2 dv2/1 (91)

The kinetic energy of body is a sum of increases in its
kinetic energy, when the body is accelerated from the in-
ertial system U1 (the body has velocity 0) to the inertial
system U2 (the body has velocity v2/1), i.e.

EF/∆t2/1 = m0c4
v2/1∫
0

v2/1
(c2 − v22/1)

2 dv2/1 (92)
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From the work [2] (formula 58, p. 160) it is possible to
read out, that ∫

xdx
(a2 − x2)2

= 1
2(a2 − x2) (93)

After applying the integral (93) do (92) the formula for
the kinetic energy of the body in U2 system and measured
by the observer from U1 system in a form of

EF/∆t2/1 = m0c4
1

2(c2 − x2)

∣∣∣∣v2/1
0

= m0c4
2

1
(c2 − v22/1)

−m0c4
2

1
c2

(94)

EF/∆t2/1 = m0c2
2

1
1 − (v2/1/c)

2 −
m0c2
2 =

m0v22/1
2

1
1 − (v2/1/c)

2

(95)
The formula for kinetic energy (95) was derived from

the work [3], due to the fact that the author adopted a dif-
ferent assumption than the one on which the dynamics
known from the STR was based.

4.4.5 The kinetic energy in STR/F/∆t for small velocities

For small velocity v2/1� c kinetic energy (95) comes down
to the kinetic energy from classical mechanics, because

v2/1 � c ⇒ EF/∆t2/1 ≈
m0v22/1

2 · 11 =
m0v22/1

2 (96)

4.4.6 The force in STR/F/∆t

Body with rest mass m0 is related to U2 system. It is af-
fected by force that causes acceleration. For the observer
from this system, the acceleration force has in accordance
with (24) the following value

F2/2 = m0
dv2/2
dt2

(97)

For the observer from U1 system, acceleration force
has in accordance with (25) the following value

FF/∆t2/1 = mF/∆t
2/1

dv2/1
dt1

(98)

If to divide parties’ equation (98) by (97), then on the
basis of (20) and (23) one will receive

FF/∆t2/1
F2/2

=
mF/∆t

2/1
m0

· dt2dt1
·
dv2/1
dv2/2

=
mF/∆t

2/1
m0

(1 − (v2/1/c)2)3/2

(99)

On the basis of (82) relation betweenmeasurements of
the same force by two di�erent observers is obtained

FF/∆t2/1 = 1√
1 − (v2/1/c)

2
· F2/2 (100)

The lowest value of force is measured by the observer
from the inertial system in which the body is located.

4.5 STR dynamics with constant mass to
elapse of observer’s time (STR/m/∆t)

In this subchapter a model of body dynamics will be de-
rived based on the assumption that the bodymass divided
by the elapse of time in observer system is the same for the
observer from each inertial frame of reference (hence indi-
cation m/∆t).

4.5.1 The relativistic mass in STR/m/∆t

In the model STR/m/∆t it is assumed, that

mm/∆t
2/1
dt1

:= m0
dt2

(101)

On the base (23), one obtains

mm/∆t
2/1
dt1

= m0√
1 − (v2/1/c)

2 · dt1
(102)

Hence, a formula for relativistic mass of the body that
is located in the system U2 and is seen from the system U1
is obtained, when assumption (101) is satis�ed, as below

mm/∆t
2/1 = m0

1√
1 − (v2/1/c)

2
(103)

4.5.2 The momentum in STR/m/∆t

The body of rest massm0 is associated with the systemU2.
Todetermine themomentumof thebody relative to the sys-
tem U1 a substitution of (103) to (27)

dpm/∆t2/1 = mm/∆t
2/1 · dv2/1 = m0

1√
1 − (v2/1/c)

2
dv2/1

= m0c
1√

c2 − v22/1
dv2/1 (104)

The body momentum is a sum of increases in its mo-
mentum, when the body is accelerated from the inertial
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system U1 (the body has velocity 0) to the inertial system
U2 (the body has velocity v2/1), i.e.

pm/∆t2/1 = m0c2
v2/1∫
0

1√
c2 − v22/1

dv2/1 (105)

From the work [2] (formula 71, p. 167) it is possible to
read out, that∫

dx√
a2 − x2

= arcsin xa , a > 0 (106)

After applying the integral (106) to (105) the formula
for the body momentum in U2 system and measured by
the observer from U1 system in a form of

pm/∆t2/1 = m0c · arcsin
v2/1
c

∣∣∣v2/1
0

= m0c · arcsin
v2/1
c (107)

4.5.3 The momentum in STR/m/∆t for small velocities

Formula (107) can be written in the form

pm/∆t2/1 = m0v2/1
arcsin v2/1

c
v2/1
c

(108)

On this basis, for small values v2/1 << c one receives

v2/1 � c ⇒ pm/∆t2/1 ≈ m0v2/1 (109)

4.5.4 The kinetic energy in STR/m/∆t

A determination of the formula for kinetic energy will be
given. The dependence for the relativistic mass (103) is in-
troduced to the formula (28)

dEm/∆t2/1 = mm/∆t
2/1 · v2/1 · dv2/1 = m0

1√
1 − (v2/1/c)

2
v2/1dv2/1

= m0c
v2/1√
c2 − v22/1

dv2/1 (110)

The kinetic energy of body is a sum of increases in its
kinetic energy, when the body is accelerated from the in-
ertial system U1 (the body has velocity 0) to the inertial
system U2 (the body has velocity v2/1), i.e.

Em/∆t2/1 = m0c
v2/1∫
0

v2/1√
c2 − v22/1

dv2/1 (111)

From the work [2] (formula 73, p. 167) it is possible to
read out, that ∫

x√
a2 − x2

dx = −
√
a2 − x2 (112)

After applying the integral (112) do (111) the formula
for the kinetic energy of the body in U2 system and mea-
sured by the observer from U1 system in a form of

Em/∆t2/1 = −m0c
√
c2 − v22/1

∣∣∣v2/1
0

= −m0c
√
c2 − v22/1+m0c

√
c2

(113)

Em/∆t2/1 = m0c2−m0c
√
c2 − v22/1 = m0c2( 1−

√
1 − (v2/1/c)

2 )
(114)

4.5.5 The kinetic energy in STR/m/∆t for small
velocities

Formula (114) can be written in the form

Em/∆t2/1 =

m0v22/1
2 · 2c

2

v22/1
·
(1 −

√
1 − (v2/1/c)

2)(1 +
√
1 − (v2/1/c)

2)

1 +
√
1 − (v2/1/c)

2

(115)

Em/∆t2/1 =
m0v22/1

2 · 2c
2

v22/1
·
1 − (1 − (v2/1/c)

2)

1 +
√
1 − (v2/1/c)

2

=
m0v22/1

2
2

1 +
√
1 − (v2/1/c)

2
(116)

On this basis, for small values v2/1� c one receives

v2/1 << c ⇒ Em/∆t2/1 ≈
m0v22/1

2 · 22 =
m0v22/1

2 (117)

4.5.6 The force in STR/m/∆t

Body with rest mass m0 is related to U2 system. It is af-
fected by force that causes acceleration. For the observer
from this system, the acceleration force has in accordance
with (24) the following value

F2/2 = m0
dv2/2
dt2

(118)

For the observer from U1 system, acceleration force
has in accordance with (25) the following value

Fm/∆t2/1 = mm/∆t
2/1

dv2/1
dt1

(119)

If to divide parties’ equation (119) by (118), then on the
basis of (20) and (23) one will receive

Fm/∆t2/1
F2/2

=
mm/∆t

2/1
m0

· dt2dt1
·
dv2/1
dv2/2

=
mm/∆t

2/1
m0

(1 − (v2/1/c)2)3/2

(120)
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On the basis of (103) relation between measurements
of the same force by two di�erent observers is obtained

Fm/∆t2/1 = (1 − (v2/1/c)2) · F2/2 (121)

The highest value of force is measured by the observer
from the inertial system in which the body is located.

5 The general form of dynamics
In presented examples, assumptions have been adopted
which can be written in forms (30), (46), (68), (80) and
(101). On this basis, it can be seen that the assumption for
relativistic dynamics is as follows

m{a,b}
2/1

dva2/1
dtb1

= m0
dva2/2
dtb2

, a, b ∈ R (122)

The physical meaning of the formula (122) depends on
the value of the parameters a and b to be determined. For
example, if a = b = 1, then this formula takes the form (29),
equivalent to the form (30), from the �rst example.

On the basis of (20) and (23) one receives

m{a,b}
2/1

dva2/1
dtb1

= m0

dva2/1
(1−(v2/1/c)2)

a

(1 − (v2/1/c)
2)
b/2
· dtb1

= m0

[
1

1 − (v2/1/c)
2

]a+b/2 dva2/1
dtb1

(123)

Markings are adopted

{x} ≡ {a, b} ∧ x = a + b2 ∈ R (124)

Now on the basis of (123) the relativistic inertial mass
of body in U2 system, seen from U1 system, when an as-
sumption is ful�lled (122), is expressed in dynamics {x} by
the following formula

m{x}
2/1 = m0

[
1

1 − (v2/1/c)
2

] x
(125)

Each such relativisticmassde�nes adi�erent relativis-
tic dynamics.

According to presented examples, based on formulas
(27) and (125), the momentum in dynamicsalign {x} is ex-
pressed by the following formula

p{x}2/1 =
v2/1∫
0

dp{x}2/1 =
v2/1∫
0

m{x}
2/1 · dv2/1

= m0

v2/1∫
0

[
1

1 − (v2/1/c)
2

] x
dv2/1 (126)

p{x}2/1 = m0c2x
v2/1∫
0

1
(c2 − v22/1)

x dv2/1 (127)

According to presented examples, based on formulas
(28) and (125), the kinetic energy in dynamics {x} is ex-
pressed by the following formula

E{x}2/1 =
v2/1∫
0

dE{x}2/1 =
v2/1∫
0

m{x}
2/1 · v2/1 · dv2/1

= m0

v2/1∫
0

[
1

1 − (v2/1/c)
2

] x
v2/1dv2/1 (128)

E{x}2/1 = m0c2x
v2/1∫
0

v2/1
(c2 − v22/1)

x dv2/1 (129)

According to presented examples, based on formulas
(24), (25) and (20), (23), the relation between forces in dy-
namics {x} is expressed by the following formula

F{x}2/1
F2/2

=
m{x}

2/1
dv2/1
dt1

m0
dv2/2
dt2

=
m{x}

2/1
dv2/1
dt1

m0
dv2/1

1−(v2/1/c)2
· 1√

1−(v2/1/c)2·dt1

=
m{x}

2/1
m0

(1 − (v2/1/c)2)3/2 (130)

On the basis of (125) one receives

F{x}2/1
F2/2

=
[

1
1 − (v2/1/c)

2

] x
(1 − (v2/1/c)2)3/2

=
[

1
1 − (v2/1/c)

2

] x− 3
2

(131)

On the basis of (25) and (125) the Newton’s second law
for dynamics {x} is obtained

F{x}2/1 = m0

[
1

1 − (v2/1/c)
2

] x
a2/1 (132)

6 Summary of dynamics
Summary derived formulas for momentum and kinetic en-
ergy:

Dynamics x = 0
pm2/1 = m0v2/1 (133)

Em2/1 =
m0v22/1

2 (134)
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Dynamics x = 1/2

pm/∆t2/1 = m0c · arcsin
v2/1
c = m0v2/1

arcsin(v2/1/c)
v2/1/c

(135)

Em/∆t2/1 = m0c2(1 −
√
1 − (v2/1/c)

2)

=
m0v22/1

2
2

1 +
√
1 − (v2/1/c)

2
(136)

Dynamics x = 1

p∆p2/1 =
m0c
2 ln

( c + v2/1
c − v2/1

)
= m0v2/1 ln

( c + v2/1
c − v2/1

) c
2v2/1

(137)

E∆p2/1 =
m0c2
2 ln 1

1 − (v2/1/c)
2

=
m0v22/1

2 ln 1

[1 − (v2/1/c)
2]
(c/v2/1)2

(138)

Dynamics x = 3/2 (recognized STR dynamics)
pF2/1 = m0v2/1

1√
1 − (v2/1/c)

2
(139)

EF2/1 = m0c2
1√

1 − (v2/1/c)
2
− m0c2

=
m0v22/1

2
2√

1 − v22/1
c2

(
1 +
√
1 − v22/1

c2

) (140)

Dynamics x = 2

pF/∆t2/1 = m0v2/1
1
2

[
1

1 − (v2/1/c)
2 + ln

( c + v2/1
c − v2/1

) c
2v2/1

]
(141)

EF/∆t2/1 = m0c2
2

1
1 − (v2/1/c)

2 −
m0c2
2 =

m0v22/1
2

1
1 − (v2/1/c)

2

(142)
Figure 4 shows compared momentums from derived

relativistic dynamics.
Figure 5 shows compared kinetic energies from de-

rived relativistic dynamics.
Figure 6 shows relation betweenmeasurements of the

same force from derived relativistic dynamics.
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Figure 4:Module of the momentum in dynamics:
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7 Even more general form of
dynamics
Relation (125) to the relativisticmass can be evenmore

generalized. In the general case, it is possible to assume
that the relativistic mass is expressed by the following for-
mula

m{f}
2/1 = m0 · f (v2/1) (143)
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Figure 6: Relation between measurements of the same force by two
di�erent observers in dynamics:
STR/m (x=0), STR/m/∆t (x=1/2), STR/∆p (x=1), STR/F (x=3/2) and
STR/F/∆t (x=2)

Where f (v2/1) is any continuous function with the fol-
lowing properties

f (v2/1) ≥ 0 (144)

f (0) = 1 (145)

f (v2/1) = f (−v2/1) (146)

Each function f (v2/1) de�nes a di�erent dynamics of
the STR.

8 Final conclusions
This study presents the author’s method of deriving dy-
namics in the Special Theory of Relativity (STR). Five ex-
amples of such deriving were shown.

Derivation of dynamics is based on two formulas ap-
plicable in the kinematics of STR, i.e. (20) and (23). In or-
der to derive the dynamics of STR, it is necessary to adopt
an additional assumption in kinematics, which allows the
concept of mass, kinetic energy and momentum to be in-
troduced into the theory.

The dynamics of STR/F (x = 3/2) is nowadays recog-
nized as the dynamics of the STR. It is based on the as-
sumption that each force parallel to x-axis has the same
value for the observer from each inertial frame of refer-
ence. Formally, however, other dynamics are possible in
accordance with the kinematics of the STR. In order to de-
rive them, it is necessary to base on adi�erent assumption.

The currently accepted dynamics of STR has numer-
ous experimental con�rmations. However, it is not ex-
cluded that more accurate experiments designed speci�-
cally for this purpose will show that the optimal model is
the dynamics for x = 3/2 ± ∆x, where ∆x is a noticeable cor-
rection. A calorimeter can be useful for veri�cation of dif-
ferent dynamics. This device can measure the amount of
heat released when stopping particles to high speed. On
this basis, it is possible to determine graphs of the kinetic
energy of accelerated particles (for example in accelera-
tors of elementary particles) as a function of their velocity,
analogous to those presented in Figure 5. On this basis, it
is possible to indicate the dynamics in which the kinetic
energy of particles is compatible with experiments.

The presented method of dynamism derivation can
also be used in other theory of body kinematics. In the
monograph [1] this method was used to derive four dy-
namics in the Special Theory of Ether, which are allowed
for kinematics derived in the articles [4, 5]. The presented
method is analogous to that used in another area, in the
article [6].
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