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Abstract: To solve the problem of multi-objective perfor-
mance optimization based on ant colony algorithm, a
multi-objective performance optimization method of ORC
cycle based on an improved ant colony algorithm is pro-
posed. Through the analysis of the ORC cycle system, the
thermodynamic model of the ORC system is constructed.
Based on the first law of thermodynamics and the second
law of thermodynamics, the ORC system evaluation model
is established in a MATLAB environment. The sensitivity
analysis of the system is carried out by using the system
performance evaluation index, and the optimal working
parameter combination is obtained. The ant colony algo-
rithm is used to optimize the performance of the ORC sys-
tem and obtain the optimal solution. Experimental results
show that the proposed multi-objective performance op-
timization method based on the ant colony algorithm for
the ORC cycle needs a shorter optimization time and has a
higher optimization efficiency.

Keywords: Ant colony algorithm, ORC cycle, multi-
objective performance optimization

PACS: 07.05.Rm, 84.70.+ p, 89.20.Ff

1 Introduction

An Organic Rankine Cycle (ORC) uses organic matter with
a low boiling point and high evaporation pressure as the
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working fluid to recover and utilize various low-grade en-
ergy sources such as industrial waste heat, solar energy,
geothermal energy, biomass energy, ocean temperature
difference energy, and LNG cold energy. It has the advan-
tages of simple structure, high efficiency, environmental
friendliness and adaptability [1]. At present, the research
on ORCs is mainly focused on the selection and optimiza-
tion of the ORCs’ working fluids. The performance evalua-
tion index plays a very important role in ORC optimization.
For ORCs with different working fluids, the choice of perfor-
mance evaluation index is also different. The evaluation
index is the core and key of the energy conversion system
analysis method [2]. The ORC performance evaluation in-
dicators in current use can be divided into two categories.
One is the decrease of the single performance evaluation
index based on the first law of thermodynamics, while the
other is the single performance evaluation index based on
the second law of thermodynamics [3]. However, the sin-
gle objective optimization results are inconsistent with or
even contradictory to the actual needs of the project. There-
fore, ORC performance evaluation often involves multiple
indexes [4]. At this point, the optimization of an ORC is to
solve the multi-objective optimization problem. At present,
there is not much research on multi-objective optimization
of ORCs at home and abroad.

In the literature [5], a multi-objective optimization
method for a traction power supply system based on
improved particle swarm optimization algorithm is pro-
posed [5]. A simulation method of vehicle network cou-
pling system model and load flow distribution is used. A
multi-objective optimization model for the traction power
supply system is constructed with the main design princi-
ple as the constraint and the total capacity of the whole
line and the minimum average power loss as the objec-
tives. In order to improve the global search ability and
convergence speed in the process of solving the model, a
chaotic multi-objective particle swarm optimization algo-
rithm based on Pareto entropy is designed. A fuzzy mem-
bership function is used to calculate the satisfaction de-
gree of each objective function in the Pareto solution set
to determine the final system optimization scheme. How-
ever, the optimization time is longer. In the literature [6], a

3 Open Access. © 2019 R. He et al., published by De Gruyter. ‘ (cc This work is licensed under the Creative Commons Attribution 4.0

License


https://doi.org/10.1515/phys-2019-0006

DE GRUYTER

cascade ORC system is proposed [6]. Thermodynamic mod-
els of two systems with and without diffluence are built.
Taking evaporation temperature and output work as in-

dependent variable and objective function, respectively, a

genetic algorithm is used to optimize the heat exchanger.

Comparison of system performance under two working
conditions is carried out. The influence of the series on the
performance of the system and the rules of cycle changes
at all levels in the cascade system are analyzed. Split-flow

technology can increase the optimum evaporation temper-

ature of each heat exchanger, reduce the exergy loss of

the preheater, and increase the performance of the system.

However, the optimization efficiency of the method is low.

2 Materials and methods

2.1 Establishment of component model for
ORC cycle system

The establishment of the thermodynamic model of an ORC
system is the basis of its thermal analysis. Based on the
first and second laws of thermodynamics, the model of
each component of the system is established, and thus the
performance evaluation model of the system. The ORC sys-
tem consists of evaporator, expander, condenser and re-
frigerant circulating pump [7]. In the thermodynamic anal-
ysis of organic Rankine cycles, the condenser section of the
system can be divided into three sections: precooling sec-
tion, condensing section, and supercooling section. The
evaporator part can also be divided into three sections: pre-
heating section, evaporating section, and overheating sec-
tion.

2.1.1 Expander part

The high-pressure organic working steam at the outlet of
the evaporator enters the expander at the state point 1. Af-
ter the adiabatic expansion of the expander, the state point
is 2. On the T-S diagram, the ideal exhaust point is 3, assum-
ing that the work done by the organic working medium in
the expander is an isentropic process. For the state point
3,

53=51’P3=Pcond o)

where P4 is the condensing pressure of the system (kPa)
and P2 = Pcond'
Other state parameters of the state point 3 are given by

Ts = refpropm('T’,' P', P3,’ S, S3, FLUID) #)
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hs = refpropm(H',’ T', T5,’ S', S5, FLUID) 3)

where FLUID is the organic working fluid of the system
and hj5 is the specific enthalpy of the state point 3. The ref-
propm function used in the calculation process is the REF-
PROP software function called by MATLAB [8], which is
used to calculate the physical parameters of organic work-
ing substances at a certain state point.

For the state point 2, the specific enthalpy is given by

hy = hy = n¢(hy — h3) (4)

where 7, is the internal efficiency of the expander and h;
is the specific enthalpy of the state point 1.

For an ORC system with medium and low tempera-
ture waste heat utilization, the internal efficiency of the
expander 7; varies little because of the relatively small
change of temperature and pressure during the cycle.

In order to facilitate the subsequent thermodynamic
calculation and analysis of the thermodynamic perfor-
mance of the system, it is considered that n; has a fixed
value.

Based on h; and p», other state parameters of the state
point 3 are determined and given by

T3 = refpropm('T', H', h,, P, P,, FLUID)  (5)

S, = refpropm('S’,’ H', h,,’ P', P,, FLUID)  (6)

The capacity of the expander to do work is expressed by

we=hy - hy )

2.1.2 Working fluid circulating pump part

After the condenser condenses, the low-temperature lig-
uid working fluid enters the working fluid circulation
pump. The corresponding state point on the T-S diagram
is 6. The state point of the working fluid in the pump after
adiabatic pressurization is 8. The state point of the work-
ing fluid after isentropic compression in the ideal state is 7.
For the state point 7,

37 =36,P7 =Pevap (8)

where Peyqp is the evaporation pressure of the system (kPa)
and P8 = Pevap.
Other state parameters of the state point 7 are given by

T; = refpropm('T’, P',P;,’S’,S;, FLUID)  (9)

h; = refpropm(H’,’ T, T;,' S’, S7, FLUID) (10)



50 — R.Heetal.

Based on the adiabatic compression efficiency np of the
working fluid pump, the specific enthalpy of the state

point 8 can be obtained as
hg = hg - (h7 = he)/np (11)

Based on hg and Pg, other state parameters of the state
point 8 are determined and given by

Ts = refpropm('T’,' H', hg,’ P’, Pg, FLUID) (12)

Sg = refpropm(’S’, H', hg,’ P', Pg, FLUID) (13)

In an ORC system with medium and low temperature waste

heat utilization, the consumption power of the refriger-
ant circulating pump is not small in proportion to the out-

put power of the expander. When calculating the external
output power of the ORC system, the consumption of the
working fluid circulating pump cannot be neglected, and
is given by

Wp = h8 - h6 (14)

2.1.3 Evaporator part

The evaporator of the ORC system can be divided into three

sections: preheating section, evaporating section and su-

perheating section. Generally, the section of the working
fluid preheated to the saturated liquid from the outlet state

of the circulating pump is defined as the preheating sec-

tion. The working fluid in the state point 8 heated after the
preheating section reaches the state 9 of the inlet of the
evaporation section. After the heat medium releases heat
through the preheating section, its state point changes
from 13 to 14. For the state point 9,

To = Tevap, Q=0 (15)

where Tevap is the evaporation temperature of the system
(K) and Q is the dry gas liquid mixture of working fluid
(kg/kg).

Other state parameters of the state point 9 are given by

ho = refpropm('H’,’ T, To,’ Q', 0, FLUID)  (16)

S = refpropm(’S’,’ T', Te,’ Q', 0, FLUID)  (17)

In the T-S diagram, Tpprp represents the node temperature
difference of the evaporator, which is an important design
parameter of the evaporator. Usually the minimum value

is 3°C C-7°C. If the heat source is sufficient, the node tem-
perature difference of the evaporator can be moderately in-
creased to reduce the heat exchanger area and system cost.
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Therefore, the temperature of the state point 13 is
given by

T13 = Tevap + Tpprp. (18)

Using medium-low temperature and high pressure air
to simulate the heat source, when the air temperature is
high, the specific enthalpy is mainly affected by temper-
ature, but hardly by pressure. Therefore, the pressure of
heat source can be maintained at atmospheric pressure
P, mp- The specific enthalpy of the state point 13 is deter-
mined according to the temperature of the heat source:

his = refpropm(H',/ T', T13," P', Pypp, GAS) ~ (19)

S13 = refpropm(’'S’,’ T', T13,' H', h13, GAS) (20)

According to the law of conservation of energy, the heat
absorbed by working fluids in the preheating section is

Qe1 = my(h13 - h1s) = ms(ho — hs) 1)

where my, is the mass flow rate of the heat source (kg/s)
and my is the mass flow rate of the working fluid (kg/s).

After the circulating working fluid in the preheating
section is saturated, the working fluid continues to absorb
heat and change phase in the evaporator. The evaporation
section is usually defined by the point where the saturated
liquid medium undergoes a phase transition and is heated
to saturated vapor.

The saturated liquid working fluid with the state point
9 is heated through the evaporation section to reach the
inlet state of the superheated section 10. After the heat
medium releases heat through the preheating section, its
state point changes from 12 to 13. For the state point 10,

T10 = Tevap, Q =1 (22)

Other state parameters of the state point 10 are given by

hao = reforopm(H',' T', T10,' @', 1, FLUID)  (23)

S10 = refpropm('S’,’ T', T10," Q', 1, FLUID) (24)

According to the law of conservation of energy, the heat
absorbed by the working fluid in the evaporation section
is given by

Qe2 = my(h12 = h13) = mg(hyo — hg) (25)

The outlet of the refrigerant in the evaporator section of
the evaporator is saturated vapor. After heating through
the superheated section [9], the organic working quality
becomes overheated. This section is usually defined as the
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overheating section. The saturated steam working state
with the state point 10 is heated through the superheated
section to reach the inlet state of the expander 1. After the

heat medium releases heat through the superheated sec-
tion, its state point changes from 13 to 14. In the T-S dia-

gram, the superheat of the working fluid is Tsup. For the
state point 1,

T, = Tevap + Tsup, P, = Pevap (26)

Other state parameters of the state point 1 are given by

hy = refpropm(H',' T', T1,' P', Pevap, FLUID)  (27)

Sy =refpropm('S’,’ T', T1,' P', Pevap, FLUID)  (28)

According to the law of conservation of energy, the heat
absorbed by the working fluid in the superheated section
is given by

Qe3 = mp(h11 — h12) = mp(hy - hio). (29)

2.1.4 Condenser part

The condenser of ORC system can also be divided into
three sections [10]: precooling section, condensing section
and supercooling section. The superheated working fluid
vapor discharged from the tail of the expander is cooled to
saturated vapor at the initial stage of the condenser. This

initial stage is usually defined as the precooling section.

The working state with the state point 2 is cooled by the

precooling section to reach the inlet state of the condens-

ing section 4. After absorption heat of the cooling medium
in the precooling section, its state point changes from 17 to
18. For the state point 4,

Ty = Teona» Q= 1 (30)

where T4 is the condensing temperature (K).
Other state parameters of the state point 4 are given by

hy = refpropm(H',’ T, T4, Q', 1, FLUID)  (31)

S, = refpropm('S’,’ T', T,,’ @', 1, FLUID)  (32)

In general, the minimum temperature difference between
refrigerant and refrigerant in condenser is defined as the
node temperature difference of condenser T.,,,. Smaller

nodal temperature difference is beneficial to reduce the ir-
reversible loss of the condensation process, but it also in-

creases the heat transfer area of the condenser [11]. The
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temperature difference of condenser is generally taken as
3°C7°C.

The hydraulic medium is used as the cooling medium
of the system, and the temperature at the state point I7 is

T17 = Teond = Tcond (33)

Other state parameters of the state point 17 are given by

h4 = refpropm(’H’,’ T/) T17’/P/s Pwater; WATER) (34)

S17 = refpropm('S',’ T', T17, H', h17, WATER) ~ (35)

According to the law of conservation of energy, the heat
released by the working fluid in the precooling section is

Qc1 = mc(hyg — h17) = mg(hy — hy) (36)

where m. is the mass flow rate of cooling water (kg/s).

The saturated vapor state of organic working fluid in
the condenser continues to cool to saturated liquid, which
is usually defined as the condensation section. The tail ex-
haust temperature of the ORC system is low when using
medium and low temperature waste heat. The condensa-
tion heat of the cooling medium usually occupies most of
the condenser load, so the condensation section area is rel-
atively large.

The working fluid with the state point 4 reaches the in-
let state 5 of the supercooling section after cooling through
the precooling section. After absorption heat of the cooling
medium in the precooling section, its state point changes
from 16 to 17. For the state point 5,

T5 = Teona> Q = 0. (37

Other state parameters of the state point 5 are given by

hs = refpropm('H’,’ T', Ts,’ Q', 0, FLUID) (38)

Ss = refpropm('S’,’ T', Ts,’ Q', 0, FLUID)  (39)

According to the law of conservation of energy, the heat
released by the working fluid in the condensation section
is given by

Qc2 = mc(hy7 — hyg) = ms(hy — hs) (40)

In order to ensure the safe operation of the refrigerant
pump, the working fluid at the pump inlet can have a
smaller degree of undercooling. The supercooling section
is usually defined as the section where saturated liquid or-
ganic refrigerants continue to be cooled to the supercool-
ing state in the condenser. The proportion of supercooling
section to the whole condenser is also very small.
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The working fluid with the state point 5 reaches the
state 6 of the circulating pump inlet after cooling through
the supercooling section. After absorption heat of the cool-
ing medium in the supercooling section, its state point
changes from 15 to 16. For the state point 6,

T6 = Tcond - Tsub’ P6 = Pcond (41)

Other state parameters of the state point 6 are given by

he = refpropm(H’,) T', Tg,' P, Poona> FLUID)  (42)

Se = refpropm('S’, T', T¢,' P, Peona, FLUID)  (43)

The heat released by working fluid in the undercooled sec-
tion is given by

Qc3 = mc(hyg — his) = my(hs - he) (44)

2.2 Performance evaluation model of ORC
system

From the point of view of energy analysis and exergy anal-
ysis, based on the first law of thermodynamics and the sec-
ond law of thermodynamics, an evaluation model [12] is
established for an ORC system with medium and low tem-
perature waste heat utilization.

2.2.1 Evaluation index of system performance based on
the first law of thermodynamics

The ORC system is a kind of thermodynamic system for re-
covering and utilizing medium and low-grade waste heat
resources. Its net output function can directly reflect the
production capacity of the system, and it is also one of the
most important evaluation indexes of the system. Based
on the analysis of the above component model, we can see
the following: the output specific work of expander is wy,
and the consumption specific work of working fluid circu-
lating pump is wp. Therefore, the actual net output work
of the ORC system is

Whet = mg(we — wp) (45)

Thermal efficiency is another important evaluation index
of ORC system based on the first law of thermodynam-
ics [13]. It is also known as the efficiency of the first law
of thermodynamics. It can reflect the proportion of the en-
ergy gain of the system to the total energy consumption.
The thermal efficiency of the ORC system is defined as the
ratio of net output power of the system to the absorption
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of heat by the organic matter from the heat source, which
is given by

_ Wnet
rlth Qe ’

(46)

where Qe is the total heat absorbed by the organic working
medium from the heat source medium, and

Qe = Qe1 + Qe2 + Qes. 47

The heat transfer area per unit net output power of the sys-
tem is another evaluation index derived from the net out-
put power of the system. The index is used to calculate the
working capacity of the system while taking into account
the economic factor of the system heat exchanger. In fact,
the heat exchanger is not only one of the core pieces of
equipment of an ORC system, but also the equipment with
the highest electricity cost. Its investment cost accounts for
more than 80% of the initial investment of the ORC system.
In order to improve the economy of the ORC system, it is
necessary to reduce the heat transfer area required for the
net output power of the system.

The heat transfer area of an ORC system heat ex-
changer is given by

Qi

Ai = KiAt; (48)

where Q; is the heat transfer of the heat exchanger, K; is
the heat transfer coefficient of the heat exchanger, related
to fluid and process on both sides of the heat exchanger,
and At; is the mean temperature difference in heat transfer
process. The logarithmic mean temperature difference is
usually adopted in actual calculation.

Therefore, the heat transfer area per unit net output of
the ORC system is given by

A
Anet = 1r

49
Wnet ( )

2.2.2 Evaluation index of system performance based on
second law of thermodynamics

From the first law of thermodynamics, heat and work are
equivalent in quantity. But from the second law of thermo-
dynamics, there is a difference in quality between heat and
work. Therefore, it is necessary to establish a supplemen-
tary evaluation index according to the second law of ther-
modynamics. Exergy is such a concept based on the sec-
ond law of thermodynamics. It is defined as follows. In a
reversible process, energy can be transformed into a useful
part. An actual process must be irreversible, and it is im-
possible to obtain the greatest degree of conversion work,
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so in an actual process possible devaluation, i.e. “exergy
loss”, will inevitably appear. Exergy loss can directly re-
flect the power loss of each part of the system caused by
irreversible factors. It can also reflect the power loss of the
whole ORC system. Similar to energy analysis, exergy anal-
ysis can be added to determine the exergy loss of each com-
ponent.
The exergy loss of the expansion part is given by

It = meamb(SZ - Sl) (50)

The exergy loss of the working fluid circulating pump is
given by

Ip = mgTamp(Ss — Sg) (51)
The exergy loss of the evaporator part is given by
hy-h
Tevap = Mg Tamp [(51 -5g) - 1Th 8] (52)

where T}, is the mean temperature of the high temperature
heat source.
The exergy loss of the condenser part is given by

hg-h
Ieona = meamb |:(SG -5;) - %}

(53)
where T; is the mean temperature of the cryogenic coolant.

According to the exergy loss distribution of compo-
nents in the system, the total exergy loss of will inevitably
appear he ORC system is obtained by

Ttotar =1t + Ip + levap + Icong (54)

he—hy  h-h
Ty T;

= meamb

In addition, according to the second law of thermodynam-
ics, the efficiency of the second law of thermodynamics
can be obtained. The efficiency of the second law of ther-
modynamics is also called the exergy efficiency. It can re-
flect the degree of effective utilization of waste heat dur-
ing recycling. The efficiency of the second law of thermo-
dynamics is defined as the ratio of increased revenue to
energy consumed, which is expressed by

_ Whe
n—Qe(lnf;;)

In this paper, the basic working principle of the ORC sys-
tem is first described, and its main components are intro-
duced. The ideal organic Rankine cycle can be realized by
four thermodynamic processes: constant pressure heating,
adiabatic expansion, constant pressure cooling and adi-
abatic pressurization. The corresponding system compo-
nents are evaporator, expander, condenser and working

(55)
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fluid circulating pump. Then, by comparing with the Rank-
ine cycle, the main characteristics of the organic Rankine
cycle are analyzed.

Based on the first law of thermodynamics and the
second law of thermodynamics, the model of the main
components of the system, such as expander, circulating
pump, evaporator and condenser, is established in a MAT-
LAB environment. Considering the combination of the en-
ergy analysis and exergy analysis of the system, which can
reflect the performance of the system more comprehen-
sively, the evaluation model of ORC system for medium
and low temperature waste heat utilization is established.
The main evaluation indexes of the model include: net out-
put work, thermal efficiency, heat transfer area per unit net
output work, system exergy loss, and the efficiency of the
second law of thermodynamics.

The sensitivity analysis of the system is carried out
based on the first law of thermodynamics and the second
law of thermodynamics [15]. The effects of the key operat-
ing parameters, such as evaporation temperature, super-
heating degree, condensation temperature, and supercool-
ing degree, on the performance of ORC system for medium
and low temperature waste heat utilization were studied.
The sensitivity analysis results show that it is necessary
to select the optimum evaporation temperature, minimize
the superheating, and reduce the condensation tempera-
ture, the combination of which has a great positive effect
on improving the performance of the system. Considering
the total exergy loss of the system, the total exergy loss
will decrease with increased evaporation temperature and
superheating. The goal of reducing heat transfer area per
unit net output power can be achieved by choosing the op-
timum evaporation temperature, reducing superheating
and supercooling, and decreasing the condensation tem-
perature.

Through the sensitivity analysis of ORC system, it can
be seen that the key operating parameters such as evapo-
ration temperature, superheat degree, condensation tem-
perature, and supercooling degree have a certain degree
of influence on the performance of the system. Therefore,
in order to maximize the thermal efficiency of the ORC sys-
tem, a search method is needed to optimize the system pa-
rameters and obtain the best combination of working pa-
rameters. At present, the ant colony algorithm (ACO) has
been widely used as a parallel and efficient global random
search algorithm in the field of parameter optimization. It
draws lessons from the genetic mechanism and natural
selection rules in the biological field. In this paper, the
ant colony algorithm is used to optimize the parameters
of ORC system.
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2.3 Solving multi-objective parameters of
ORC cycle based on improved ant colony
algorithm

The Ant Colony Algorithm (ACA) is a bionic algorithm in-

spired by M. Dorigo et al. in 1991 by analyzing an ant
colony’s foraging process in nature, i.e. the cooperative
behavior among simple ants evolves into the high social
behavior of the colony. The idea is to find the optimal
path between ants by the positive feedback mechanism of
pheromone on the route.

A multi-objective optimization problem is a kind of
universal problem in scientific research and engineering
practice. Its object of study is the optimization problem of
more than one objective function in a given region. It can
be described as

minf (x) = (f1 (%), /> (%), -, fa(x)) s.t xeS§

where f; (x) (i = 1, 2, - - - , n) is the objective function for n

(56)

and S is the D-dimensional feasible space. For the multi-

objective optimization problem, there is no good or bad
distinction between each sub-goal, no better solution than
at least one of them and no other objective is bad, and the
elements in the solution set are not comparable to each
other for all objectives.

However, when the ant colony algorithm is used to
solve multi-objective optimization problems, the positive
feedback pheromone communication between ants will
make the ant colony tend to concentrate in a certain area
of feasible space, so it is not conducive to the solution of

multi-objective problems. In this paper, an ant colony al-

gorithm for solving multi-objective optimization problems

is proposed based on the characteristics of such problems.

Assume the number of cities is N, the number of ants
is M. At time ¢ the transfer probability P;‘j (¢) of the kth ant
moving from city i to city j is expressed by

T?;"],-,-(f)
PS (t) = leullza\;vedt Tij'nij(t)

0 else

j € allowed
(57)

wherek=1,2,---,M,i,j=1,2,---, Nisthe pheromone

on the path between city i and city j, n;; (¢) is the heuris-

tic information, n;; (t) = 1/d;; (d;; is the distance between
cities i j), a and B are heuristic factors, and allowed is the
set of cities that ant k has never gone through until time ¢.

Ants leave a pheromone on every path. In order
to avoid local optimization, a pheromone volatilization

mechanism is introduced. Update of the pheromone is car-

ried out in the following way:

T (t+ 1) =p -0y (O) + Aty (0) (58)
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M

Aty (t) = Aty (), (59)
k=1

where p is the volatilization coefficient and p € [0, 1],

At (t) is the pheromone left by the kth ant on the path

and is a function of the total path length.

For single-objective optimization problems, the search
mechanism based on transfer probability and pheromone
updating method of basic ant colony algorithm is helpful
to guide the ant colony to search for the area with high
pheromone concentration so that ants can gather in a cer-
tain area of the space and eventually find the global op-
timal solution. However, for multi-objective optimization
problems, the solution is relative and there is no absolute
optimum. Therefore, the Pareto solution set is usually ob-
tained. Since all the points in the Pareto solution set can
be regarded as the optimal solution of the designer, it is re-
quired that the obtained non-inferior solution set should
be as close as possible to the real Pareto solution set of the
problem. The obtained Pareto front should have better uni-
formity and dispersion range.

Based on the above analysis, a new definition for the
pheromone update method of the basic ant colony algo-
rithm is proposed [14, 15]. Because the pheromone is in a
continuous domain, it is different from the case in a dis-
crete domain, so that the pheromone is left only at the ant’s
position. In order to guide ants to search for feasible space
better, an external set A (t) is used to store the Pareto so-
lution set found until time ¢. If an ant enters the set A (),
this indicates that the location of the ant is incontrollable.
The pheromones of ants should be added so that other ants
can search the neighborhood of the ant’s location. On the
other hand, if the fails to enter the set A (t), the pheromone
level should be reduced appropriately. When multiple ants
enter the set A (t) at the same time, the pheromone incre-
ment of each ant should be distinguished. For the unifor-
mity of the Pareto frontier, the minimum distance between
the new ant and the objective function of the solution in
the original set A (¢) is taken as the pheromone released by
the ant in its position. The greater the distance, the higher
the pheromone content, and the higher the probability of
other ants to search for the ant’s location neighborhood.
Therefore, the pheromone update is

Ti(t+1) = {P'Ti(t)+5(t)if(xeA(t+1))
p-Ti()

where § (t) = min i(fi ) -fi(v),xy € A(t), and p is
\/ i=1

the volatility coefficient.
The movement of ant i is related to the pheromone
and distance of ant j. Ants with high pheromone concen-

(60)
else



DE GRUYTER

tration and distance from each other should be selected as
the next move direction with higher probability. Then the
transition probability is given by

T (0) - 1 (0)

Pj)= ——5 =
SR OR, 10
leM

(61)

where n;; () = 1 / djj, is the distance between ant i and ant
j.

Through the above strategy, the ant not only searches
the sparse area in the set A (t), but also searches the loca-
tion of other ants. In order to speed up convergence, a ran-
dom number-based search mechanism is also introduced.
For a given constant in [0, 1], when the random number is
z (€ [0, 1]) < w, it moves according to the above transfer
probability. When z > w, the solution selected arbitrarily
from the set A (t) is taken as the next move direction for ant
i, and the neighborhood of the solution is searched.

The ant colony algorithm for solving multi-objective
optimization problem is as follows.

1. Initialize the location and the set A (f) of ants in
search space S and let t = 0.

2. t=t+1.

3. Generate random number z. If z < w, search accord-
ing to Eq. (61). If z > w, the arbitrarily selected solu-
tion in the set is used as the next move direction to
do the neighborhood search.

4. Update the set A ().

5. Update pheromone content of ants according to Eq.
(60).

6. Ifis greater than the maximum number of iterations,
exit; otherwise, go to step (2).

When using the ant colony algorithm to solve multi-
objective optimization problems, it is hoped that the pop-
ulation of the algorithm can maintain the diversity of the
population in the iterative process, which is different from
the single objective optimization when clustering near the
optimal point. In this section, a preliminary analysis of the
population diversity of the algorithm will be given.

Let be the maximum diffusion range of the real Pareto
solution set for multi-objective optimization problem and
assume ants can enter the solution set A (t) every time at
the A time, then

5max

1p (62)

lim 7;(t) =7 <

t—oo
The decomposition based multi-objective ant colony
optimization is to divide the ant colony into multiple
subgroups and assign them to various targets. Each sub-
group maintains a pheromone matrix, and each ant
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has its own heuristic information matrix [16—22]. Pareto-
based ant colony optimization (PACO) uses multiple
pheromone matrices and a single heuristic information
matrix. Population-based multi-objective ant colony opti-
mization uses multiple pheromone matrices and multiple
heuristic information matrices.

Although the multi-objective ant colony optimization
algorithm has been used to solve many multi-objective op-
timization problems, there are still some defects. There
are many studies on the convergence analysis of single-
objective ant colony optimization algorithm, but few on
the convergence analysis of multi-objective, especially on
the convergence analysis of Pareto solution domain. The
experimental analysis of the multi-objective ant colony al-
gorithm is usually carried out on a two-dimensional multi-
objective, but the research on complex multi-objective op-
timization problems is very sparse. Therefore, these are
the areas where multi-objective ant colony optimization
algorithm needs to be improved, and further research is
needed.

3 Results

In order to verify the effectiveness of the proposed multi-
objective performance optimization method for ORC cy-
cle based on improved ant colony algorithm, the experi-
ment is carried out. The experimental environment is a ma-
chine with 48GB memory running the Windows 7 operat-
ing system. The multi-objective performance optimization
method of ORC cycle based on the improved ant colony al-
gorithm is compared with the multi-objective optimization
method of the traction power supply system based on im-
proved particle swarm optimization and the thermal per-
formance optimization method based on low-temperature
geothermal cascade split-flow organic Rankine cycle sys-
tem. The experimental results are shown in Table 1. A
represents the proposed method, B represents the multi-
objective optimization method for the traction power sup-
ply system based on improved particle swarm optimiza-
tion, and C represents the thermal performance optimiza-
tion method for low-temperature geothermal cascade split-
flow organic Rankine cycle system.

From Table 1it can be seen that the efficiency of perfor-
mance optimizations of the 3 methods also change with in-
creasing number of objectives. When the number of objec-
tives is 20, the performance optimization efficiency of the
proposed method is 100%, the performance optimization
efficiency based on improved particle swarm optimization
is 98.25%, and the performance optimization efficiency
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Table 1: Comparison experiments of different methods for perfor-
mance optimization efficiency

Number of Performance optimization efficiency /%

objectives A B C
20 100 98.25 96.89
40 99.56 97.89 96.12
60 98.78 97.21 95.35
80 98.32 96.45 94.68
100 97.99 95.12 93.68
120 97.56 94.23 92.31

based on low-temperature geothermal cascade shunt is
96.89%. The comparison shows that the performance op-
timization efficiency of the proposed method is 1.75% and
3.11% higher than that of the improved particle swarm opti-
mization method and the low-temperature geothermal cas-
cade shunt optimization method, respectively.

When the number of objectives is 40, the perfor-
mance optimization efficiency of the proposed method
is 99.56%, the performance optimization efficiency based
on improved particle swarm optimization is 97.89%, and
the performance optimization efficiency based on low-
temperature geothermal cascade shunt is 96.12%. The
comparison shows that the performance optimization ef-
ficiency of the proposed method is 1.67% and 3.44%
higher than that of the improved particle swarm optimiza-
tion method and the low-temperature geothermal cascade
shunt optimization method, respectively.

When the number of objectives is 60, the perfor-
mance optimization efficiency of the proposed method
is 98.78%, the performance optimization efficiency based
on improved particle swarm optimization is 97.21%, and
the performance optimization efficiency based on low-
temperature geothermal cascade shunt is 95.35%. The
comparison shows that the performance optimization ef-
ficiency of the proposed method is 1.57% and 3.43%
higher than that of the improved particle swarm optimiza-
tion method and the low-temperature geothermal cascade
shunt optimization method, respectively.

When the number of objectives is 80, the perfor-
mance optimization efficiency of the proposed method
is 98.32%, the performance optimization efficiency based
on improved particle swarm optimization is 96.45%, and
the performance optimization efficiency based on low-
temperature geothermal cascade shunt is 94.68%. The
comparison shows that the performance optimization ef-
ficiency of the proposed method is 1.87% and 4.64%
higher than that of the improved particle swarm optimiza-
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tion method and the low-temperature geothermal cascade
shunt optimization method, respectively.

When the number of objectives is 100, the perfor-
mance optimization efficiency of the proposed method
is 97.99%, the performance optimization efficiency based
on improved particle swarm optimization is 95.12%, and
the performance optimization efficiency based on low-
temperature geothermal cascade shunt is 93.68%. The
comparison shows that the performance optimization ef-
ficiency of the proposed method is 2.87% and 4.31%
higher than that of the improved particle swarm optimiza-
tion method and the low-temperature geothermal cascade
shunt optimization method, respectively.

When the number of objectives is 120, the perfor-
mance optimization efficiency of the proposed method
is 97.56%, the performance optimization efficiency based
on improved particle swarm optimization is 94.23%, and
the performance optimization efficiency based on low-
temperature geothermal cascade shunt is 92.31%. The
comparison shows that the performance optimization ef-
ficiency of the proposed method is 3.33% and 5.25%
higher than that of the improved particle swarm optimiza-
tion method and the low-temperature geothermal cascade
shunt optimization method, respectively.

Experimental results show that the performance op-
timization method based on low-temperature geothermal
cascade shunt has the lowest efficiency, followed by the
multi-objective optimization method based on improved
particle swarm optimization for traction power supply
system. The proposed method has the highest perfor-
mance optimization efficiency and certain application per-
formance.

The results of comparing the optimization time of the
three methods are shown in Figure 1, Figure 2, and Figure 3.
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Figure 1: Optimization time of the proposed method
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Figure 2: Optimization time of multi-objective optimization method

of traction power supply system based on improved particle swarm
optimization algorithm
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Figure 3: Optimization time of thermal performance optimization of
organic Rankine cycle system based on low temperature geothermal
cascade diversion

From Figures 1 - 3, it can be seen that, the optimiza-
tion time of the proposed method is in a relatively sta-
ble. The optimization time of the method based on the
improved particle swarm optimization algorithm and the
low-temperature geothermal cascade method is very un-
stable. When the number of samples is 50, the optimiza-
tion time of the proposed method is 15 ms. The optimiza-
tion time of the improved particle swarm-based optimiza-
tion algorithm is 22 ms, and the optimization time of the
low-temperature geothermal cascade flow optimization al-
gorithm is 32 ms. The proposed method is 7 ms and 17 ms
lower than the other two methods respectively.

When the number of samples is 350, the optimization
time of the proposed method is 11 ms. The optimization
time of the improved particle swarm-based optimization
algorithm is 27 ms, and the optimization time of the low-
temperature geothermal cascade flow optimization algo-
rithm is 45ms. The proposed method is 16 ms and 34 ms
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lower than the other two methods respectively. Through
the two sets of comparison data, it can be seen that the
optimization time of the proposed method is significantly
lower than the other two methods. Therefore, the proposed
method effectively reduces the optimization time.

For the proposed multi-objective performance opti-
mization method for the ORC cycle based on the improved
ant colony algorithm, a comparison experiment is carried
out on the operation efficiency before and after optimiza-
tion. The experimental results are shown in Table 2. In Ta-
ble 2, Be represents the model before optimization, and Af
represents the model after optimization.

Table 2: Comparison of operation efficiency before and after opti-
mization

Number of Model operation efficiency /%

objectives Be Af
20 88.92 99.82
40 86.47 98.91
60 84.35 98.63
80 83.12 98.20
100 82.01 97.89
120 80.25 97.47

From Table 2, it can be seen that, the operation ef-
ficiency of the model before and after optimization de-
creases with the increase of the number of objectives.
When the number of objectives is 20, the operation effi-
ciency of the model before optimization is 88.92%, and
that of the model after optimization is 99.82%. The op-
eration efficiency increased by 10.9% compared with the
model before optimization. When the number of objectives
is 80, the operation efficiency of the model before optimiza-
tion is 83.12%, and that of the model after optimization
is 98.20%. The operation efficiency increased by 15.08%
compared with the model before optimization. It shows
that the operation efficiency of the optimized model is ob-
viously improved.

When the number of objectives increases from 40 to
100, the operation efficiency of the model before optimiza-
tion changes from 86.47% to 82.01%, and is reduced by
4.46%. The operation efficiency of the model after opti-
mization changes from 98.91% to 97.89%, which is reduced
by 1.02%. It is shown that not only the operation efficiency
is improved, but also the operation is more stable after the
optimization of the model.
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4 Discussion

From the analysis of Table 1, it can be seen that the 3 meth-
ods also change the efficiency of performance optimiza-
tion with the increase of the number of objectives. The
thermodynamic performance optimization method based
on low-temperature geothermal cascade shunt for organic
Rankine cycle system has the lowest efficiency, followed
by the multi-objective optimization method based on im-
proved particle swarm optimization for a traction power
supply system. The proposed method has the highest per-
formance optimization efficiency and certain application
performance.

From the analysis of Figures 1, 2 and 3, it can be seen
that, the optimization time of the proposed method has
been in a relatively stable state and that of the other meth-
ods is very unstable. The optimization time of the pro-
posed method is obviously lower than the other two meth-
ods. The proposed method effectively reduces the opti-
mization time.

From the analysis of Table 2, it can be seen that the op-
eration efficiency of the model before and after optimiza-
tion decreases with the increase of the number of objec-
tives. When the number of objectives is 20, the operation
efficiency of the model before optimization is 88.92%, and
that of the model after optimization is 99.82%. The op-
eration efficiency increased by 10.9% compared with the
model before optimization. When the number of objectives
is 80, the operation efficiency of the model before optimiza-
tion is 83.12%, and that of the model after optimization
is 98.20%. The operation efficiency increased by 15.08%
compared with the model before optimization. It shows
that the operation efficiency of the model after optimiza-
tion is obviously improved.

When the number of objectives increases from 40 to
100, the operation efficiency of the model before optimiza-
tion changes from 86.47% to 82.01%, and is reduced by
4.46%. The operation efficiency of the model after opti-
mization changes from 98.91% to 97.89%, which is reduced
by 1.02%. It is shown that after the optimization of the
model, not only the operation efficiency is improved, but
also the operation is more stable.

5 Conclusions

Aiming at the problem of solving multi-objective perfor-
mance optimization with improved ant colony algorithm,
an ORC cycle multi-objective performance optimization
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method based on improved ant colony algorithm is pro-
posed in this paper.

The thermodynamic model of an ORC system is built
by analyzing the ORC cycle system. According to the first
law of thermodynamics and the second law of thermody-
namics, an ORC system evaluation model is established in
a MATLAB environment.

A sensitivity analysis of the system is carried out by
using the system performance evaluation index to ob-
tain the best combination of working parameters. The im-
proved ant colony algorithm is used to optimize the multi-
objective performance of the ORC system to obtain the op-
timal solution.

The experimental results show that the proposed
multi-objective performance optimization method based
on the ant colony algorithm for ORC cycle has a shorter op-
timization time and a higher optimization efficiency [6, 14,
15].
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