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Abstract: There are many non-probability factors affecting
financial markets and the return on risk assets is fuzzy and
uncertain. The authors propose new risk measurement
methods to describe or measure the real investment risks.
Currently many scholars are studying fuzzy asset portfo-
lios. Based on previous research and in view of the thresh-
old value constraint and entropy constraint of transaction
costs and transaction volume, the multiple-period mean
value -mean absolute deviation investment portfolio opti-
mization model was proposed on a trial basis. This model
focuses on a dynamic optimization problem with path de-
pendence; solving using the discrete approximate itera-
tion method certifies the algorithm is convergent. Upon
the empirical research on 30 weighted stocks selected from
Shanghai Stock Exchange and Shenzhen Stock Exchange,
a multi-period investment portfolio optimum strategy was
designed. Through the empirical research, it can be found
that the multi-period investments dynamic optimization
model has linear convergence and is more effective. This is
of great value for investors to develop a multi-stage fuzzy
portfolio investment strategy.
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1 Introduction

There are many non-probability factors affecting financial
markets and the return on risk assets is vague and uncer-
tain. This paper proposes new risk measurement methods
to describe or measure real investment risks. In the 1950s,
Markowitz used a variance measure of investment risk
and proposed the mean-variance single-period investment
portfolio theory, which laid the basis of modern finance [1-
5]. The M-V model takes the variance of asset income as
the risk measure; it maximises the prospective earning of
an asset portfolio for given risks, or goes after the invest-
ment portfolio strategy to minimise risk given the prospec-
tive earning of an asset portfolio [6-10]. Variance is widely
used in the field of risk measures, but it has a number of
limitations. Both low income and high income are undesir-
able in variance analysis since high income may also cause
extreme value variance. If asset income is asymmetrical in
distribution, the variance risk measurement method will
also be imperfect. Consequently, other risk measures were
proposed to overcome the limitations of mean-variance,
such as: absolute deviation, semi-absolute variance, aver-
age absolute variance and VaR [11-15].

The aforementioned studies only considered single-
period investment portfolios. However, in reality an in-
vestor can re-distribute their own assets and so main-
tain a multiple-period investment strategy. The single-
period investment portfolio can definitely be expanded to
a multiple-period one [16, 17, 17-21]. For instance, Mossin,
Hakansson, Li, Chan and Ng, Li and Ng, Calafiore, Zhu etc.,
Wei and Ye, Gupinar and Rustem, Yu etc., Clikyurt and Oze-
kici. However, these studies used variance risk measure-
ment; where the assets’ income was distributed asymmet-
rically, variance risk measurement had the impact of sac-
rificing too much prospective earning to relieve extra-low
earning or extra-high earning. In order to describe or mea-
sure the real investment risk of a financial market, schol-
ars proposed new risk measures, such as Yan and Li us-
ing semi-variance instead of variance to measure risk in a
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multiple-period investment portfolio. Pinar proposed the
lower-bound risk measure method.

Many non-probability factors affect a financial mar-
ket, and asset earnings are fuzzy and uncertain. Currently
many scholars are studying the fuzzy asset portfolio, such
as: Watada, Leon et al., Tanaka and Guo, Inuiguchi and
Tanino, Wang and Zhu, Lai et al., Giove et al., Zhang and
Nie et al., Dubois and Prade, Carlsson and Fuller, Huang,
Zhang et al.

Through their studies, Arnott and Wagner found ne-
glect of transaction costs resulting in ineffective invest-
ment portfolios. Bertsimas and Pachamanova, Gulpinar
introduced transaction cost to multiple-period investment
portfolio selection. Considering the entropy and skewness
of linear transaction costs in an investment portfolio, Zang
and Liu et al. proposed the multiple-period fuzzy invest-
ment portfolio model.

Considering the entropy and skewness constraints
of transaction cost and transaction volume, a multiple-
period mean value — mean absolute deviation investment
portfolio model was proposed. This model focused on dy-
namic optimization with path dependence. In this paper, a
discrete approximate iteration method is proposed to solve
this model and the algorithm is provento be convergent.

2 Definitions and description

Firstly the definitions that will be used are introduced here-
inafter. The fuzzy number A is the fuzzy set of the real num-
ber; the real number has normality and fuzzy convexity
and continuity belonging to function boundedness. The
fuzzy set is expressed in.

Carlsson and Fuller used v level set to define the upper
and lower possibilistic mean value, i.e.:

[A]" = [a1(7), a2()] (v € [0, 1])

1
Ja(y)Pos(A < a(~))dy 1

Mi(A) = 2 . ,
“ /01 Pos(A < a(')’))dq/ ’Yal(’}/) ~y
and
! 1
W~k iZ(W)POS(A et _, / yay(V)dy
[ Pos(A = a>(7))dy ]
0

Pos aforesaid means the probability.

Pos(A < ai1(7)) = I(-ee, a1(v)) = su{? )A(u) =y
usay (y
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Pos(A = ay (7)) = H(az(v), +o0) = suz(a )A(u) =7
uza,(y

If A, B ¢, AinR, so the references can be obtained as fol-
lows:

M«(A + B) = M«(A) + M«(B) (1)
M'(A+B)=M(A)+ M (B)
M) - {AM:(A), A0
AM'(4), A<0
M) - {AM*(A), 120
AM+«(A), A<O0

According to the results aforesaid, the following theorem
can be obtained:

Theorem1. 1,ifA; €,4; e R;,i=1,...,n,so:
n n
M- (ZM‘L’) =) M- (9 (4) Ay,
i=1 i=1
n n
M (ZM‘M’) =D IAIM (0 (A) Ay
i=1 i=1

¢(A;) is the signal equation.

Definition 1. Carlsson and Fuller hypothesized the fuzzy
number A had a relationship of [A]” = [a1(7), a2(v)] (v €
[0, 1]), so the possibilistic mean value is:
n n
M (Z AiAi> =D M- (9 (A) Ay,
i=1 i=1
n

M (ZM‘M) = Z M (9 (A) Ay)
i1

i=1

Definition 2. The arbitrarily given fuzzy number A has a
relationship of [A]” = [a1(7), a,(7)] (v € [0, 1]) and B has
a relationship of [B]” = [b1(v), b,(7)] (v € [0, 1]), so the

possibilistic mean absolute deviation between A and B is
defined as follows:

w(A, B) = % (M|A-M(A) + MB-M(B)) @)

The trapezoidal fuzzy number A = (a;, b;, a1;), and it has
the subordinating degree function u,4(x) as follows:

7’(_(“6’_“1), X € [a; - a, aj]
e 1, x € [a;, by
A(0) =
X x € [by, by + B]
0, others

Where: a; and f; are positive numbers, and a;, 81 > O,
therefore the ~ level set of the trapezoidal fuzzy num-
ber A = (a;, by, a;, B;) can be described as [4;]” =
[a; - (1 - y)a;, by + (1 -~)By], where all y € [0, 1].
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According to Definition 1, the upper and lower possibilitic
mean value and the possibilitic mean value can be ex-
pressed as follows

M*(Ai)=ai—% 3
M'(A4) = b; +ﬁ1
M(Ai):al;b ﬁ16 i

According to Definition 2, the mean absolute deviation
OfAl = (al, bl, a1, ﬁl) and Az = (az, bz, A, ﬁz) iSZ

w(A1, A))

=%Kb1;a1 +ﬁ1;a1>+(bz;az+ﬁ2;az)]

3 Investment portfolio model

(4)

In this part, the first section sets out the problem and sym-
bol descriptions; the second section describes the earning
and risk of multiple-period investment portfolios; the final
section introduces the entropy constraint of an investment
portfolio.

3.1 Problem description and symbol
description

According to the hypotheses, there are n kinds of risk as-
sets for selection and risk asset earning is a fuzzy variable.
If hypothesizing that an investor invests an initial wealth
W3 on n kinds of risk assets in a continuous way during
the period T; in the following period T-1, the investor can
re-assign the assets. For convenience, the symbols to be
used in the following sections are listed as follows:

x;¢ is the investment proportion of risk asset i during the pe-
riod t; x;q is the investment proportion of the first risk asset
i; x¢ is the investment portfolio x; = (x1¢, X2¢, - - . , Xn¢) dur-
ing the period t; R;; is the earning of risk asset i during the
period t; rp is the earning of investment portfolio x; dur-
ing the period t; u;; is the upper bound of x;;; ry¢ is the net
earnings of the investment portfolio x; during the period t;
W, is the initial wealth during the period t; c;; is the unit
transaction cost of risk asset i during the period t.
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3.2 Earning and risk of multiple-period
investment portfolios

Hypothesizing the whole investment process as self-
financing, namely there is no additional capital to invest
during each period. The earning: R;; = (aj¢, b, @i, Bie)(i =
1,2,...,n;t = 1,2,...,T), is a trapezoidal fuzzy num-
ber; according to Equation (3), the possibilistic mean value
of the investment portfolio x; = (X1¢, X2¢, . . . , Xn¢)' during
the period t can be obtained:

- * (ay +b; B a
rpl=ZM(Ri[)Xit=Z< nz it lt6 lt)Xm 5)

i=1 i=1

Hypothesizing the transaction cost is a V-shaped func-
tion of the investment portfolio x; = (x1¢, X2t ..., Xnt)
during the period t and the investment portfolio x;.; =
(X1-1,X2-1, ..., Xp_1) during the period t-1, namely the
transaction cost of asset i during the period t is cj|x; —
Xjt-1|. The total transaction cost of the investment portfo-
lio x¢ = (x1¢, X2¢, - - - , Xn¢) during the period t is:

n
Ce=_ culXit = Xi-al, t=1,..., T (6)

i=1

The net earnings of the investment portfolio x; during the
period t are:

rNe = ZZ ( it + bit ﬁit ; U‘it) Xit 7)

i=1 i=1
n
- E Cig Xi¢ — Xje-1], t =1
i=1

The equation of transfer of wealth during the period t+1 is:

Wt+1 = Wt(l + rNt) = Wt (8)

n
it + blt ﬁzt Qit
<1+Z ( Xit—ZCit\Xit—Xit—l\ )
i=1

T

t=1,..

Therefore, according to Equation (4), the mean absolute
deviation of the investment portfolio is:

wx) = =S M (MR -Rel)xie )

i=1
e Z < —Qit ﬁit ; ait) Xit

In order to meet the requirements of investment diversi-
fication, the diversification of the investment portfolio is
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measured by proportion entropy. Proportion entropy was
firstly used by Fang et al., Kapur and Jana et al. in the
single-period investment portfolio. The entropy of the in-
vestment portfolio x; can be expressed as follows:

n
En(x) =-> xilnxy

i=1

(10)

Where x;; > 0(i = 1,2,...,n), so short selling is not al-
lowed. When x1; = X¢ = ... = 1/n, equation (11) obtains
the maximum value. At this moment, the diversification of
the investment portfolio is at the highest level. However, in
the actual investment process, if the estimated return rate
ofanasseti : R is less than the return rate of a risk-free as-
set, the investor will abandon the investment in this asset,
i.e.: xj = 0.

A rational investor considers not only expected rev-
enue maximization, but also risk minimization. Therefore,
an investor tries to balance expected revenue and risk. If
6(0 < 0 < 1) is the preference coefficient of an investor,
the objective function of the investor can be expressed as
follows:

Ue(rne, we(x)) = (1 - 6) (1)

" [ay +b; Bit — a;
(Z( “2 iy lt6 lt)xit_zcit|xit_xit—l)

i=1 i=1

1 ¢ - aj ﬁzt Qait
-9 (n 21: < 2 6 )t
i

Where different 0 means a different preference to mean
value and mean absolute deviation. If 8 = 1, it means the
investor only considers the minimized mean absolute de-
viation, namely the investor dislikes the concentrated in-
vestment strategy; if 6 = 0.5, it means the investor prefers
the two objectives similarly. If 8 = 0, it means the investor
takes the maximized investment portfolio mean as the ob-
jective.

3.3 Multiple-period investment portfolio
model

The multiple-period investment portfolio selection is de-
scribed as follows:
P— a.
+ ﬁll’ z 1t> Vit

. : it + by
max(Z(l—O)(Z( 3

2)-)

- Zczt<|xlt Xit- 1|>)

_ 1 it — alt

0 (n / ( 2
i=1
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Wiy = (1 + |: (ait;bit + ﬁit6ait>xit (@)
i

- i Cie (|Yie — Xit|):| ) W,

M=

Il
-

i=1
s.t. n (12)
doxie=1 (b)
i?ll
> —Xilnxy2Hy t=1,...,T (c)
i=1
it <X U, i=1,...,mt=1,...,T (d)

The constraint condition (12) (a) is the wealth accumu-
lation constraint. The constraint condition (12) (b) means
that the total sum of the asset investment proportion dur-
ing every period is 1; the constraint condition (12) (c) states
that the entropy of every investment portfolio during ev-
ery period reaches or exceeds the given minimized earning
constraint; the constraint condition (12) (d) is the thresh-
old value constraint of x;;.

4 Discrete approximate iteration
method

In this second, a discrete approximate iteration method is
proposed to solve the model (12).

The discrete approximate iteration method was pro-
posed in the 1980s. It has unique advantages in the con-
trol of nonlinear, unknown models and other systems. It
has a very good application prospect in the fields of in-
dustrial robots, CNC machine tools and so on. Of course,
as a young discipline, discrete approximate iteration has
many aspects to be further studied and improved. The de-
sign of discrete approximate iteration algorithms is always
the focus of iterative learning control. Based on the analy-
sis of the causality of input and output variables, a new P-
type causal iterative learning algorithm is proposed. The
new algorithm does not need the derivative information
of the system output error, and can well reflect the causal-
ity between the system input and output. Focusing on lin-
ear discrete systems, a concrete iterative learning law is
given. Simulation results also show that the proposed it-
erative learning algorithm has better convergence charac-
teristics than the ordinary P-type iterative learning algo-
rithm. Secondly, two kinds of optimal iterative learning al-
gorithm design problems are considered: 1) iterative learn-
ing algorithm design for quadratic performance function
optimization in the time domain; 2) optimal iterative learn-
ing law design for deterministic systems in an iterative do-
main and guaranteed cost iterative learning law design for
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uncertain systems. In this paper, we use this algorithm to
solve the multistage portfolio problem.

5 Empirical study

Hypothesizing an investor selects 30 weight stocks from
the Shanghai Stock Exchange and Shenzhen Stock

Exchange, i.e.: S1(001896), S2(600100), S3(002787),
S$4(002399), S5(000626), S6(000767), S7(002353),
S8(600758), S9(600519), S10(300442), S11(300011),
S12(000516), S13(600805), S14(600726), S15(002669),
S$16(000020), S17(000816), S18(300017), S19(600565),
S$20(002006), S21(002070), S22(300360), S23(300267),
S24(300377), S25(000002), S26(601388), S27(000672),

S28(600385), S29(002208), S30(600122). The investor in-
vests the initial wealth for 5 consecutive periods, so his
wealth will start adjustment when every period starts. We
collected data from April 2010 to December 2016 (every
three month period was a cycle) and the simple estimate
method proposed by Vercher et al. was used to process this
data. If the earning, cost and turnover rate of every stock
during every period is a trapezoid fuzzy number, the unit
transaction cost ¢;; = 0.003(i = 1,...,30;t=1,...,5),
the lower bound constraint I;; = 0, and the upper bound
constraint u; = 0.6(i = 1,...,30;t=1,...,5). H; takes
the maximum value when 30 risk assetsé gre invested on the
basis of equal proportion, i.e.: Hy = = 3% In 3% = 3.401

i-1
and when the investor invests all wealth in one risk asset,

H; takes the minimum value, i.e.: H; = 0. When the invest-
ment preference 6 = 0.5, the possible entropy H¢ = 0.6 or
H; = 1.6(t = 1,...,5), the optimal strategy of multiple-
period investment portfolio is shown as follows (see Ta-
ble 1 and 2 respectively).

Table 1: Optimal solution when

¢ g ) Optimal Investment Percentage
<

1 Asset 13 Asset 18 Others 0
0.6 0.4

2 Asset 13 Asset 18 Others 0
0.6 0.4

3 Asset 13 Asset 18 Others 0
0.6 0.4

4 Asset 13 Asset 18 Others 0
0.6 0.4

5 Asset 13 Asset 18 Others 0
0.6 0.4
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If H; = 0.6, the optimal investment strategy during the
period 1is x131 = 0.6, x131 = 0.4, so the investor invests in
the Asset 13 and 18 at the rate of 60% and 40%, without in-
vestment in other assets. According to Table 1, the optimal
investment strategy during the period 2, 3, 4 and 5 can be
respectively obtained. The final-value wealth is 1.9601.

The final-value wealth is 1. 9295.

According to Table 1 and 2, when H; = 1.6 and
H; = 0.6, the asset with the larger investment percentage
among the optimal investment strategy of investment port-
folio during every period is same, it is the Asset 13 and 18.

When 6 = 0.5, so H; is the equal-space value of
(0, 3. 40), so the discrete approximate dynamic planning
method can be used to solve the final-value wealth, see Ta-
ble 3.

According to Table 3, it can be seen that when O < H; <
3.4, W does not reduce as H; increases; when 0.6 < H; <
3.4, W¢ reduces as H; increases. At this moment, the larger
the value of H; is, the more discrete the investment in in-
vestment portfolio is, and the smaller the final wealth is.

6 Conclusions

In the 1950s, Markowitz used a variance measure of invest-
ment risk and proposed the mean-variance single-period
investment portfolio theory, which laid the basis of the
modern finance. However, using the variance as the risk
measure method is imperfect. A financial market is ef-
fected by many non-probability factors and the risk assets’
income is fuzzy and uncertain. Currently, many scholars
are studying the fuzzy asset portfolio. On the basis of previ-
ous research and in view of the threshold value constraint
and entropy constraint of transaction costs and transac-
tion volume, the multiple-period mean value -mean ab-
solute deviation investment portfolio optimization model
was proposed on a trial basis. This model focuses on a
dynamic optimization problem with path dependence; us-
ing the discrete approximate iteration method to solve
the model certifies the algorithm is convergent. Upon the
empirical research of 30 weighting stocks selected from
Shanghai Stock Exchange and Shenzhen Stock Exchange,
a multi-period investment portfolio optimum strategy was
designed. Through the empirical research, it can be found
that the multi-period investments dynamic optimization
model has linear convergence and is more effective.This
provides new thinking for multi-period investment portfo-
lio optimization.
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Table 2: Optimal solution when H; = 1.6

¢ g _ Optimal Investment Percentage
<

1 Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8 Asset 9
0. 0602 0.0012 0.0030 0. 0085 0. 0005 0.0011 0.0019 0.0157 0.0022
Asset 10  Asset11  Asset12 Asset13  Asset14  Asset1l5 Asset17 Asset18  Asset19
0.0003 0.0003 0.0290 0.59 0. 0002 0.0720 0.0439 0. 0849 0.0059
Asset 20  Asset 21  Asset22  Asset24  Asset25  Asset 26 Asset Asset 29  Asset 30
0.0087 0. 0005 0.0102 0.0008 0.0019 0.0184 283 0.0040 0.0019

0.0350
2 Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8 Asset 9

0.0429 0.0019 0.0038 0.0084 0. 0009 0.0015 0. 0035 0.0135 0.0008
Asset 11  Asset12  Asset13  Asset14  Asset15 Asset17 Asset18 Asset19  Asset 20
0.0006 0.0294 0.6 0.0004 0.0451 0.0510 0.1228 0.0020 0.0079
Asset 21  Asset22  Asset23  Asset24  Asset25 Asset26  Asset28  Asset29  Asset 30
0.0079 0.0076 0.0003 0.0021 0.0019 0.0174 0.0271 0. 0045 0.0027
3 Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8 Asset 9
0. 0340 0.0025 0.0043 0. 0090 0.0014 0.0021 0. 0049 0.0119 0.0013
Asset 11  Asset12  Asset13  Asset14  Asset15 Asset16  Asset17 Asset18  Asset 19
0.0009 0.0354 0.6 0. 0005 0.0334 0.0018 0.0380 0. 1470 0.0016
Asset 20  Asset21  Asset22  Asset24  Asset25 Asset26  Asset28  Asset29  Asset 30
0.0076 0.0015 0.0075 0.0018 0.0030 0.0164 0.0235 0.0043 0.0026
4 Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8 Asset 9
0. 0340 0.0029 0.0039 0.0074 0.0013 0.0027 0. 0046 0.0163 0.0012
Asset 12 Asset 13  Asset15 Asset16  Asset17 Asset18 Asset19  Asset20  Asset 21
0.0380 0.6 0.0369 0.0027 0.0297 0. 1449 0.0017 0.0069 0.0017
Asset 22 Asset23  Asset24  Asset25  Asset26  Asset27  Asset28  Asset29  Asset 30
0.0059 0. 0006 0.0018 0.0031 0.0201 0. 0004 0.0237 0. 0045 0.0024
5 Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8 Asset 9
0.0262 0.0034 0.0034 0. 0064 0.0012 0.0024 0.0038 0.0148 0.0011
Asset 12 Asset 13 Asset15 Asset16  Asset17 Asset18 Asset19  Asset20  Asset 21
0.0350 0. 5440 0.0305 0.0025 0.0275 0.2330 0.0015 0.0070 0.0015
Asset 22 Asset23  Asset24  Asset25  Asset26  Asset27  Asset28  Asset29  Asset 30
0.0057 0.0008 0.0016 0.0031 0.0157 0. 0059 0.0210 0. 0040 0.0019

Table 3: Corresponding final-value wealth of different H; in multiple-period mean value — mean absolute deviation fuzzy investment portfo-
lio model

H; 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Wi 1.9589 1.9589 1.9589 1.9589 1.9594 1.9568 1.9548 1.9485 1.9384 1.9186
H¢ 2 2.2 2.4 2.6 2.8 3.0 3.2 3.4

Wy 1.8951 1.8659 1.8375 1.8028 1.7676 1.7298 1.6737 1.5728
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