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Abstract: There are many non-probability factors affecting
financialmarkets and the return on risk assets is fuzzy and
uncertain. The authors propose new risk measurement
methods to describe or measure the real investment risks.
Currently many scholars are studying fuzzy asset portfo-
lios. Based on previous research and in view of the thresh-
old value constraint and entropy constraint of transaction
costs and transaction volume, the multiple-period mean
value -mean absolute deviation investment portfolio opti-
mization model was proposed on a trial basis. This model
focuses on a dynamic optimization problem with path de-
pendence; solving using the discrete approximate itera-
tion method certifies the algorithm is convergent. Upon
the empirical research on 30weighted stocks selected from
Shanghai Stock Exchange and Shenzhen Stock Exchange,
a multi-period investment portfolio optimum strategy was
designed. Through the empirical research, it can be found
that the multi-period investments dynamic optimization
model has linear convergence and ismore effective. This is
of great value for investors to develop a multi-stage fuzzy
portfolio investment strategy.
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1 Introduction
There are many non-probability factors affecting financial
markets and the return on risk assets is vague and uncer-
tain. This paper proposes new risk measurement methods
to describe or measure real investment risks. In the 1950s,
Markowitz used a variance measure of investment risk
and proposed themean-variance single-period investment
portfolio theory, which laid the basis ofmodern finance [1–
5]. The M-V model takes the variance of asset income as
the risk measure; it maximises the prospective earning of
an asset portfolio for given risks, or goes after the invest-
ment portfolio strategy to minimise risk given the prospec-
tive earning of an asset portfolio [6–10]. Variance is widely
used in the field of risk measures, but it has a number of
limitations. Both low income and high income are undesir-
able in variance analysis since high incomemay also cause
extreme value variance. If asset income is asymmetrical in
distribution, the variance risk measurement method will
also be imperfect. Consequently, other risk measures were
proposed to overcome the limitations of mean-variance,
such as: absolute deviation, semi-absolute variance, aver-
age absolute variance and VaR [11–15].

The aforementioned studies only considered single-
period investment portfolios. However, in reality an in-
vestor can re-distribute their own assets and so main-
tain a multiple-period investment strategy. The single-
period investment portfolio can definitely be expanded to
a multiple-period one [16, 17, 17–21]. For instance, Mossin,
Hakansson, Li, Chan andNg, Li andNg, Calafiore, Zhu etc.,
Wei andYe, Gupinar andRustem, Yu etc., Clikyurt andOze-
kici. However, these studies used variance risk measure-
ment; where the assets’ income was distributed asymmet-
rically, variance risk measurement had the impact of sac-
rificing too much prospective earning to relieve extra-low
earning or extra-high earning. In order to describe or mea-
sure the real investment risk of a financial market, schol-
ars proposed new risk measures, such as Yan and Li us-
ing semi-variance instead of variance to measure risk in a
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multiple-period investment portfolio. Pinar proposed the
lower-bound risk measure method.

Many non-probability factors affect a financial mar-
ket, and asset earnings are fuzzy and uncertain. Currently
many scholars are studying the fuzzy asset portfolio, such
as: Watada, Leon et al., Tanaka and Guo, Inuiguchi and
Tanino, Wang and Zhu, Lai et al., Giove et al., Zhang and
Nie et al., Dubois and Prade, Carlsson and Fuller, Huang,
Zhang et al.

Through their studies, Arnott and Wagner found ne-
glect of transaction costs resulting in ineffective invest-
ment portfolios. Bertsimas and Pachamanova, Gulpinar
introduced transaction cost to multiple-period investment
portfolio selection. Considering the entropy and skewness
of linear transaction costs in an investment portfolio, Zang
and Liu et al. proposed the multiple-period fuzzy invest-
ment portfolio model.

Considering the entropy and skewness constraints
of transaction cost and transaction volume, a multiple-
period mean value – mean absolute deviation investment
portfolio model was proposed. This model focused on dy-
namic optimizationwith path dependence. In this paper, a
discrete approximate iterationmethod is proposed to solve
this model and the algorithm is provento be convergent.

2 Definitions and description
Firstly the definitions thatwill be used are introducedhere-
inafter. The fuzzy number A is the fuzzy set of the real num-
ber; the real number has normality and fuzzy convexity
and continuity belonging to function boundedness. The
fuzzy set is expressed in.

Carlsson and Fuller used 𝛾 level set to define the upper
and lower possibilistic mean value, i.e.:

[A]𝛾 =
[︀
a1(𝛾), a2(𝛾)

]︀
(𝛾 ∈ [0, 1])

M*(A) =

1∫︀
0
a(𝛾)Pos(A ≤ a(𝛾))d𝛾∫︀ 1
0 Pos(A ≤ a(𝛾))d𝛾

= 2
1∫︁

0

𝛾a1(𝛾)d𝛾

and

M*(A) =
∫︀ 1
0 a2(𝛾)Pos(A ≥ a2(𝛾))d𝛾

1∫︀
0
Pos(A ≥ a2(𝛾))d𝛾

= 2
1∫︁

0

𝛾a2(𝛾)d𝛾

Pos aforesaid means the probability.

Pos(A ≤ a1(𝛾)) = Π(−∞, a1(𝛾)) = sup
u≤a1(𝛾)

A(u) = 𝛾

Pos(A ≥ a2(𝛾)) = Π(a2(𝛾), +∞) = sup
u≥a2(𝛾)

A(u) = 𝛾

If A, B ∈, λinR, so the references can be obtained as fol-
lows:

M*(A + B) = M*(A) +M*(B) (1)
M*(A + B) = M*(A) +M*(B)

M*(λA) =
{︃
λM*(A), λ ≥ 0
λM*(A), λ ≤ 0

M*(λA) =
{︃
λM*(A), λ ≥ 0
λM*(A), λ ≤ 0

According to the results aforesaid, the following theorem
can be obtained:

Theorem 1. 1, if A1 ∈, λi ∈ Ri, i = 1, . . . , n, so:

M*

(︃ n∑︁
i=1

λiAi

)︃
=

n∑︁
i=1

|λi|M* (φ (λi)Ai) ,

M*
(︃ n∑︁
i=1

λiAi

)︃
=

n∑︁
i=1

|λi|M* (φ (λi)Ai)

φ(λi) is the signal equation.

Definition 1. Carlsson and Fuller hypothesized the fuzzy
number A had a relationship of [A]𝛾 =

[︀
a1(𝛾), a2(𝛾)

]︀
(𝛾 ∈

[0, 1]), so the possibilistic mean value is:

M*

(︃ n∑︁
i=1

λiAi

)︃
=

n∑︁
i=1

|λi|M* (φ (λi)Ai) ,

M*
(︃ n∑︁
i=1

λiAi

)︃
=

n∑︁
i=1

|λi|M* (φ (λi)Ai)

Definition 2. The arbitrarily given fuzzy number A has a
relationship of [A]𝛾 =

[︀
a1(𝛾), a2(𝛾)

]︀
(𝛾 ∈ [0, 1]) and B has

a relationship of [B]𝛾 =
[︀
b1(𝛾), b2(𝛾)

]︀
(𝛾 ∈ [0, 1]), so the

possibilistic mean absolute deviation between A and B is
defined as follows:

ω(A, B) = 1
2
(︀
M|A −M(A)| +M|B −M(B)|

)︀
(2)

The trapezoidal fuzzy number A = (ai , bi , α1βi), and it has
the subordinating degree function µA(x) as follows:

µA(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x−(al−αl)
c , x ∈ [al − al , al]

1, x ∈ [al , bl]
bl+βl−x
βl , x ∈ [bl , bl + βl]

0, others

Where: α1 and β1 are positive numbers, and α1, β1 > 0,
therefore the 𝛾 level set of the trapezoidal fuzzy num-
ber A = (al , bl , αl , βl) can be described as [Al]𝛾 =[︀
al − (1 − 𝛾)αl , bl + (1 − 𝛾)βl

]︀
, where all 𝛾 ∈ [0, 1].



Discrete approximate iterative method for fuzzy investment portfolio | 43

According to Definition 1, the upper and lower possibilitic
mean value and the possibilitic mean value can be ex-
pressed as follows

M*(Ai) = ai −
αi
3 (3)

M*(Ai) = bi +
βi
3

M(Ai) =
ai + bi
2 + βi − αi6

According toDefinition 2, themean absolute deviation
of A1 = (a1, b1, α1, β1) and A2 = (a2, b2, α2, β2) is:

ω(A1, A2) (4)

= 1
2

[︂(︂
b1 − a1

2 + β1 − α16

)︂
+
(︂
b2 − a2

2 + β2 − α26

)︂]︂

3 Investment portfolio model
In this part, the first section sets out the problem and sym-
bol descriptions; the second section describes the earning
and risk ofmultiple-period investment portfolios; the final
section introduces the entropy constraint of an investment
portfolio.

3.1 Problem description and symbol
description

According to the hypotheses, there are n kinds of risk as-
sets for selection and risk asset earning is a fuzzy variable.
If hypothesizing that an investor invests an initial wealth
W1 on n kinds of risk assets in a continuous way during
the period T; in the following period T-1, the investor can
re-assign the assets. For convenience, the symbols to be
used in the following sections are listed as follows:
xit is the investment proportionof risk asset i during thepe-
riod t; xi0 is the investment proportion of the first risk asset
i; xt is the investment portfolio xi = (x1t , x2t , . . . , xnt) dur-
ing the period t; Rit is the earning of risk asset i during the
period t; rpt is the earning of investment portfolio xt dur-
ing the period t; uit is the upper bound of xit; rNt is the net
earnings of the investment portfolio xt during the period t;
Wt is the initial wealth during the period t; cit is the unit
transaction cost of risk asset i during the period t.

3.2 Earning and risk of multiple-period
investment portfolios

Hypothesizing the whole investment process as self-
financing, namely there is no additional capital to invest
during each period. The earning: Rit = (ait , bit , αit , βit)(i =
1, 2, . . . , n; t = 1, 2, . . . , T), is a trapezoidal fuzzy num-
ber; according to Equation (3), the possibilisticmean value
of the investment portfolio xt = (x1t , x2t , . . . , xnt)′ during
the period t can be obtained:

rpt =
n∑︁
i=1

M(Rit)xit =
n∑︁
i=1

(︂
ait + bit

2 + βit − αit6

)︂
xit , (5)

t = 1, . . . , T

Hypothesizing the transaction cost is a V-shaped func-
tion of the investment portfolio xt = (x1t , x2t , . . . , xnt)
during the period t and the investment portfolio xt−1 =
(x1−1, x2−1, . . . , xn−1) during the period t-1, namely the
transaction cost of asset i during the period t is cit|xit −
xit−1|. The total transaction cost of the investment portfo-
lio xt = (x1t , x2t , . . . , xnt) during the period t is:

Ct =
n∑︁
i=1

cit|xit − xit−1|, t = 1, . . . , T (6)

The net earnings of the investment portfolio xt during the
period t are:

rNt =
n∑︁
i=1

n∑︁
i=1

(︂
ait + bit

2 + βit − αit6

)︂
xit (7)

−
n∑︁
i=1

cit|xit − xit−1|, t = 1, . . . , T

The equation of transfer of wealth during the period t+1 is:

Wt+1 = Wt(1 + rNt) = Wt (8)(︃
1 +

n∑︁
i=1

(︂
ait + bit

2 + βit − αit6

)︂
xit −

n∑︁
i=1

cit|xit − xit−1|
)︃
,

t = 1, . . . , T

Therefore, according to Equation (4), the mean absolute
deviation of the investment portfolio is:

ωt(xt) =
1
n

n∑︁
i=1

M
(︀
|M(Rit) − Rit|

)︀
xit (9)

= 1
n

n∑︁
i=1

(︂
bit − ait

2 + βit − αit6

)︂
xit

In order to meet the requirements of investment diversi-
fication, the diversification of the investment portfolio is
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measured by proportion entropy. Proportion entropy was
firstly used by Fang et al., Kapur and Jana et al. in the
single-period investment portfolio. The entropy of the in-
vestment portfolio xt can be expressed as follows:

En(xt) = −
n∑︁
i=1

xit ln xit (10)

Where xit ≥ 0(i = 1, 2, . . . , n), so short selling is not al-
lowed. When x1t = x2t = . . . = 1/n, equation (11) obtains
themaximum value. At this moment, the diversification of
the investment portfolio is at the highest level. However, in
the actual investment process, if the estimated return rate
of an asset i : Rit is less than the return rate of a risk-free as-
set, the investor will abandon the investment in this asset,
i.e.: xit = 0.

A rational investor considers not only expected rev-
enuemaximization, but also risk minimization. Therefore,
an investor tries to balance expected revenue and risk. If
θ(0 ≤ θ ≤ 1) is the preference coefficient of an investor,
the objective function of the investor can be expressed as
follows:

Ut(rNt , ωt(xt)) = (1 − θ) (11)(︃ n∑︁
i=1

(︂
ait + bit

2 + βit − ait6

)︂
xit −

n∑︁
i=1

cit|xit − xit−1|
)︃

− θ
(︃
1
n

n∑︁
i=1

(︂
bit − ait

2 + βit − αit6

)︂
xit

)︃
Where different θ means a different preference to mean
value and mean absolute deviation. If θ = 1, it means the
investor only considers the minimized mean absolute de-
viation, namely the investor dislikes the concentrated in-
vestment strategy; if θ = 0.5, it means the investor prefers
the two objectives similarly. If θ = 0, it means the investor
takes the maximized investment portfolio mean as the ob-
jective.

3.3 Multiple-period investment portfolio
model

The multiple-period investment portfolio selection is de-
scribed as follows:

max
(︃ T∑︁
t=1

(1 − θ)

(︃ n∑︁
i=1

(︂
ait + bit

2 + βit − αit6

)︂
yit

−
n∑︁
i=1

cit

(︃
|xit − xit−1|

)︃)︃

− θ
(︃
1
n

n∑︁
i=1

(︂
bit − ait

2 + βit − αit6

)︂
xit

)︃)︃

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wt+1 =
(︃
1 +
[︃
n∑︀
i=1

(︃
ait+bit

2 + βit−αit
6

)︃
xit (a)

−
n∑︀
i=1
cit (|yit − xit|)

]︃)︃
Wt

n∑︀
i=1
xit = 1 (b)

n∑︀
i=1
−xit ln xit ≥ Ht , t = 1, . . . , T (c)

lit ≤ xit ≤ uit , i = 1, . . . , n; t = 1, . . . , T (d)

(12)

The constraint condition (12) (a) is the wealth accumu-
lation constraint. The constraint condition (12) (b) means
that the total sum of the asset investment proportion dur-
ing every period is 1; the constraint condition (12) (c) states
that the entropy of every investment portfolio during ev-
ery period reaches or exceeds the givenminimized earning
constraint; the constraint condition (12) (d) is the thresh-
old value constraint of xit.

4 Discrete approximate iteration
method

In this second, a discrete approximate iteration method is
proposed to solve the model (12).

The discrete approximate iteration method was pro-
posed in the 1980s. It has unique advantages in the con-
trol of nonlinear, unknown models and other systems. It
has a very good application prospect in the fields of in-
dustrial robots, CNC machine tools and so on. Of course,
as a young discipline, discrete approximate iteration has
many aspects to be further studied and improved. The de-
sign of discrete approximate iteration algorithms is always
the focus of iterative learning control. Based on the analy-
sis of the causality of input and output variables, a new P-
type causal iterative learning algorithm is proposed. The
new algorithm does not need the derivative information
of the system output error, and can well reflect the causal-
ity between the system input and output. Focusing on lin-
ear discrete systems, a concrete iterative learning law is
given. Simulation results also show that the proposed it-
erative learning algorithm has better convergence charac-
teristics than the ordinary P-type iterative learning algo-
rithm. Secondly, two kinds of optimal iterative learning al-
gorithm design problems are considered: 1) iterative learn-
ing algorithm design for quadratic performance function
optimization in the time domain; 2) optimal iterative learn-
ing law design for deterministic systems in an iterative do-
main and guaranteed cost iterative learning law design for
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uncertain systems. In this paper, we use this algorithm to
solve the multistage portfolio problem.

5 Empirical study
Hypothesizing an investor selects 30 weight stocks from
the Shanghai Stock Exchange and Shenzhen Stock
Exchange, i.e.: S1(001896), S2(600100), S3(002787),
S4(002399), S5(000626), S6(000767), S7(002353),
S8(600758), S9(600519), S10(300442), S11(300011),
S12(000516), S13(600805), S14(600726), S15(002669),
S16(000020), S17(000816), S18(300017), S19(600565),
S20(002006), S21(002070), S22(300360), S23(300267),
S24(300377), S25(000002), S26(601388), S27(000672),
S28(600385), S29(002208), S30(600122). The investor in-
vests the initial wealth for 5 consecutive periods, so his
wealth will start adjustment when every period starts. We
collected data from April 2010 to December 2016 (every
three month period was a cycle) and the simple estimate
method proposed byVercher et al.was used to process this
data. If the earning, cost and turnover rate of every stock
during every period is a trapezoid fuzzy number, the unit
transaction cost cit = 0.003(i = 1, . . . , 30; t = 1, . . . , 5),
the lower bound constraint lit = 0, and the upper bound
constraint uit = 0.6(i = 1, . . . , 30; t = 1, . . . , 5). Ht takes
themaximumvaluewhen30 risk assets are investedon the
basis of equal proportion, i.e.: Ht = −

30∑︀
i=1

1
30 ln

1
30 = 3.401

and when the investor invests all wealth in one risk asset,
Ht takes the minimum value, i.e.: Ht = 0. When the invest-
ment preference θ = 0.5, the possible entropy Ht = 0.6 or
Ht = 1.6(t = 1, . . . , 5), the optimal strategy of multiple-
period investment portfolio is shown as follows (see Ta-
ble 1 and 2 respectively).

Table 1: Optimal solution when

t

As
se
t

i Optimal Investment Percentage

1 Asset 13
0. 6

Asset 18
0. 4

Others 0

2 Asset 13
0. 6

Asset 18
0. 4

Others 0

3 Asset 13
0. 6

Asset 18
0. 4

Others 0

4 Asset 13
0. 6

Asset 18
0. 4

Others 0

5 Asset 13
0. 6

Asset 18
0. 4

Others 0

IfHt = 0.6, the optimal investment strategy during the
period 1 is x131 = 0.6, x181 = 0.4, so the investor invests in
the Asset 13 and 18 at the rate of 60% and 40%, without in-
vestment in other assets. According to Table 1, the optimal
investment strategy during the period 2, 3, 4 and 5 can be
respectively obtained. The final-value wealth is 1.9601.

The final-value wealth is 1. 9295.
According to Table 1 and 2, when Ht = 1.6 and

Ht = 0.6, the asset with the larger investment percentage
among the optimal investment strategy of investment port-
folio during every period is same, it is the Asset 13 and 18.

When θ = 0.5, so Ht is the equal-space value of
(0, 3. 40), so the discrete approximate dynamic planning
method can be used to solve the final-value wealth, see Ta-
ble 3.

According to Table 3, it can be seen that when 0 < Ht ≤
3.4,W6 does not reduce as Ht increases; when 0.6 < Ht ≤
3.4,W6 reduces asHt increases. At thismoment, the larger
the value of Ht is, the more discrete the investment in in-
vestment portfolio is, and the smaller the final wealth is.

6 Conclusions
In the 1950s, Markowitz used a variance measure of invest-
ment risk and proposed the mean-variance single-period
investment portfolio theory, which laid the basis of the
modern finance. However, using the variance as the risk
measure method is imperfect. A financial market is ef-
fected bymany non-probability factors and the risk assets’
income is fuzzy and uncertain. Currently, many scholars
are studying the fuzzy asset portfolio. On the basis of previ-
ous research and in view of the threshold value constraint
and entropy constraint of transaction costs and transac-
tion volume, the multiple-period mean value -mean ab-
solute deviation investment portfolio optimization model
was proposed on a trial basis. This model focuses on a
dynamic optimization problem with path dependence; us-
ing the discrete approximate iteration method to solve
the model certifies the algorithm is convergent. Upon the
empirical research of 30 weighting stocks selected from
Shanghai Stock Exchange and Shenzhen Stock Exchange,
a multi-period investment portfolio optimum strategy was
designed. Through the empirical research, it can be found
that the multi-period investments dynamic optimization
model has linear convergence and is more effective.This
provides new thinking for multi-period investment portfo-
lio optimization.
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Table 2: Optimal solution when Ht = 1.6

t
As
se
t

i Optimal Investment Percentage

1 Asset 1
0. 0602
Asset 10
0. 0003
Asset 20
0. 0087

Asset 2
0. 0012
Asset 11
0. 0003
Asset 21
0. 0005

Asset 3
0. 0030
Asset 12
0. 0290
Asset 22
0. 0102

Asset 4
0. 0085
Asset 13
0. 59

Asset 24
0. 0008

Asset 5
0. 0005
Asset 14
0. 0002
Asset 25
0. 0019

Asset 6
0. 0011
Asset 15
0. 0720
Asset 26
0. 0184

Asset 7
0. 0019
Asset 17
0. 0439
Asset
283

0. 0350

Asset 8
0. 0157
Asset 18
0. 0849
Asset 29
0. 0040

Asset 9
0. 0022
Asset 19
0. 0059
Asset 30
0. 0019

2 Asset 1
0. 0429
Asset 11
0. 0006
Asset 21
0. 0079

Asset 2
0. 0019
Asset 12
0. 0294
Asset 22
0. 0076

Asset 3
0. 0038
Asset 13
0. 6

Asset 23
0. 0003

Asset 4
0. 0084
Asset 14
0. 0004
Asset 24
0. 0021

Asset 5
0. 0009
Asset 15
0. 0451
Asset 25
0. 0019

Asset 6
0. 0015
Asset 17
0. 0510
Asset 26
0. 0174

Asset 7
0. 0035
Asset 18
0. 1228
Asset 28
0. 0271

Asset 8
0. 0135
Asset 19
0. 0020
Asset 29
0. 0045

Asset 9
0. 0008
Asset 20
0. 0079
Asset 30
0. 0027

3 Asset 1
0. 0340
Asset 11
0. 0009
Asset 20
0. 0076

Asset 2
0. 0025
Asset 12
0. 0354
Asset 21
0. 0015

Asset 3
0. 0043
Asset 13
0. 6

Asset 22
0. 0075

Asset 4
0. 0090
Asset 14
0. 0005
Asset 24
0. 0018

Asset 5
0. 0014
Asset 15
0. 0334
Asset 25
0. 0030

Asset 6
0. 0021
Asset 16
0. 0018
Asset 26
0. 0164

Asset 7
0. 0049
Asset 17
0. 0380
Asset 28
0. 0235

Asset 8
0. 0119
Asset 18
0. 1470
Asset 29
0. 0043

Asset 9
0. 0013
Asset 19
0. 0016
Asset 30
0. 0026

4 Asset 1
0. 0340
Asset 12
0. 0380
Asset 22
0. 0059

Asset 2
0. 0029
Asset 13
0. 6

Asset 23
0. 0006

Asset 3
0. 0039
Asset 15
0. 0369
Asset 24
0. 0018

Asset 4
0. 0074
Asset 16
0. 0027
Asset 25
0. 0031

Asset 5
0. 0013
Asset 17
0. 0297
Asset 26
0. 0201

Asset 6
0. 0027
Asset 18
0. 1449
Asset 27
0. 0004

Asset 7
0. 0046
Asset 19
0. 0017
Asset 28
0. 0237

Asset 8
0. 0163
Asset 20
0. 0069
Asset 29
0. 0045

Asset 9
0. 0012
Asset 21
0. 0017
Asset 30
0. 0024

5 Asset 1
0. 0262
Asset 12
0. 0350
Asset 22
0. 0057

Asset 2
0. 0034
Asset 13
0. 5440
Asset 23
0. 0008

Asset 3
0. 0034
Asset 15
0. 0305
Asset 24
0. 0016

Asset 4
0. 0064
Asset 16
0. 0025
Asset 25
0. 0031

Asset 5
0. 0012
Asset 17
0. 0275
Asset 26
0. 0157

Asset 6
0. 0024
Asset 18
0. 2330
Asset 27
0. 0059

Asset 7
0. 0038
Asset 19
0. 0015
Asset 28
0. 0210

Asset 8
0. 0148
Asset 20
0. 0070
Asset 29
0. 0040

Asset 9
0. 0011
Asset 21
0. 0015
Asset 30
0. 0019

Table 3: Corresponding final-value wealth of different Ht in multiple-period mean value – mean absolute deviation fuzzy investment portfo-
lio model

Ht 0 0. 2 0. 4 0. 6 0. 8 1 1. 2 1. 4 1. 6 1. 8
W6 1. 9589 1. 9589 1. 9589 1. 9589 1. 9594 1. 9568 1. 9548 1. 9485 1. 9384 1. 9186
Ht 2 2. 2 2. 4 2. 6 2. 8 3. 0 3. 2 3. 4
W6 1. 8951 1. 8659 1. 8375 1. 8028 1. 7676 1. 7298 1. 6737 1. 5728
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