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Abstract: Dynamics of a dry-rebounding drop was stud-
ied experimentally, numerically, and theoretically. Exper-
imental results were reproduced by our computational
fluid dynamics simulations, from which time series of ki-
netic energy, potential energy, and surface energy were
obtained. The time series of these energies quantitatively
clarified the energy conversion and loss during the dry-
rebound. These results were interpreted by using an imag-
inary springmodel and a spherical harmonic analysis. The
spring model explained the vertical deformation of the
drop, however, could not completely explain the energy
loss; the timings of the energy loss did not match. From
a viewpoint of the spherical harmonic deformation of a
drop, the deformation of the drop after the impact was
found to be a combination of two vibrationalmotions. One
of the two vibrationalmotions is an inertialmotionderived
from the free-fall and the another is a pressure-induced
motion derived from a pressure surge due to the sudden
stop of the bottom part of the drop at the impact. The ex-
istence of the pressure surge at the impact was confirmed
in the simulated results. The pressure-induced motion re-
sists the inertial motion and consequently dumps the ki-
netic energy of the drop.
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1 Introduction
Adrop on a superheated surface, ofwhich the temperature
is higher than a critical point, floats on a stable vapor film
generated by evaporation of the drop. This is referred to
as the Leidenfrost effect, named after the person who first
discovered it [1, 2]. We will thus refer to such a drop as a
Leidenfrost drop.

The drop can be regarded as completely floating and
non-wetting on the surface [3] and the heat flux from the
surface towards the drop is sufficiently small that changes
in the fluid properties are negligible due to the heat insu-
lating effect of the vapor [4, 5]. If the drop falls from a cer-
tain height towards the heated surface, it bounces on the
surface similar to a bouncing ball, which is referred to as a
dry rebound [5]. In a dry rebound, the drop falls while con-
verting the initial potential energy to kinetic energy, then
impacts on the surface while converting the kinetic energy
to surface energy by deformation to a disk-like shape, and
then shrinkswhile converting the surface energy to kinetic
energy again. In these dynamics, the drop behaves similar
to an elastic spring. As such, the spring model has helped
to reveal interesting characteristics of the drop [4, 6].

A small amount (in the order of 100 ppm) of poly-
mer additives in the drop is known to change the dynamic
behavior and energy loss of the drop during the bounce
[5, 7–10]. However, the energy conversion and loss of a dry-
rebounding drop, evenwithout the polymer additive, have
remained unclear [4].

An efficient approach to understand the drop char-
acteristics is a numerical simulation of the drop under a
completely non-wetting condition, which has successfully
reproduced the experimental drop results [11]. Computa-
tional fluid dynamics (CFD) not only enables unknown
phenomena to be expected, but also facilitates clarifica-
tion of detailed physical information regarding complex
fluidic phenomena. Previous studies [12–14] have shown
that the volume of fluid (VOF) method provides reliable
and reasonable results on two-phase flows. For example,
an impactingmercury drop [12], a cavitation around a two-
dimensional hydrofoil [13], and a drop impacting onto a
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liquid layer of finite thickness [14] have been simulated
with the VOF method.

In the present study, dynamics of a dry-rebounding
drop is observedby ahigh-speed camera, numerically sim-
ulated with a CFD solver, and theoretically modeled with
a damped spring model. We focus on the first few bounces
whose time span (∼ 0.1 s) is much shorter than the life
time of a Leidenfrost drop on a hot plate at a tempera-
ture of 380 ∘C (∼ 100 s) [3], thus the volume change due
to the evaporation is negligible. In the experiments (Sec-
tion 2), drops falling from different heights were captured
with a high-speed camera and the videos were analyzed
to measure the geometrical properties of the drops. CFD
simulations of the dry-rebounding drops were then per-
formed using a two-phase solver under a completely non-
wetting condition on a flat plate (Section 3). In Section 4,
the numerical results were assessed by comparison with
the experimental result, and then time evolutions of the
kinetic energy, potential energy, and surface energy of the
dropwere calculated. An imaginary damped springmodel
and a spherical harmonic analysis were introduced to elu-
cidate themechanism for the energy loss of the drop. Final
conclusions are described in Section 5.

2 Experiment
The experimental setup is shown inFigure 1. An aluminum
plate (100 mm × 100 mm × 5 mm) was heated on a ce-
ramic hot plate (As one, CHP-170DN) to 400 ∘C, which is
sufficiently higher than the Leidenfrost temperature and
the boiling point of water. A drop of distilled water was
dropped from a pipette (inner diameter: 1mm). Averaged
diameter of the drop in all the experiments was 3.69 mm

Aluminum plate

LED Light
High-speed camera

Pipette

Ceramic hot plate

880 mm

14-90 mm

Syringe

Figure 1: Experimental setup used to capture drop impact on a
superheated flat surface. The drop was generated at the tip of a
pipette and captured with a high-speed camera.

with the standard error of 0.10mm. Experimentswere con-
ducted under the room conditions; the temperature was
23.9 ± 0.3 ∘C and the humidity was 80 ± 4 %RH.

To characterize the drop, the Weber number We was
used, which is a non-dimensional number that gives the
ratio of kinetic energy to the surface energy of the drop and
thus represents the stability of a drop. Weber number es-
pecially for a drop at impact is referred to as the dynamic
Weber number, and can be expressed as

We =
ρU2

impactD0
σ , (1)

where ρ is the density of the drop, Uimpact is the velocity
of the drop just before impact, D0 is the initial diameter of
the drop, and σ is the surface tension coefficient between
air and the internal fluid of the drop.

The height of the pipette tip above the plate was ad-
justed from 9 mm to 25 mm at 1 mm increments to change
the impact velocity of the drop, Uimpact.

The drop impact on the plate was captured using a
high-speed camera (Casio, EXILIMEX-F1)with a frame rate
of 1200 fps and a resolution of 336×96 pixels. Experiments
were performed three times for each initial height.

Table 1: Boundary conditions used in the calculation. "Bottom
patch" is the patch on which the drop impacts and "Other patches"
are placed at the left, the right, the back, the front, and the upper
sides of the drop. Under condition #1, the gradient value of the
boundary field is fixed to zero, except on the tangential component
which is set to 0 for inflow. Under condition #2, the velocity field on
the patch is evaluated from the flux, switching zero gradient, and
the fixed value, depending on the direction of velocity with respect
to the boundary. Under condition #3, the pressure gradient was
adjusted depending on the flux.

Variable Bottom patch Other patches
U #1 #1
α non-wetting condition #2

p − ρgh #3 fixed value (10 kPa)

Captured videos were processed using an image pro-
cessing pipeline that was written in Python [17] and using
OpenCV [18], an open source computer vision library. The
imageswereprocessed intobinary images that indicate the
interior or exterior of thedrop, and from thebinary images,
contours for the drop edge were obtained. The geometric
properties of the drop were obtained from the image pro-
cessing pipeline (Figure 2): top height x1, bottom height
x2, and width D.
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Figure 2: Schematic diagram of a drop and the imaginary damped
spring model prior to impact, in regime I, and in regime II. The ge-
ometric properties of the drops were measured using an image-
processing pipeline. The spring has two mass points (each one is
half the weight of the drop) at both ends.
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Figure 3: Schematic diagram of the CFD setup. (a) System size and
initial setup of the volume fraction of water, α. The grid mesh from
(b) top and bottom views, and (c) side views. The central cubic do-
main has the finest and unity resolution, otherwise domain has
reduced resolution with expanding cell size outward.

3 Numerical method

3.1 Finite volume method and volume of
fluid method

The drop was simulated using a two-phase solver, inter-
Foam [19] of OpenFOAM (version 3.0.x) [15, 20], a CFD
toolkit software that can be used and exploited under
the GNU General Public License (GPL) [16]. The interFoam
solver is based on the finite volume method (FVM). In
the FVM, the domain of calculation is divided into finite-
volume cells which are referred to as control volumes, and
physical values (e.g., velocity and pressure) are assigned
to the centroid or faces of each cell.

A type of VOF method is used in interFoam to model
two-phase flow and to track the free surface. In the present
simulation, the two phases of water and air were consid-
ered. Note that in the two-phase flow, the volume fraction
of liquid, αl = α, determines the volume fraction of gas,
αg = 1 − α.

3.2 Interface capturing

An efficient method is required to simulate a multiphase
flow and capture a sharp interface between the two immis-
cible phases. VOFmethods have a problemwith respect to
the diffusive interface between two phases. In VOF meth-
ods, the volume fraction of each phase is tracked through
every control volume. The volume fraction of each phase
is expressed by a scalar function, which is referred to as
a volume function or a color function. To reproduce the
interface between immiscible phases, the volume func-
tion needs to keep a steep gradient at the interface. How-
ever, the steep gradient readily dissipates because VOF
methods solve a momentum equation for a mixture of im-
miscible phases. Therefore, a special treatment is needed
for the interface of volume functions. The relative veloc-
ity, Ur, is used to compress the interface between the two
phases. Weller [21] proposed a relative velocity between
two phases, Ur, as follows:

Ur = min(Cα|U|, max(|U|)) ∇α|∇α| , (2)

where U is the velocity field, and Cα is a coefficient set to
1 in the present simulation. This method has proven to be
reliable in maintaining a sharp interface [21].



274 | A. Nishimura et al.

Figure 4: Sequential images of experimental drops (upper rows) and simulated drops (lower rows) captured every 5ms forWe = 7 (top),
We = 15 (middle), andWe = 23 (bottom).

3.3 Surface tension force

Surface tension force is calculated using the continuum
surface force (CSF) model [22]:

Fσ = σκ∇α, (3)

where σ is the surface tension coefficient and κ is the cur-
vature of the interface between the liquid and gas. κ is
given by

κ = −
(︀
∇ · n̂

)︀
, (4)

in which n̂ is the gradient vector at the face, which is given
by

n̂ = ∇α
|∇α| + δn

, (5)

where δn is a stabilization factor depending on the volume
of grid cells. The typical value of δn in our simulation is
1.0 × 10−5m−1.

3.4 Velocity-pressure coupling

The momentum equation is given by
∂
∂t (ρU) +∇ · (ρUU) =

−∇p +∇ · τ + (g · h)∇ρ + Fσ ,
(6)

where ρ is the mixture density, p is the pressure, g is the
gravity vector, h is the position vector in the vertical direc-
tion, (g·h)∇ρ is the buoyancy force, and τ is the deviatoric
stress. The interFoam solver uses the PIMPLE method,
which is a combined velocity-pressure coupling algorithm
of the SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) and PISO (Pressure Implicit with Splitting of
Operator) algorithm [23]. The PIMPLE algorithm is summa-
rized as the following routine.

1. Momentum prediction: Predict the velocity field us-
ing the momentum equation.

2. Pressure solution: Solve the pressure equation and
correct flux.

3. Explicit velocity correction: Correct the velocity field
with the solved pressure field.

The routine is repeated for certain number of times, which
was two times in the present simulation.

3.5 Computation and post-processing

A diameter given by the average diameter of 51 experimen-
tal drops was adopted as the initial diameter of the numer-
ical drop,D0 = 3.7 mm.The initial velocity of the dropwas
determined using the conservation of mechanical energy:

Uimpact =
√︀
2gxc,0, (7)

where g is the gravitational acceleration, and xc,0 is the
initial height of the centroid of the drop. The viscosities
of water and air were set to 1.0 × 10−3 Pa · s and 1.84 ×
10−5 Pa · s, respectively. The field of the initial volume
fraction of water was set to α = 1.0 at the interior of the
drop and α = 0.0 at the outside of the drop. The sur-
face tension coefficient σ, between water and air was set
to 0.07 N · m−1.

The boundary conditions used for the calculation are
shown in Table 1. The contact angle between water and air
on the bottompatch onwhich the drop impactedwas set to
180∘ (a perfectly hydrophobic surface), which means that
the gradient of α on the bottom boundary is determined
as the negative normal vector of the boundary patch. The
schematic diagram of the CFD setup is shown in Figure 3.
The calculation domain was in the shape of a cube, 1.5 cm
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Figure 5: Time series of width for experimental and numerically
simulated drops with (A)We = 7, (B)We = 15, and (C)We = 23. The
first expansion and contraction (0-20ms) have good agreement.

on a side (Figure 3(a)). A spherical drop of 3.8mmdiameter
was placed at a height of 5mmabove the bottomboundary
(Figure 3(a)). To improve efficiency of the calculation, the
resolution of the mesh is uniform and finest at the interior
of the central rectangular column covering the drop, while
it becomes coarser toward the exterior, where the dropwill
never enter (Figures 3(b) and 3(c)). Number of grid cells
above 1.0 cm from the bottompatchwas reduced to 30%of
the finest region, and number of grid cells outside a square
with a side length 1.0 cm and a center of the drop was re-
duced to 50 % of the finest region. From the finest grid
cells towards boundaries except the bottom, the length of
edge of grid cells are expanded with the expansion ratio
of smallest length to largest length of the edge length of
grid cells. The expansion ratios are 2.81 towards the left,
the right, the front, the back patches of the drop and 6.26
towards the upper patch. Two resolutions of the mesh, 5
and 10 grid cells mm−1 at the finest part of the mesh, were
used to validate the effect of the resolution.

The simulations were performed on a computer
equipped with an Intel® CoreTM i7-3960X CPU and with
32GB RAM. The simulation results were rendered as
movies using ParaView [24]. The interface between water
and air was determined by thresholding the volume frac-
tion of water at α = 0.5 to capture the center of transitional
region between water and air. Rendered movies were pro-
cessed using the image processing pipeline that was also
used to process the experimental results.

4 Results and discussion

4.1 Assessment of the numerical result

Here, the numerical results are assessed by comparison
with the experimental results.

Before assessment of the results from a physical per-
spective, the effect of the mesh design was validated by
evaluating the dependency on the mesh resolution. No
particular differences were observed in the results for the
two different resolutions, which indicates that the mesh
resolutionhas no significant effect on the result. To inspect
the numerical result with the fine resolution, results cal-
culated with the finer mesh (10 cells / mm) were used for
further analysis.

Figure 4 shows sequential images of the experimen-
tal and simulated drops. The experimental and simulated
drops were comparable in that each drop exhibited a sta-
ble rebound. The sequence of the deformation (spreading
after first impact, forming a disk-shape, shrinking, mak-
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Figure 6: Time series of top height, middle height, and bottom
height for experimental and numerically simulated drops with (A)
We = 7, (B)We = 15, and (C)We = 23. The difference between the
top and bottom heights represents deformation in the vertical di-
rection and the middle height represents the approximate potential
energy of the drop.

ing a head at the center of the disk, lift-off, shaking of
the shape while in the air, and impacting again) was also
reproduced in the calculation. For high Weber numbers
(We ≥ 15), the experimental result fluctuated, possibly due
to asymmetrical expansion and contraction, while the nu-
merical result was stable and had symmetrical expansion
and contraction. Deformation for the experimental drop
was so sensitive that no symmetrical deformation could be
achieved.

Time evolutions of the height and width of the drop
are expected to provide vibrational patterns of the defor-
mation process. Time evolutions of relative diameter D/D0
for both experimental and simulated drops with different
Weber numbers were compared (Figure 5), and the top,
middle, and bottom heights of the drops, x1, xc, and x2,
respectively (Figure 2 and Figure 6), show that both sets
of results have the same vibrational patterns, although for
highWeber numbers, the time spans between the first and
second expansions and between the first and second im-
pacts for the numerically simulated drops were slightly
wider than those for the experimental drops. The time se-
ries for the horizontal diameter of the drop during the im-
pact approximately represents howmuch kinetic energy is
converted to surface energy (Figure 5). The time series for
the middle height can be considered to represent approx-
imately the potential energy of the drop. Thus, as shown
in Figure 6, the time series for the potential energy of the
drop for both the experiments and the simulations can be
considered to be in agreement.

The dissipated energy during the rebound is very diffi-
cult to determine because both the velocity and the surface
area of the drop are unknown [25]. One effective way to ex-
perimentally estimate the dissipatedmechanical energy is
to calculate the ratio of the maximum height after the first
impact to the initial height, as a ratio ofmechanical energy
at the maximum height to the initial mechanical energy:

Emech,hmax
Emech,impact

= Hmax
H0

, (8)

by assuming that the potential energy is equal to the me-
chanical energy when the drop is at the highest position.

The ratio ofmechanical energyat themaximumheight
to the initial mechanical energy for each Weber number
is shown in Figure 7. Both the numerical and experimen-
tal results showed a decrease with an increase of the We-
ber number. The energy loss for the experimental result
with highWeber numbers is considered to fluctuate due to
asymmetrical deformation during the rebound (Figure 4).

Through the assessment performed here, the numeri-
cal result is considered to be reasonably reliable with re-
spect to the deformation and dissipated energy.
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Figure 7:Weber number and the ratio of the mechanical energy
of the drop at the maximum height after the impact to the initial
mechanical energy. Both the numerical and experimental results
showed a decrease in the ratio with an increase of the Weber num-
ber.

4.2 Quantitation of the energy conversion

Kinetic energy and potential energy were calculated using
the following respective equations:

Ekin =
∫︁
Ω

1
2ρU

2dV , (9)

Epot =
∫︁
Ω

ρghdV , (10)

where V is the volume and Ω is the entire domain for the
calculation. Under the condition that the width of the in-
terface between water and air is asymptotically limited to
zero, the integral over the interface can be reformulated by
a volumewith the gradient of the volume fraction,∇α [22].
Thus, the surface energy can be calculated using

Esurf =
∫︁
Ω

σ|∇α|dV . (11)

The sum of the kinetic and potential energies is the me-
chanical energy:

Emech = Ekin + Epot. (12)

In this system, the pressure and volume are considered to
be constant, and the energy of interest is the sum of the
mechanical and surface energies:

Ems = Emech + Esurf . (13)

Figure 8 shows the time evolution of the energies cal-
culated from the numerical results. At the impact (t =
0 ms), the mechanical energy begins to decrease rapidly
and the surface energy simultaneously begins to increase.
When the surface energy reaches a maximum (t ≈ 8 ms),
the kinetic energy has a localminimum. After reaching the
maximumsurface energy, themechanical energy begins to
increase while the surface energy decreases. After takeoff
of the drop (t ≈ 15 ms), as evident for high Weber num-
bers, the conversion between the mechanical energy and
surface energy still continues, which is considered to be
caused by vibration of the drop in the air. Interestingly, the
changes of these energies cancel each other out and are
considered to be conserved in the form of the sum of the
mechanical and surface energies.

4.3 Imaginary damped spring model

A poorly elastic shock of a Leidenfrost drop has beenmod-
eled by an imaginary spring [4, 6], which is a linear spring
model with twomass points that represent the mass of the
drop at both ends of the spring. Here, we extend the imag-
inary spring model by adding a damping term:⎧⎪⎪⎨⎪⎪⎩

1
2m

d2x1
dt2 = −12mg − kϵ − c

dϵ
dt (14a)

1
2m

d2x2
dt2 = −12mg + kϵ + c

dϵ
dt + F, (14b)

where x1 and x2 are the heights of the bottom and top of
the spring above the plate respectively, and

ϵ = x1 − x2 − D0 (15)

is the strain of the spring, m is the mass of the drop, D0
is the initial vertical length of the drop, k is the stiffness
of the spring, c is the damping coefficient of the spring
(c ≥ 0), and F is the external force loaded at the bottom
of the spring. Figure 2 shows a schematic diagram of the
imaginary damped spring model. Note that by combining
Eqs. (14a) and (14b), the momentum equation for the cen-
troid of the spring, xc = 1

2 (x1 + x2), can be represented as

md2xc
dt2 = −mg + F, (16)

which plots the free-fall and bounce-back of the spring.
Let us define the regime inwhich the drop is in contact

with the vapor film over the plate as regime I. In regime I,
the height of the bottom of the spring is considered to be
fixed (x2 = 0); therefore,

d2x1
dt2 = d2ϵI

dt2 , (17)
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Figure 8: Kinetic, potential, and surface energies of drops as a func-
tion of t, the time after impact, with (A)We = 7, (B)We = 15, and
(C)We = 23. The dashed line represents the transition point from
regime I to regime II.

and
d2x2
dt2 = 0, (18)

where ϵI is the strain in regime I. Equations (14a) and (14b)
then become:⎧⎪⎪⎨⎪⎪⎩

d2ϵI
dt2 = −g − kImϵI −

cI
m
dϵI
dt (19a)

F = 1
2

(︂
mg − kIϵI − cI

dϵI
dt

)︂
, (19b)

where
kI = 2k, cI = 2c. (20)

By solving Eq. (19a), we obtain

ϵI = −AIe−ζIωI tIsin
(︀
ωd,ItI + ψI

)︀
− mgkI

, (21)

where tI is the time after the impact, AI is the initial am-
plitude of the oscillation, ζI = cI

2
√
mkI

is the damping ra-

tio, ωI =
√︁

kI
m is the undamped angular frequency of the

spring, ωd,I =
√︁
1 − ζ 2I ωI is the under-damped harmonic

oscillator, and ψI is the phase at the impact.
The time span from the lift-up to the next impact of

the drop is defined as regime II. In regime II, the bottom
height of the spring is no longer fixed (x2 ≥ 0) and there is
no external force loaded on the bottommass point (F = 0).
Differentiation of Eq. (15) gives

d2ϵII
dt2 = d2x1

dt2 − d2x2
dt2 , (22)

where ϵII is the strain in regime II. The combination of Eqs.
(14a), (14b), and (22) gives

d2ϵII
dt2 = − kIIm ϵII −

cII
m

dϵII
dt , (23)

where
kII = 4k, cII = 4c. (24)

By solving Eq. (23), we obtain

ϵII = AIIe−ζIIωII tIIcos
(︀
ωId,ItII + ψII

)︀
, (25)

where tII is the time after the lift-up, AII is the amplitude
of the oscillation, ζII = cII

2
√
mkII

is the damping ratio, ωII =√︁
kII
m is the undamped angular frequency of the spring,

ωId,I =
√︁
1 − ζ 2IIωII is the under-damped harmonic oscil-

lator, and ψII is the phase at lift-off.
The coefficients were obtained according to the de-

scription given in Appendix A. The damping coefficient for
regime I, cI, was determined to be 0.7 × 10−3 kgs−1 us-
ing Eq. (A.5) with the result for We = 7 and was reason-
ably assigned for all Weber numbers in this study, while
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that for regime II, cII, was determined to be half the value
of cI. This difference of the damping coefficient indicates
that the mechanism for energy loss is different between
regimes I and II. The stiffness k, determined by Eq. (A.6),
tends to decrease with an increase of the Weber number.

The sum of the kinetic, potential, and elastic energies
as the surface energy of the springmodel can be calculated
for each regime:

Ems,I =
1
4m

(︂
dϵI
dt

)︂2
+ 1
2mg(D0 + ϵI)

+ 1
4 kIϵ

2
I + σπD2

0,
(26)

Ems,II =
1
2m

(︂dxc,II
dt

)︂2
+ 1
8m

(︂
dϵII
dtII

)︂2
+ mgxc,II

+ 1
8 kIIϵ

2
II + σπD2

0,
(27)

where Ems,I and Ems,II are sums of the mechanical energy
and the surface energy in regime I and regime II, respec-
tively. These energies are shown in Figure 10 with We =
7, 15, 23.

The overall energy loss rate in regime I is expressed as

λI = 1 − Ems,I(tII = 0)
Ems,I(tI = 0) , (28)

and the energy loss rate over 1 cycle of oscillation in regime
II,

λII = 1 − Ems,II(tII = TId,I)
Ems,II(tII = 0) , (29)

0 10 20 30 40 50
Time after the first impact t/ms

3

4

5

6

7

8

9

10

E
n
e
rg
y
 E

m
s 
/µ
J

We=7

We=15

We=23

t=D0/Uimpact

Simulation

Spring model

Figure 10: Time series for the sum of kinetic, potential, and sur-
face energies from the simulation and spring model results. Each
dashed line represents the transitional time from regime I to regime
II. Major energy losses were observed at two moments, 2 ms and 12
ms after the impact as indicated by the "*" marks. The dash-dotted
line shows t = D0/Uimpact, which predicts the start time of the
second energy decay of the drop.

corresponds well for both the simulation and the spring
model (Figure 11).

While the vertical strain and energy loss rates of the
drop were well explained by the spring model (Figures 9
and 11), the second decrease of the spring model lagged
that of the simulated drop (Figure 10). This time lag indi-
cates that true damping factor has an other period than the
damping term of the spring model.

4.4 Spherical harmonic analysis

A water drop on an oscillating plate [26–28] or on a super-
heated plate [29] is known to show spherical harmonic os-
cillation due to the surface tension force. We will compare
the deformations of the drop on the impact with the spher-
ical harmonic oscillation.

Anoscillatingdrop canbe represented as a linear com-
bination of spherical harmonic functions as [30–32]

r(t, θ, ϕ) = R +
∑︁
n,m

An(t)Ymn (θ, ϕ), (30)

where R is the radius of an unperturbed sphere-shape
drop, An(t) = ancos(ωn t+ψn) are intensities of themodes,
and Ymn are Laplace’s spherical harmonics with orders n =
0, 1, 2, · · · , and degrees m = −n, −(n − 1), · · · , n − 1, n.
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Figure 11: Energy loss rates over regime I λI, and the energy loss
rate over 1 cycle of oscillation in regime II λII, with the simulated
drop and the spring model.

The deformation of the drop in this study is radially
symmetric, thus we only consider Laplace’s spherical har-
monics with 0 degree, Y0n . Furthermore, we assume that
the deformation of the impacting drop is aligned in verti-
cal or radial axes, so oscillation modes can be narrowed
down to n = 1 and n = 2. Therefore Eq. (30) is simplified
as

r(t, θ, ϕ) = R + A1(t)Y01 (θ, ϕ) + A2(t)Y02 (θ, ϕ). (31)

Both of Y01 and Y02 modes are radially symmetric, but
Y02 is horizontally symmetric while Y01 is horizontally an-
tisymmetric, as shown in sequential images of R + A1Y01
and R + A2Y02 in Figure 12(a). Using this difference, har-
monic phase shifts of these two modes, ψ1 and ψ2 are de-
termined by discriminating the symmetry of deformations
of the drop.

Immediately after the impact (t = 0 ms), the drop is
in a spherical shape, thus the phase of mode n = 2 must
be π

2 or − π2 . After impacting on the plate, the drop spreads
radially and forms into a disk-shape,which corresponds to
A2 < 0, therefore ψ2 = π

2 .
The determination of the harmonic phase of the Y1

mode is more difficult than the Y2 mode. At the moment
of the maximum width of spreading drop, the drop is in
a disk-shape which is horizontally symmetric, therefore
A1 = 0. From this moment to the lift-off, the drop forms an
antisymmetricmatryoshka-shape,which indicatesA1 < 0.
After the lift-off, the drop forms into a vertical peanut-

shape (e.g. 25 ms) which is horizontally symmetric thus
A1 = 0. By extrapolating from these conditions, A1 must
be a positive value at t = 0. By looking carefully at energy
decay curves in Figure 10,we found that the second energy
decay starts slightly earlier at increasing Weber number.
Let us consider a free end reflection of the drop as a pulse
over the vertical axis on the bottom plate as a free end. We
envisage that after the impact the drop receives the reflec-
tion of its impact velocity and induces a vertical uplift (i.e.
A1 > 0), until the pulse passes over the end. Therefore, a
length of the time duringwhich the drop passes over its di-
ameter with the impact velocity, D0/Uimpact, is considered
to characterize the phase of the Y01 mode. As shown by the
dash-dotted line in Figure 10, t = D0/Uimpact predicts be-
ginning time of the second decay well.

The deformation of Eq. (31) with determined phases
ψ1 and ψ2 together with experimental and simulated
drops is shown in Figure 12(a). The deformation sequence
of spherical shape, disk-shape, matrioshka-shape, and
peanut-shape, is reproduced by Eq. (31).

A1 and A2 as functions of time after the impact are
shown in Figure 12(b). Actually, the imaginary spring
model represents the Y02 mode: A2 has same vibration
mode with the drop’s vertical strains, ϵ, which is shown
in Figure 9. This is because the vertical strain of a Y01 mode
is always zero and thus height of the shape represented by
Eq. (31) only depends on the Y02 mode.

One of the most important insights from the spheri-
cal harmonic analysis is the existence of an another vibra-
tional mode, Y01 in the deformation of the impacting drop,
which is not considered in the spring model.

4.5 Energy loss upon the impact

Time series of A1 and A2 were compared with that of the
total energy Ems of the simulated drop with We = 7 (Fig-
ures 12(b) and 12(c)). We found that the cycle of the Y01
mode is synchronous with that of the repetitive energy de-
cay. At the time spans when Y01 increases its amplitude
(
⃒⃒⃒
dA1
dt

⃒⃒⃒
> 0), the energy starts an exponential decay. Fig-

ure 10 shows that the damped imaginary springmodel pre-
dicts lagged second decay behind the simulated drop. As
mentioned in section 4.4, the spring model represents the
Y02 mode. Considering that the cycle of the energy decay
depends on the Y01 mode and the spring model does not
consider the Y01 mode, the mismatch of the decay timing
can be explained.

When the drop impacts at the bottom plate, the bot-
tom part of the drop is forced to stop and the vertical ve-
locity is forced to be zero suddenly. This sudden change
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Figure 12: A sequential analysis of the deformation of the impacting drop with shared time axis, withWe = 7. (a) Spherical harmonic defor-
mations represented by R + A1Y01 + A2Y02 , R + A1Y01 , and R + A2Y02 with R = 1.85mm, a1 = 2mm, and a2 = 2mm, together with that of
drops of the experiment (Exp.) and the CFD simulation (Sim.). (b) Intensities of Y01 and Y02 , A1 and A2, respectively, are plotted as functions
of the time after the first impact, t. (c) Sum of mechanical and surface tension of simulated drop is plotted as a funcion of t. Dashed lines in
(b) indicates moments of A1 = 0, at which exponentially energy decays starts as shown in (c).

of the velocity induces the pressure surge (i.e., stagnation
pressure). Figure 13(a) shows that a pressure surge occurs
at the beginning of the impact. The amount of the pres-
sure surge is roughly estimated as ρD0Uimpact/∆t ∼ 200
Pa, where ∆t ≈ D0/Uimpact ∼ 10 ms is the time span to
stop the free-fall motion of the drop. This phenomenon is
similar to a water hammer with slow valve closure (slower
than sound propagation), in which a pressure surge oc-
curs when a fluid in motion is forced to stop. The pressure
surge accompanies a pressure-gradient force, which is ex-
pressed by the term −∇p in the Eq. (6).

In many cases of fluid dynamics, a pressure-gradient
force is a driving force of a flow (e.g., a channel flow). How-
ever, in this case, thepressure-gradient force consequently

dumps the motion inside the drop. The pressure-induced
force associated with the stagnation pressure is an impor-
tant factor in the Drop Deformation and Breakup (DDB)
model [33, 34] introduced by Ibrahim et al., which success-
fully predicts the deformation of spray drops.

The pressure-gradient force generated at the impact
induces an upward flow inside the drop in the time span
of D0/Uimpact from the impact. The upward flow is sub-
sequently reflected at the end of the drop due to the sur-
face tension. Therefore, the flow induced by the pressure-
gradient force generates a vertical vibrational motion. The
Y01 mode found in our spherical harmonics analysis repre-
sents this vertical vibrational motion.
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Figure 13: Pressure (left) and magnitude of the velocity (right) in-
side the drop, from a cross-sectional lateral view at the drop center
(We = 7). (a) At the beginning of the impact (t = 2ms), a pressure
surge occurs at the bottom part of the drop, where magnitude of
the velocity is nearly zero. and (b) At the retraction from the disk-
shaped drop (t = 12ms), the pressure-induced motion suppresses
the retracting motion.
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Figure 14: The viscous force∇ · τ, pressure-gradient force −∇p, and
the external forces (right-hand side of Eq. (6)) damping the motion
of the drop for the vertical and radial directions were obtained from
the simulated results (We = 7). The dashed line represents the tran-
sition point from regime I to regime II. The pressure-gradient force
dominates the external force and the contribution of the viscous
force is fairly small. At the two major energy losses (*), the external
forces damp the velocity, the former against the vertical direction
and the latter against the radial direction.

Meanwhile after the impact, a major part of the free-
fall motion of the drop is converted to radially spreading
motion, which is also subsequently reflected at the end

of the drop due to the surface tension. This motion forms
a vibrational motion represented by the Y02 mode. There-
fore, the free-fall motion of the drop before the impact is
converted to two motions after the impact, the pressure-
induced motion and inertial motion, represented by Y01
and Y02 modes, respectively.

To investigate the breakdown of the force acting to
dump inside the drop, viscous force, pressure-gradient
force, and total external force (viscous force, pressure-
gradient force, surface tension force, and gravitational
force) were summed inside the drop of the CFD simula-
tion for each time step. Specifically, we calculated an α-
weighted summation of each force over grid cells with a
negative value of inner product of a force and velocity, as
expressed in∑︀i,fi ·Ui<0 αifi, where i is an index of grid cells,
fi is a force at i-th cell, Ui is velocity at i-th cell, and αi is
the volume fraction of water phase at i-th cell. Consider-
ing the deformation of the bounce of the 3D drop where
spreading and shrinking in vertical and radial directions,
these forceswere split into vertical and radial components.
The radial force component showsmajor forces within the
drop in a disk-shape, while the vertical component shows
ones within the drop in a cylinder-shape. Figure 14 shows
that amongst the forces damping the motion of the drop,
the pressure-gradient force dominates the external forces
(right-hand side of Eq. (6)) and the viscosity effect is fairly
small. The small impact of the viscosity on the drop defor-
mation was also reported by Renardy et al. [11].

The pressure-induced motion resists the free-fall iner-
tial motion at the beginning of the impact (t = 2 ms), and
then resists the inertial motion when the drop is retract-
ing from the disk-shape (t = 12 ms). Figure 14 shows that
the pressure-gradient force dominantly resists the motion
of the drop at these two timings. At the retraction of the
drop, the direction of the pressure-induced motion is in-
herently downward, however, due to the disk-shaped drop
as a flow field and the existence of the bottom plate, it is
forced to advance radially (Figure 13(b)). As the result, the
retracting inertial motion of the drop is dumped by this ra-
dially spreading pressure-induced motion.

Most part of the pressure-induced motion decays dur-
ing the two resistances to the inertialmotion, however, still
remains with a small intensity after the lift-off, causing a
small energy loss starting at t = 25ms as shown in Figures
10 and 12(c).

Note that we have considered just the first dry-
rebound. Biance et al. [4] have shown restitution coeffi-
cients of successive dry-rebounds of a drop with diame-
ter of 1 mm. They reported that the restitution coefficient
e is relatively low at the first impact (e ∼ We−1/2, called
as poorly elastic shocks) but very close to 1 after multiple
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bounces (called as quasi-elastic shocks). With lower We-
ber number, the energy loss tends to be small as shown
in Figure 7. Thus, one reason of the small energy loss af-
ter multiple bounce is the lowWeber number. Biance et al.
also reported that in the quasi-elastic shocks the vibration
of drop’s diameter is in phase with the flight of the drop.
The other reason of the small energy loss after multiple
bounce is considered that the pressure surge disappears
due to the inertial motion synchronized with the bounce
of the drop. The synchronized Y02 mode, which suppresses
the impact velocity, avoids the sudden stop at the bottom
and generating the pressure surge.

5 Conclusion
The dynamics of a dry-rebounding dropwas quantitatively
obtained from numerically simulated results that were as-
sessed with respect to experimental results. The dynamics
was quantitatively explained with an imaginary damped
springmodel, however, the second energy decay predicted
by the spring model was lagged behind the simulated
drop, which indicates that the true damping factor is other
than the damping term of the spring model.

From the analysis of the spherical harmonic deforma-
tion, we found that the deformation is a combination of Y01
and Y02 modes. The cycle of the Y01 mode was synchronous
with that of the energy decay, which indicates that the de-
cay timing depends on the Y01 mode, rather than the Y02
mode represented by the spring model.

At the beginning of the impact, the bottom part of
the drop is forced to stop suddenly, which induces a pres-
sure surge. From the simulated results, the pressure surge
was actually found. The pressure-gradient force associ-
ated with the pressure surge induces a upward motion. At
the same time, the free-fall motion is converted to the ra-
dially spreading motion. These two motions form two dif-
ferent vibrational modes due to the surface tension. The
pressure-induced motion and inertial motion correspond
to the Y01 and Y02 modes, respectively.

Analysis of the forces damping the motion of the drop
suggested that the viscous impact on the drop is fairly
small. Considering that the Y01 mode was synchronous
with the repetitive exponential decay of the energy and the
pressure-gradient force dominantly resists the motion of
the drop, we conclude that the pressure-induced motion
dumps the inertial motion.
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A Coeflcients of the imaginary
damped spring model

To conserve the kinetic energy at impact, the impact speed
of the spring, U*impact, is recalculated from the impact
speed of the drop, Uimpact, and applied for mass point 1
because mass point 2 cannot move:

U*impact =
√
2Uimpact. (A.1)

Assuming that the strain of the spring has a maxi-
mal value at lift-off, the under-damped angular frequency,
ωd,I, can be obtained by the period, Td,I, which is equal to
twice the length of time from the minimum ϵ to the maxi-
mum ϵ:

ωd,I =
2π
Td,I

. (A.2)

The time derivative of the strain at impact is equal to
the impact speed:

dϵI
dt

⃒⃒⃒⃒
tI=0

= −U*impact, (A.3)

which leads, by assuming sin(ψI) ≈ 0 and cos(ψI) ≈ 1, to
the amplitude

AI =
U*impact
ωd,I

. (A.4)

At the first moment of impact, assuming that mass
point 1 continues to move at U*impact, then d2ϵI

dt2 = 0, and
then from Eq. (19a), we obtain

cI =
mg

U*impact
. (A.5)

The stiffness, kI, can be obtained from

kI =
1
2

⎛⎝mω2
d,I +

√︃
m2ω4

d,I +
c4I
4m2

⎞⎠ . (A.6)

At the start of contact of the bottom mass point of the
spring (tI = 0), the strain is considered to be zero (ϵI = 0);
therefore, the value of ψI can be obtained:

ψI = arcsin
(︂
− mgkIAI

)︂
. (A.7)

Assuming that the strain reaches a maximum at lift-off
(tII = 0),

dϵII
dt = 0, (A.8)

we obtain
ψII = 0. (A.9)

The centroid of the spring in regime II, xc,II, is

xc,II = Uli�-o� tII −
1
2 gt

2
II + xc,li�-o� , (A.10)

and the velocity of the centroid of the spring is

dxc,II
dt = Uli�-o� tII − gtII, (A.11)

where Uli�-o� and xc,li�-o� are respectively the velocity and
the position of the centroid of the spring at lift-off. Uli�-o�
was obtained from

Uli�-o� =
1√
2

dϵI
dt

⃒⃒⃒⃒
tII=0

. (A.12)
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