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Abstract: In this paper, homotopy analysis method (HAM)
and variational iteration method (VIM) are utilized to de-
rive the approximate solutions of the Tricomi equation. Af-
terwards, the HAM is optimized to accelerate the conver-
gence of the series solution byminimizing its square resid-
ual error at any order of the approximation. It is found that
effect of the optimal values of auxiliary parameter on the
convergence of the series solution is not negligible. Fur-
thermore, the present results are found to agree well with
those obtained through a closed-form equation available
in the literature. To conclude, it is seen that the two are
effective to achieve the solution of the partial differential
equations.
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1 Introduction
The elliptic-hyperbolic classic Tricomi equation on a re-
gion Ω in R2 may be written in the form [1],

wxx − xwyy = 0, (x, y) ∈ Ω, (1)

which is usually used to study characteristics of the solu-
tion between subsonic and supersonic flows of the com-
pressible gas, namely transonic flow. Compared to the
Chaplygin equation [2], neither the velocity of the sound
nor the nonlinear boundary conditions affects this equa-
tion. If x → xm, the principal part of Eq. (1), i.e. wxx −
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xmwyy = 0, is called the Keldysh equation. Herein, the
most pioneering researches undertaken on the Tricomi
equation are reviewed.

Singh et al. [3] employed the homotopy perturbation
Sumudu transformmethod (HPSTM) to solve the local frac-
tional Tricomi equation in the fractal transonic flow. They
reported that their proposed model provides the results
without any transformation of the equations into the dis-
crete counterparts and is completely free of the round-off
errors. Yagdjian [4] analyzed Eq. (1) by using the integral
transform approach which was introduced in Ref. [5] for
the hyperbolic domain. Nazipov [6] presented solution of
the spatial Tricomi problem for a single mixed-type equa-
tion in which the study was carried out in a bound spa-
tial domain. In this regard, Sabitov [7] presented a simi-
lar work for a mixed parabolic-hyperbolic equation. Quin-
tanilla [8] analyzed the spatial behavior of the Tricomi
equation by reaching the decay for an equationwhichmay
be elliptic, hyperbolic and parabolic depending on the dif-
ferent points of the region. Zhang [9] converted the linear
Tricomi equation into a confluent hypergeometric equa-
tion using partial Fourier-transformation. He could also
capture an explicit solution of the initial value problem in
terms of two integral operators.

Recently, the analytic approximation of the partial dif-
ferential equations has been extensively studied through
some nonperturbative techniques: Adomian decomposi-
tion method (ADM) [10, 11], VIM [12, 13], inverse scattering
method [14], δ-expansion method [15] etc. The HAM [16–
20] is one of the most effective methods for finding the
analytic solution of the partial differential equations. It is
required to set } ≠ 0 as an auxiliary parameter for the
case in which the variation of this parameter may lead to
a uniformly continuous family of functions. In this regard,
Sajid and Hayat [21] presented an analytic solution to the
heat conduction/convection equation when the effects of
nonlinearity had been taken into account. They also com-
pared the HAM with the homotopy perturbation method
(HPM) and drew a conclusion that if } = −1, the HPM is
a special case of the HAM. Odibat [22] captured the Leg-
endre polynomials to solve the nonlinear fractional differ-
ential equations by approximating the non-homogeneous
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and nonlinear terms within the HAM and VIM. Liao [23]
introduced a relationship between the HAM and Euler’s
transformation via a nonlinear ordinary differential equa-
tion.He concluded that the Euler’s transformation is a spe-
cial case of the HAM for some special choices of the initial
approximation and auxiliary parameter. Shukla et al. [24]
investigated the HAM by adding a non-homogenous term
to the auxiliary linear operator L and concluded that this
term plays a significant role in reducing the square resid-
ual error. Mastroberardino [25] studied a nonlinear bound-
ary value problem for the electrohydrodynamic flow of a
fluid in a circular cylindrical conduit using the HAM. He
also showed that the HPM solution yields divergent in all
cases. Motsa et al. [26] studied a fully-developed paral-
lel flow through a horizontal channel using spectral ho-
motopy analysis method (SHAM). They showed that the
SHAM can utilize any form of the initial approximation
and concluded that the 4th-order approximation of SHAM
is in good agreement with the numerical findings.

Themain purpose of the present paper is to provide an
analytic solution of the Tricomi equation. To this end, the
HAM is optimized to accelerate convergence of the series
solution.Due to the fact that theVIM is a special case of the
HAM [27], theHAM results are comparedwith those results
obtained through this method as well as those obtained
through a closed-form equation. To the best of the authors’
knowledge, no previous work has been conducted in open
literature.

2 Series solution to the Tricomi
equation using HAM

Let’s consider the following nonlinear algebraic equation,

N [w (x, y)] = 0, (2)

where N and w (x, y) are a nonlinear differential operator
and an unknown function, respectively. Using q ϵ [0, 1] as
an embedding parameter in topology, the following zero-
order deformation equation is constructed,

(1 − q) L [ψ (x, y; q) − w0 (x, y)] = q}N [ψ (x, y; q)] , (3)

where ψ (x, y; q) and w0 (x, y) are an unknown function
and an initial approximation of w (x, y), respectively. It is
to be noted that by setting q = 0 and q = 1, it holds,

ψ (x, y; 0) = w0 (x, y) , ψ (x, y; 1) = w (x, y) , (4)

respectively. As q varies from 0 to 1, ψ (x, y; q) varies from
the initial approximation w0 (x, y) to the solution w (x, y).

By expanding ψ (x, y; q) in a Taylor’s series with respect to
q, the following homotopy-series is constructed,

ψ (x, y; q) = w0 (x, y) +
+∞∑︁
i=1

wi (x, y) qi , (5)

where,

wi (x, y) =
1
i!
∂iψ (x, y; q)

∂qi
⃒⃒
q=0 . (6)

If Eq. (5) converges at q = 1, one has,

ψ (x, y; q) = w0 (x, y) +
+∞∑︁
i=1

wi (x, y). (7)

Differentiating the zero-order deformation Eq. (3) i-times
with respect to q, dividing by i! and setting q = 1, the ith-
order deformation equation will be constructed,

L [wi (x, y) − χiwi−1 (x, y)] = Ri (wi−1 (x, y)) , (8)

where,

Ri (wi−1 (x, y)) =
1

(i − 1)!
∂i−1N [ψ (x, y; q)]

∂qi−1
⃒⃒
q=0 , (9)

and,

χi =
{︃
0, i ≤ 1,
1, i > 1.

(10)

To apply the HAM on the present problem, consider Eq. (1)
and its corresponding boundary conditions given,

ψ (x, 0; q) = 0, ∂ψ (x, y; q)
∂y

⃒⃒
y=0 = 0. (11)

It should be noted that the HAM enables us to choose an
auxiliary linear operator [17]. To this end, the auxiliary lin-
ear operator L will be defined,

L [ψ (x, y; q)] = ∂
2ψ (x, y; q)
∂y2 , (12)

which has the property of,

L [b0 + b1y] = 0, (13)

where b0 and b1 are integration constants to be deter-
mined by the corresponding boundary conditions. Fur-
thermore, the nonlinear differential operatorN canbe cho-
sen in terms of Eq. (1),

N [ψ (x, y; q)] = ∂
2ψ (x, y; q)
∂x2 − x ∂

2ψ (x, y; q)
∂y2 . (14)

By solving the ith-order deformation Eq. (8), the cor-
responding ith-order approximated solution can be ob-
tained,

wi (x, y) = χiwi−1 (x, y) + }
y∫︁

0

y∫︁
0

Ri (wi−1 (x, y)) dydy, (15)
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and,

Ri (wi−1 (x, y)) =
∂2wi−1 (x, y)

∂x2 − x ∂
2wi−1 (x, y)
∂y2 . (16)

Therefore, the ith-order approximated solution of w (x, y)
will be obtained,

wk (x, y) ≈
k∑︁
i=0

wi (x, y) . (17)

In theory, at the pth-order of approximation, the square
residual error can be defined [28],

∆p =
∞∫︁
0

(︃
N
[︃ p∑︁
i=0

wi (ξ )

]︃)︃2

dξ , (18)

where ξ = ξ (x, y). It should be noted that by decreasing
the values of ∆p, the convergence for corresponding series
solution would be faster [28].

3 VIM based Lagrange multiplier
method

Generating the correction functional for the VIM to solve
the partial differential equations is one of the procedures
which can ensure a rapid convergence of the series solu-
tion. It is to be noted that neither the small parameter nor
the very large one affects the solution [12].

By introducing the differential equation as a combi-
nation of linear and nonlinear operators in the form of
L [w (x, y)]+N [w (x, y)] = f (x, y), where f (x, y) is a known
analytic function, the correction functional canbewritten,

wi+1 (x, y) = wi (x, y) +
y∫︁

0

λ (ξ ) (L [wi (ξ )] (19)

+N [wi (ξ )] − f (ξ )) dξ , i ≥ 0,

where λ is a general Lagrangemultiplier which can be cal-
culated by variational theory, wi (ξ ) is considered as a re-
stricted variation which means δwi (ξ ) = 0. It is noted
that the exact solution can be determined by w (x, y) =
limi→∞ wi (x, y). The applicationof the restricted variation
in Eq. (19) is to simplify the determination of the multi-
plier [12].

By substituting Eq. (1) into Eq. (19), the correction
functional of the present problem can be obtained,

wi+1 (x, y) = wi (x, y) +
y∫︁

0

λ (ξ )
(︂
∂2wi (ξ )
∂x2

− x
∂2wi (ξ )
∂y2

)︂
dξ . (20)

Calculating the variation with respect to wi (x, y) and
δwi+1 (x, y) = 0 yields,

δwi+1 (x, y) = δwi (x, y) (21)

+ δ
y∫︁

0

λ (ξ )
(︂
∂2wi (ξ )
∂x2 − x ∂

2wi (ξ )
∂y2

)︂
dξ = 0.

Tofind the explicit formof Eq. (21), it is sufficient to express
the general Lagrange multiplier λ explicitly. To this end,
using He andWu’s paper [29], the Lagrange multiplier can
be identified,

λ (y, ξ ) = (−1)k(ξ − y)k−1

(k − 1)!
, (22)

where k is the highest-order derivative. By setting k = 2,
the Lagrangemultiplier for the present problem can be de-
termined,

λ (y, ξ ) = (ξ − y) . (23)

After finding Eq. (23), the iteration formula can be given,

wi+1 (x, y) = wi (x, y) (24)

+
y∫︁

0

(ξ − y)
(︂
∂2wi (ξ )
∂x2 − x ∂

2wi (ξ )
∂y2

)︂
dξ .

4 Results and discussion
To validate the present analytic solutions (i.e. HAM and
VIM), present findings are compared with the separa-
ble solution of the generalized Tricomi equation, wxx −
f (x)wyy = 0, which can be determined [30],

w =
[︁
c1eλy + c2e−λy

]︁
H (x) , (25)

where c1, c2, and λ are arbitrary constants, and the func-
tion H = H (x) is calculated by the ordinary differential
equation H”

xx + λ2f (x)H = 0 [30]. In Table 1, results of
the present analytic solutions are comparedwith those ob-
tained through Eq. (25) for solving the Tricomi Eq. (1). The
initial approximation in this case is taken asw0 (x, y) = y2.
Based on the results of Table 1, by increasing in the values
of x, w (x, y) will be decreased in all cases. It is seen that
although the convergence is occurred at the 11th-order ap-
proximation of the HAM, the results of the 9th- and 7th-
order approximated solution only suffer from a relative er-
ror of at most 1.127% and 1.737%, respectively, compared
with the results of Eq. (25).

To determine the valid values of the auxiliary param-
eter }, one needs to examine the properties of the series
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Table 1: The solutions for the Tricomi Eq. (1) obtained by the pro-
posed techniques and those obtained through Eq. (25), when they
are subjected to y = 1

x HAM (} = 1) VIM Eq. (25)
i = 7 i = 9 i = 11 [30]

0 0.495 0.497 0.499 0.504 0.502
0.2 0.493 0.495 0.497 0.502 0.500
0.4 0.484 0.487 0.489 0.495 0.492
0.6 0.458 0.461 0.464 0.471 0.466
0.8 0.411 0.414 0.417 0.425 0.419
1 0.328 0.331 0.334 0.343 0.336

solution. It should be noted that since the auxiliary pa-
rameter } significantly influences on the convergence of
the series solution [31], it is straightforward to use } = 1
which is seen in Table 1. Furthermore, if the auxiliary pa-
rameter } is properly chosen, the series solution may con-
verge fast. However, for cases subjected to obtain higher
convergence, the HAMmay be optimized.

To investigate the accuracy of the VIM findings from
Table 1, the relative error between VIM and Eq. (25) does
not exceed 0.985%. It should be noted that although the
present VIM findings suffer from a large error compared
with the 11th-order approximation of the HAM (=0.551%),
using this technique for analyzing the partial differential
equations is still recommended. It is due to the fact that
this scheme provides high convergence with more itera-
tion by introducing a Lagrange multiplier λ [32] which
is given in Eq. (23) for this problem. Moreover, solving
Eq. (24) in terms of x and y and using the fact that

∫︀
ykdξ =

c1ξ (k−1)
(k−1)! + c2ξ (k−2)

(k−2)! + · · · + cmξ (k−i)
(k−i)! [33], may lead to the thresh-

old of λ. In this way, one would replace above series with
Eq. (23), and vary the integral part of Eq. (24) to find its
more convergent values in which the Lagrange multiplier
takes a value in the range 0 ≤ λ ≤ c1ξ (k−1)

(k−1)! . This fact can be
considered as verification of the VIM given in Eq. (24) for
solving the Tricomi Eq. (1).

The optimal values of } can be found by minimizing
the square residual error ∆p, which is given in Eq. (18). In
this case, the variation of ∆p at each order of the HAM so-
lution should be plotted versus the variation of } numer-
ically. Hence, the optimal values of } can be obtained at
the minimum of the resulting graph which is illustrated in
Figure 1 for 11th-order approximation of the HAM. As Fig-
ure 1 depicts, ∆p indicates descending linear behaviour for
} ≤ 1.017 while } > 1.017 suggests ascending linear be-
haviour of this curve.

Table 2 investigates the optimal values of } as well as
theminimum value of the corresponded ∆p for the Tricomi

Figure 1: Selection of the optimal values of } for 11th-order approxi-
mation of the HAM

Eq. (1) at 7th-, 9th-, and 11th-order of the HAM solution.
From this table, ∆p decreases with an increase of the order
of the approximation in series solutionwhich indicates the
convergence of the present HAM solution. In other words,
using the optimal values of } accelerates the rate of con-
vergence of the series solution. It is seen that by increas-
ing order of the approximation, the auxiliary parameter }
becomes more and more close to unity.

A comparison between the values of w (x, y) obtained
by different orders of the HAM with and without utilizing
the optimal values of } is presented in Table 3. This ta-
ble also compares the optimized HAM findings with the
results obtained through Eq. (25). According to the results
of this table, the relative error between the optimized 11th-
order approximationof theHAMandEq. (25) becomesonly
0.052%.This is due to the fact that the optimized 11th-order
approximation of the HAM can provide more accurate re-
sults than the non-optimized one. Therefore, one can con-
clude that this exhibits the significant effect of the optimal
values of } on the series solution.

5 Conclusions
Utilizing the HAM and VIM to solve the Tricomi equation,
which is an abstraction of the Euler equation on a 2D fluid
motion near the sonic condition, was the main objective
of the present study. Due to the fact that the HAM con-
tains the auxiliary parameter } ≠ 0, the series solution
was optimized by minimizing its square residual error at
any order of the analytic approximation. It was found that
the optimized HAM can accelerate convergence of the se-
ries solution. Furthermore, it was shown that the HAM can
provide more accurate results than the VIM for solving the
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Table 2: The optimal values of } for solving the Tricomi Eq. (1) by applying y = 1

x i = 7 i = 9 i = 11
}opt ∆p }opt ∆p }opt ∆p

0 1.038 0.00003623 1.028 0.00001631 1.017 0.000009164
0.2 1.038 0.00003669 1.028 0.00001643 1.017 0.000009273
0.4 1.038 0.00003702 1.028 0.00001658 1.017 0.000009302
0.6 1.038 0.00003747 1.028 0.00001710 1.017 0.000009464
0.8 1.038 0.00003798 1.028 0.00001801 1.017 0.000009601
1 1.038 0.00003811 1.028 0.00001869 1.017 0.000009719

Table 3: Effect of the optimal values of } on accelerating the HAM
solution for the Tricomi Eq. (1), when they are subjected to y = 2.
The values in parentheses are those obtained using } = 1

x HAM Eq. (24)
i = 7 i = 9 i = 11 [30]

0 1.908
(1.993)

1.931
(1.996)

1.942
(1.998)

1.943

0.2 1.905
(1.990)

1.929
(1.993)

1.939
(1.995)

1.940

0.4 1.899
(1.984)

1.924
(1.986)

1.933
(1.989)

1.934

0.6 1.876
(1.958)

1.897
(1.961)

1.910
(1.964)

1.911

0.8 1.828
(1.910)

1.850
(1.912)

1.862
(1.915)

1.863

1 1.752
(1.828)

1.773
(1.831)

1.780
(1.834)

1.781

Tricomi equation. Comparison between the results found
by the present analytic solutions and those prepared by
a closed-form equation showed that such techniques can
be considered as a promising tool for analyzing partial dif-
ferential equations. This fact is due to the existing small
differences between the results.
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