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Abstract: Traditional real negative selection algorithms
(RNSAs) adopt the estimated coverage (c0) as the algo-
rithm termination threshold, and generate detectors ran-
domly. With increasing dimensions, the data samples
could reside in the low-dimensional subspace, so that the
traditional detectors cannot effectively distinguish these
samples. Furthermore, in high-dimensional feature space,
c0 cannot exactly reflect the detectors set coverage rate for
the nonself space, and it could lead the algorithm to be
terminated unexpectedly when the number of detectors is
insufficient. These shortcomings make the traditional RN-
SAs to perform poorly in high-dimensional feature space.
Based upon "evolutionary preference" theory in immunol-
ogy, this paper presents a real negative selection algorithm
with evolutionary preference (RNSAP). RNSAP utilizes the
"unknown nonself space", "low-dimensional target sub-
space" and "known nonself feature" as the evolutionary
preference to guide the generation of detectors, thus en-
suring the detectors can cover the nonself space more ef-
fectively. Besides, RNSAPuses redundancy to replace c0 as
the termination threshold, in thiswayRNSAP can generate
adequate detectors under a proper convergence rate. The
theoretical analysis and experimental result demonstrate
that, compared to the classical RNSA (V-detector), RNSAP
can achieve a higher detection rate, but with less detectors
and computing cost.
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1 Introduction
Biological Immune System (BIS) can distinguish between
self-organization and harmful antigens, and eliminate
harmful antigens to ensure biology in health. Inspiration
by BIS, formed the research field of Artificial Immune Sys-
tem (AIS) which has attracted more and more researchers
to develop many algorithms. In AIS, the Negative Selec-
tion Algorithm (NSA) is an important detector generating
algorithm which was first proposed by Forrest et al. [1].
The NSA simulates the T cells censoring process in the thy-
mus to generate mature detectors without immune Self-
Reaction. It has shown to be efficient for anomaly detec-
tion [2, 3], data classification and fault diagnosis [4, 5].

Early negative selection algorithms defined the anti-
body (detector) and antigen (abnormal data) in binary rep-
resentation, and used R-Continue-Bits Match Rule to cal-
culate affinity of antibody and antigen [1]. On account of
the fact that many applications are natural to be described
in real-valued feature space, Gonzalez and Dasgupta pro-
posed a Real Negative Selection Algorithm (RNSA) [6], in
which the data samples (detectors and antigens) are nor-
malized into the real-valued feature space [0, 1]n (n de-
notes the number of samples dimension), and the affin-
ity is calculated by the Minkowski distance. Some mod-
ified versions of RNSA have been proposed, Ji and Das-
gupta proposed Real Negative Selection Algorithm with
variable detector radius (V-detector) [7], in which the de-
tector radius was dynamically resized to the nearest self-
margin; Gong presented a further training method to re-
duce the computational expense by reducing the self sam-
ples [8]; Chen improved thedetectors generation efficiency
by adopting the hierarchical clustering preprocess of self
set [9]; Poggiolini implicated the feature detection rule to
RNSA and improved the algorithm performance [10].

The major challenge of NSA is to efficiently generate
effective detectors. Traditional RNSA generates detectors
randomly, until the Estimated Coverage (c0) reaches the
threshold. In high-dimensional feature space, the distri-
bution of samples is extremely sparse and non-uniform,
in that case c0 could not exactly reflect the coverage for
nonself samples, leading the algorithms converge so fast
that it is terminated unexpectedly while there only a few
detectors generated. Besides, in high-dimension, a large
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number of data samples could "fall" into the subspace,
the conventional detectors cannot discriminate these sam-
ples without appropriate guidance. These shortcomings
cause the traditional negative selection algorithm to per-
form poorly in high-dimensions feature space, and restrict
the application of artificial immune theory in anomaly de-
tection.

The evolution of the immune cell has the evolution-
ary preference to capture the pathogen antigen. Following
from this, this paper proposes a real negative selection al-
gorithmwith evolutionary preference (RNSAP) which uses
a novel termination condition and a new detector train-
ing strategy. First, for guaranteeing the detectors can cover
more nonself space and reduce the redundant detectors,
RNSAP adds the preference of "cover unknown nonself
space" to the conventional detectors by applying redun-
dancy testing, and then uses the redundancy (R) as an
algorithm termination threshold to ensure the algorithm
is convergent under a prober rate. Second, to effectively
cover the low-dimensional subspacewhere samplesmight
gather in, RNSAP will calculate out the "low-dimensional
target subspace" and utilize it as the "spatial preference"
to generate the detectors with spatial preference. Lastly,
for excluding the "hole" as much as possible, RNSAP
will use the "known nonself sample" as "feature prefer-
ence" to train detectors with feature preference. The the-
oretical analysis and experimental results suggest: com-
pared to a classical real negative selection algorithm (V-
detector) on low-dimension dataset (Haberman’s Survival
Data Set), RNSAP has a higher detection rate, with fewer
detectors and shorter training time; on high-dimension
dataset (KDD CUP99), the performance of traditional NSA
is very poor while RNSAP performs well.

The rest of this paper is organized as follows: In Sec-
tion 2, some basic definition are covered; In Section 3 RN-
SAP is introduced in detail; Experiment results are shown
and discussed in Section 4 while Concluding remarks are
given in Section 5.

2 Basic definition
The immune system relies on antibody cell discrimination
"self" and "nonself" exclude antigenicity, is human’s pri-
macy defense against pathogenic organisms and cells. In
an Artificial Immune System, data samples are defined as
"antigen", normal samples are defined as "self", abnormal
samples are defined as "nonself", and antibody is defined
as "detector". For faciliting the description, define the ba-
sic conceptions of RNSAP as follows:

Definition 1 (antigen): All the character strings ab-
stracted from the feature space constitute the antigen set
U = {g|(f1, f2, · · · , fn), fi ∈ [0, 1]}, where n is the data
dimension and fi represents the i-th normalized attribute
value.
Definition 2 (self/nonself set): The self set S ⊂ U is the
character strings abstracted from normal samples, rs ∈ R+

is the variability threshold of the self sample; Nonself set
N = U − S, which represents character strings abstracted
from abnormal samples, and S

⋃︀
N = U, S

⋂︀
N = Φ.

Definition 3 (detector): Detector d = (c, r), where c ∈ N,
c is the central vector of d in the feature space; r ∈ R+ is
the detector radius. Antigens which are close to any detec-
tor less than r will be identified as nonself elements.
Definition 4 (self-reactive): If any self element located
in the detection region of detector d, and then d is a self-
reactive detector.
Definition 5 (self/nonself space): In feature space, the
part of being covered by self samples is called self space,
the rest of space is nonself space; in the nonself space, the
part of being covered by detectors is called known nonself
space while the remaining part is unknown nonself space.

3 The strategies of RNSAP
The main idea of RNSAP is using the redundancy (R) to
replace the estimated coverage (c0) as the termination
threshold, and utilizes the "unknown nonself space", "low-
dimensional target subspace" and "known nonself feature"
as the evolutionary preference to guide the generation of
detectors. In that way, RNSAP can generate more effective
detectors with the proper rate of convergence.

3.1 The termination condition of detector
generation in RNSAP

3.1.1 The influence of dimension on estimated coverage

In a traditional real negative selection algorithm, the cov-
erage rate of detector set for nonself space (p) determines
the performance of immune algorithm, and p can be ex-
pressed as:

p = VcoveredVnoself
=
∫︀
covered dx∫︀
nonself dy

(1)

Because Eq.1 is difficult to calculate directly, paper
[7] proposed a method to evaluate P by using "point es-
timate":

t ≥ 1/ (1 − c0) (2)
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In Eq.2, t is the times of without finding an uncovered
random point, and c0 is the Estimated Coverage. If c0 =
80%, the algorithm will be terminated when continuous
find 5 random sampling covered by the detectors set.

After normalisation, the n-dimensional feature space
is represented as n-dimensional hypercube u = [0, 1]n,
the data samples are represented as the "points" and
the detectors are represented the "hyper-sphere". The c0
represents the coverage situation between "data sample"
(point) and "detector" (hyper-sphere). In low-dimension
space, if the training samples are distributed uniformly, c0
can reflect the real coverage rate of detector set for non-self
space. However, if training samples are non-uniformly dis-
tributed, the c0 will no longer apply.

Comparison of Fig. 1(a) and Fig. 1(b) reveals that, Fig.
1(a) has 7 self samples (green ".") and 10 nonself sam-
ples (red "+") uniform distributed in 2-dimensional fea-
ture space, the 12 mature detectors cover almost whole
2-d space; While Fig. 1(b) only has 1 self sample and 1
nonself sample distributed in edge of space (sparse and
non-uniform), the 1 big mature detector covers almost the
whole 2-d space. Fig. 1 shows that the mature detectors
have covered almost all feature space, so the Eq.2 would
be easy to meet (assume c0 = 80%). However in Fig. 1(a)
the real coverage rate on this training set is 90%and in Fig.
1(b) is 0.

In high-dimensional space the samples distribution is
always sparsely and non-uniform [11]. Firstly, assuming in
n-dimensional feature, the value range of data samples on
i-th dimension is [0, ni], and then the total amount of data
(Na) that n-dimensional feature space couldaccommodate
is:

Na =
n∏︁
i=1
ni (3)

From Eq.3, Na grows exponentially with the n, and the
number of training data (Nt) is limited by the data set and
is customarily much smaller than Na, so the training data
distribution may extremely sparsely in high-dimensional
feature space.

Secondly the unitary hypercube u = [0, 1]n has a total
volume of 1, assume u0 is one other n-dimensional hyper-
cube inside u, then the volume of u0 is:

Vu0 =
n∏︁
i=1
a (4)

where a is the side length of the cube u0, a ∈ [0, 1). From
Eq.4, if a = 0.9 and n = 40, Vu0 is approximately 0.015,
thatmeans the u0 (the central part of u) only contains 1.5%
samples (assuming a plenty of samples uniform distribute
in the u and fill the whole space), and about 98.5% sam-
ples locate in the edge marginal area of u. In contrast, the

Self
Detector

Nonself

(a) The training sample uniform distribute

Self

Detector

Nonself

(b) The training sample non-uniformdistribute

Figure 1: The influence of sample distribution on detectors genera-
tion

n-dimensional detectors (hyper-sphere)with a variable ra-
dius r ∈ [0,

√
n] in high-dimensional feature space the sin-

gle detector could have a huge volume and might cover
almost whole central part of feature space. In that case,
the condition (2) would be satisfied rapidly. It causes al-
gorithm to be terminated unexpectedly while the amount
of detectors is not enough. Hence the c0 is not suited for
high-dimensional space (detailed discussion in 4.4).

3.1.2 The redundancy and redundant testing

In fact, the coverage situation between "mature detector"
(hyper-sphere) and "candidate detector" (hyper-sphere) is
calculated more easily and it is not influenced by the di-
mension growth. If the most volume of a candidate detec-
tor (di) overlapswith amature detector (dm), the (di) could
be considered as a "redundant detector". When there are
too many redundant detectors in feature space, randomly
generated detectors cannot guarantee that the new ma-
ture detectors cover the unknown nonself space. In that
case, considering the efficiency and performance, the gen-
eration of detectors should been terminated. Thus RNSAP
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adopts the redundancy (R) as the algorithm termination
threshold.

For calculating redundancy R, RNSAP divide the
"Redundant-Judgment Zone" by using detector radius (r),
detector central vector (c) and distant parameters. As
shown in Fig. 2(a), the gray zone is the "redundant-
judgment zone" which depends on dm=<cm, rm> (the ma-
ture detectors), sm (the most vicinity self-sample of dm)
and a variable parameter Rc ∈ [0.1]. If a new candidate
detector dn=<cn, rn> locates in the redundant-judgment
zone (dn satisfy with expression 5), dn should be judged
as a redundant detector and be removed, and the redun-
dant count will be accumulated:

(lmn ≤ rm * Rc)
⋂︁
lns ≤ rm (5)

In expression 5, lns is the Euclid distant between cn
and sm , lmn is the Euclid distant between cn and cm.
Rc ∈ [0, 1] is variable parameter, the size of redundant-
judgment zone is proportional to Rc. If Rc is close to 0, the
size of redundant-judgment zone is smaller, the probabil-
ity of dn being judged as a redundant detector is lower, the
feature space could accommodate more detectors. If Rc is
close to 1 the size of redundant-judgment zone is larger,
and the probability of dn being judged as a redundant de-
tector is higher, the feature space could accommodate less
detectors.

Fig. 2(b), Fig. 2(c) and Fig. 2(d) show the process of re-
dundancy testing. The testing uses the same dm and the
redundant-judgment zone (gray zone). In Fig. 2(b) candi-
date detector dn1 locates in the redundant-judgment zone,
its volume almost overlapping of mature detector dm, so
dn1 should be judged as a redundant detector; In Fig. 2(c)
and Fig. 2(d), dn2 and dn3 do not locate in redundant-
judgment zone, their volume is just partially covered by
dm, compare to dn1 they can cover more known nonself
space, thus dn2 and dn3 will become the new mature de-
tector.

In each roundof redundancy testing, if a candidate de-
tector is judged as a redundant detector, theRNSAPwill ac-
cumulate the "redundant count" (cnt), then calculate the
ratio (redundancy R) of cnt and amount of mature detec-
tors (Nm):

R = cnt/Nm (6)

If R reaches the threshold, it means in the last round
therewere toomany redundant detectors. In this situation,
obtaining new high quantity (ir-redundant) detectors be-
comes more difficult, considering the efficiency and per-
formance, RNSAPwill terminate the random generation of
detectors.

(a) The division of redundant-judgment zone

l 1

l 1

(b) Redundant testing-1

l 2
l 2

(c) Redundant testing-2

ln3s

ln3m

cn3

(d) Redundant testing-3

Figure 2: Redundant-judgment zone and redundant testing
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Table 1: The generation of conventional detectors

1.Initialization,cnt=0.
2.Randomly generation a candidate detector dn.
3.If dn is a redundant detector, cnt=cnt+1;else goto 5.
4.If redundant reaches the threshold, end;else goto 2.
5.If dn,matched any self sample, goto 2.
6.Record dn as a new mature detector,cnt=0,goto 2.

Different from estimate coverage (c0), redundant test-
ing calculates the cover situation between "mature de-
tector" (hyper-sphere) and "candidate detector" (hyper-
sphere). It has nothing to do with data distribution, so it
is available in high-dimensional space. There are two ob-
vious advantages in using the redundancy (R) as the termi-
nation threshold: 1. it can ensure the algorithm is conver-
gent under a proper rate; 2. by using condition (5) RNSAP
adds a preference of "cover unknownnonself space" to the
randomly generation process of detectors, therefore the re-
dundant testing not only removes the redundant detectors
but also improves the quality of detectors.

RNSAP calls the detectors which are randomly gener-
ated as a conventional detector, the conventional detectors
generation algorithmbyusing redundant testing as shown
in Table 1 .

3.2 The detectors with evolutionary
preference

Despite that conventional detectors have been highly re-
dundant in feature space, there might be still some "un-
covered nonself space" left. Completely random genera-
tion of detectors to cover the uncovered nonself space will
cost too many of computing resources. Perelson proposed
the Immune Repertoire Model and pointed out that "not
all receptor shapes (detectors) need to be made at ran-
dom" [12]. The latest immunology research results show
that: The evolution of Immune cell is not entirely a ran-
dom process, but rather has an evolutionary preference to
capture thepathogenantigen [13]. Basedon these theories,
RNSAPutilizes the "low-dimensional target subspace" and
"known nonself feature" as the evolutionary preference to
guide the generation of detectors. The detectors with pref-
erence can effectively cover reducing the uncovered non-
self space and improve the performance of algorithm sig-
nificantly.

3.2.1 The detectors with spatial preference

In high-dimension feature space, the training samples
would fall into the low-dimension subspace. As shown in
Fig. 3(a)(Haberman’s Survival dataset), in the 3-dimension
(XYZ) feature space, the green ’.’ represents self sam-
ple, the red ’+’ represents nonself sample, the 3D-sphere
represents mature conventional detector generated by V-
detector algorithm, (rs = 0.01, c0 = 90%). There are many
samples falling into the "XY plane", however only a few
mature detectors (such as di and dj ) intersect with the
XY plane. The Fig. 3(b) shows the coverage of mature de-
tectors for the XY subspace from XY-perspective, the con-
ventional detectors are almost not cover the nonself sam-
ples in XY subspace. The most effective way to distinguish

0 0.2 0.4 0.6 0.8 1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
Y

sjsi

dj

di

(a) The convention detectors(XYZ perspective)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

di

dj

(b) The convention detectors(XY perspective)

Figure 3: The convention detectors (V-detector)

these samples which fall into the subspace is to generate
detectors in the aimed subspace, in other words the cen-
tral vector (c) of candidate detector should locate in the
aimed subspace directly. When the one dimension of data
get 0 value, the datawould fall into the corresponding sub-
space, assuming Pi_0 represents the probability of the ith
dimension of c gets 0 value, then the probability (Pj. . . k)
of the any candidate detectors’ central vector fall into the
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subspace Sj. . . k is:

Pj...k =
k∏︁
i=j

(︀
1 − Pi−0

)︀ n∏︁
i=1,i≠j...k

Pi−0 (7)

From the Eq. 7, Pj. . . k becomes lower when n growth,
so in the high-dimension space it is almost impossible for
candidate detectors to cover the subspace by random gen-
eration. To deal with this situation, RNSAP analyzes the
distribution of the training sample first; and then find out
all the "target subspaces" which have high density of sam-
ples; at last use "target subspaces" as spatial preference to
guide the generation of the detector.

For a single dimension, the density of data distribu-
tion can be described by a Jini value [12]. The Jini value of
dimension A can be calculated by Eq. 8:

Jini (A) = 1 −
ω∑︁
j=1

pi2 (8)

Where ω is the number of equal interval (the "0" is treated
a single interval) which is divided in the dimension A, pi is
the proportion of the number of samples which located in
the ith interval to the total number. From Eq.8, the smaller
Jini value indicates that the distribution of samples ismore
densely in the dimension A while the larger Jini value in-
dicates the distribution is more dispersed. By calculating
the Jini value and presetting the Jini threshold ξ , RNSAP
can select out all the dimension in which the distribution
of samples is dense. And then, RNSAP will calculate out
the cluster center x in each dense dimension. At last, the x
will be used to edit the central vector c.

ci =

⎧⎪⎨⎪⎩
0, Jini (A) < ξ and x = 0
x, Jini (A) < ξ and x ≠ 0
random [0, 1] , Jini (A) > ξ

(9)

In expression 9, ci denotes the ith dimension value of cen-
tral vector c. RNSAP according three cases to set the value
of ci: (1) If dimension A is a dense dimension and samples
in A gather in "0", RNSAP sets the ci = 0 for that the candi-
date detectorswill be generated in the low-dimension sub-
space. (2) If dimension A is a dense dimension and sam-
ples gather in x (x ≠ 0), ci will take a random value be-
tween x-θ and x+θ, for that the candidate detectors will be
generated in the region where samples distribute dense.
(3) If dimension A is not a densely dimension, A cannot
provide any spatial information to guide the generation of
detector, ci will take a random value between [0, 1] as con-
ventional algorithm.

By using expression 9, RNSAP can generate the de-
tector with spatial preference in the target subspace ac-
curately. The detectors with spatial preference are shown

(a) The detectors with spatial preference(XYZ
perspective)

(b) The detectors with spatial preference(XY
perspective)

Figure 4: The detectors with spatial preference

Table 2: The algorithm of training detector with spatial preference

1.According the Eq.8 to calculate out all the densely dimensions .
2.Calculate the x on each densely dimension.
3.set cnt =0, randomly generation a candidate detector dn(cn,rn).
4.According the expression 9 to edit cn.
5.If dn is a redundant detector, cnt=cnt+1;else goto 7.
6.In the subspace ,if redundant reaches the threshold, end;else goto 3.
7.If dn,matched any self sample, goto 3.
8.Calculate the rn and record dn,cnt=0,goto 3.

in Fig. 4(a) and Fig. 4(b) (for the convenience of observa-
tion, all the conventional detectors are not shown). Com-
pare Fig. 3(b) with Fig. 4(b), in XY subspace conventional
detectors could barely recognize nonself samples while
by training the detectors with spatial preference RNSAP
almost covered all nonself samples. It is worthy to no-
tice that: different from the dimension reduction, RNSAP
just guides the detectors generated in the target subspace
without changing the dimension of the feature space. The
algorithm of training detectors with spatial preference is
shown in Table 2.
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3.2.2 The detectors with feature preference

After adding the detector with spatial preference, the ma-
ture detectors can almost cover the feature space, how-
ever the "holes" still cannot be voided. The holes are tiny
gaps of feature space which is not covered by the detec-
tors. To eliminate the holes, a complete training sample set
is needed with huge time resource and space resources. In
Fig. 5(a) and Fig. 5(b) (Haberman’s Survival dataset), the
boxes are the "holes" which contain the nonself (red ’+’).

(a) The "holes" (XYZ perspective)

(b) The "holes"(XY perspective)

Figure 5: The "holes"

The traditional real negative selectionalgorithm trains
detectors by only using one class samples (self samples),
however the abnormal data (nonself samples) are easy to
collect in the real practical application of anomaly detec-
tion. Similar to "vaccination" in medicine, RNSAP trains
the detectors with feature preference by analyzing the
"known nonself" samples. Assuming nsi is a known non-
self sample, RNSAP will use the nsi to test the current ma-
ture detector set. If nsi has been covered by one of the
mature detectors, it means current detectors can recog-
nize this abnormal data. Conversely, if nsi is not covered
by any mature detectors, it means the nsi falls into the
hole and this holemight cause the "False negative". In that
case, RNSAP will set the feature vector of nsi as the cen-

Table 3: The algorithm of training detectors with feature preference

1.If the number of noself training set Nnt >0,goto 2;,else end.
2.Pick up a nsi as the new candidate detector„Nnt=Nnt-1.
3.If nsi covered by any mature detector, goto 1.
4.Caculate the radius r
5.Record the d(nsi,r) as the detector with feature preference,goto 1.

tral vector and calculate the radius to generate detector
with preference. Fig. 6(a) and Fig. 6(b)(Haberman’s Sur-
vival dataset) show the final performance, after combating
the conventional detectors, detectors with spatial prefer-
ence and detector with feature preference. Table 3 shows
the algorithmof trainingdetectorswith featurepreference:

(a) The final performance of RNSAP (XYZ per-
spective)

(b) The final performance of RNSAP (XY per-
spective)

Figure 6: The final performance of RNSAP

4 Experiment and discussion

4.1 Experiment setup

The V-detector algorithm is the latest version of RNSA
and has shown excellent classification performance in
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previous work [14, 15]. In this section the comparison of
V-detector and RNSAP is carried out on a 3-dimension
dataset (Haberman’s Survival) and 41-dimension dataset
(KDD CUP99) which are widely used for testing anomaly
detection system. The experiments were repeated 100
times on each dataset and the average valuewere adopted.
(1)Dataset

Haberman’s Survival dataset contains cases from
study conducted on the survival of patients who had un-
dergone surgery for breast cancer. This dataset contains
306 records, each records contains 3 continuous fields and
1 class label [16].

KDD CUP99 dataset is consists of real world net-
work traffic data, where each record contains 38 contin-
uous and 3 symbolic fields and 1 class label. The com-
plete KDDCUP99 dataset contains 3925650 abnormal sam-
ple (80.14%) and 972780 normal sample (19.86%), where
the abnormal sample are partitioned in 4 categories:
DOS(about 98.92%), probing(about 1.05%), U2R(about
0.0013%),R2L(about 0.0286%) [17].
(2)Measurement criterion

This paper adopted detection rate (DR), false alarm
rate (FA), amount of detectors (M), training time (Ttrain)
and testing time (Ttest) to measure the performance of the
algorithm. The DR and FA calculate as follows:

DR = TP/ (TP + FN) (10)

FA = FP/ (FP + TN) (11)
In Eq.10 and 11 , if the anomalous sample is classified as
the nonself, it is counted as a true positive (TP), if it is clas-
sified as the self, it is counted as a false negative (FN); if
the normal sample is classified as the self, it is counted as
a true negative (TN), if it is classified as the nonself, it is
counted as a false positive (FP).
(3)The levels of RNSAP

The complete RNSAP would train three kinds of de-
tectors: 1) The detectors with spatial preference: these de-
tectors are trained by using the subspace information of
training samples, so that could cover the subspace more
effectively; 2) The detectors with feature preference: these
detectors are trained by "known nonself samples", it use-
ful to eliminate the holes; 3) the conventional detectors:
these detectors are trained randomlywithout any other in-
formation. In order to show the performance of the RNSAP
in detail, according the training process the algorithm is
divided into 3 levels:
RNSAP-1: using redundancy (R) as the algorithm termina-
tion threshold, only training the convention detectors.
RNSAP-2: using redundancy (R) as the algorithm termina-
tion threshold, training the convention detectors and the

Table 4: the experiment setting of Rc

Dataset Training set Testing set rs
Haberman’s Survival 100%normal 50%anomalous 0.01

KDDCUP99 50% normal 50%anomalous 0.003

detectors with spatial preference.
RNSAP-3(complete RNSAP): using redundancy (R) as the
algorithm termination threshold, training 3 kinds of detec-
tors.

4.2 Parameters setting

(1)The radius of self sample (rs)
The rs is an important parameter in any negative se-

lection algorithm, the smaller rs could cause false positive
resultswhile the larger rs could cause the false negative re-
sults. Many previous works have been studied rs in detail
[7] [15] [18], so in this work it is not discussed. According to
Eq.12 this paper calculated theminimumdistant (dmin) be-
tween self sample and nonself sample onHaberman’s Sur-
vival Data Set and KDDCUP99. After being normalized, the
dmin = 0.018 in Haberman’s Survival Data Set, and dmin =
0.0056 in KDD CUP99. To equilibrate the false positive and
false negative, in the following experiments the rs =0.01 on
theHaberman’s Survival Data Set dataset, and rs=0.003 on
KDD CUP99 dataset.

dmin = min
(︀
dis

(︀
si , nsj

)︀)︀
(12)

In Eq.12, i∈[1,size of selfset], j∈[1,size of nonselfset], dis(si,
nsj)represents theEucliddistancebetween self si andnon-
self nsj).
(2)The "Redundant-Judgment Zone" parameter (Rc)

As discussed in section 3.1, the Rc determines the size
of "Redundant-Judgment Zone". Under the same exper-
imental condition, the smaller Rc means the algorithm
could generate more detectors, while the larger Rc indi-
cates fewer detectors. Fig. 7 shows the influence of Rc
on RNSAP-1 in 3-dimensional feature space (Haberman’s
Survival dataset), while Fig. 8 shows the influence in 41-
dimension feature space (KDDCUP99 dataset). In these ex-
periment the redundancy (R) is set from 0.2 to 1 step by 0.2
and other experiment setting as shown in Table 4.

As shown in Fig. 7 (experiment on 3D dataset), un-
der the same redundancy (R), for Rc from 0.9 to 0.75, the
number of detectors increase about 200%(Fig. 7(a)).When
R>=0.6 and Rc <=0.8, The increasing detectors improve the
DR only less than about 7% (Fig. 7(b)), but improve the
training time by more than 100% (Fig. 7(c)). The Fig. 8
(experiment on 41D dataset) reflects the similar situation,
when R>=0.6 and Rc <=0.62, the number of detectors in-
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crease 300% (Fig. 8(a)). DR increase only less than 5%
(Fig. 8(b)), while the training time increases more than
150% (Fig. 8(c)). Therefore, in order to account for algo-
rithm performance and training cost, in following experi-
ment Rc=0.8 on the Haberman’s Survival Data Set dataset,
and Rc=0.62 on KDD CUP99 dataset
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Figure 7: The influence of Rc on RNSAP-1(3D dateset)

In Fig. 7 and Fig. 8, when Rc=0.8 on the Haberman’s
Survival Data Set dataset, and Rc=0.62 on KDD CUP99
dataset, RNASP might not get the highest DR, but the
training cost is acceptable. Base on the low training cost,
RNASPwould enhance the performance by generating the
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Figure 8: The influence of Rc on RNSAP-1(41D dateset)

detectors with evolutionary preference (detail experimen-
tation in 4.3 and 4.4).

4.3 Experiments on Haberman’s Survival
dataset

In this section, the comparison of V-detector and RNSAP is
carried out on 3-dimension dataset (Haberman’s Survival).
The experiment is divided into 2 parts: (1) The compari-
son of V-detector and RNSAP-1, the experiment setting is
shown in Table 5. The experiment result is shown in Table
6 and Table 7; (2)The comparison of RNSAP-1, RNSAP-2 and
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RNSAP-3, the experiment setting is shown in Table 8 and
the experiment result is shown in Fig. 9. In these tables
and figures c0 is the estimated coverage, R is the redun-
dancy, DR is Detection rate, NOD is number of detectors,
Ttrain is training time and Ttest is the testing time.

Table 5: Experiment setting of V-detector and RNSAP-1 on Haber-
man’s Survival dataset

Algorithm Training set Testing set rs
V-detector 100%normal randomly 50%anomalous 0.01
RNSAP-1 100% normal randomly 50%anomalous 0.01

Table 6: The performance of V-detector

c0 DR NOD Ttrain Ttest
0.8 12.08% 24 0.03 0.018
0.85 14.17% 37 0.04 0.0285
0.9 19.16% 61 0.08 0.044
0.92 23.75% 113 0.17 0.079
0.95 34.58% 126 0.19 0.087
0.99 62.08% 1055 7.55 0.812
0.992 58.33% 1341 9.52 0.914
0.995 69.92% 2308 27.51 1.431
0.997 77.92% 3746 72.11 2.388
0.999 84.58% 14328 1054.13 8.768

Table 7: The performance of RNSAP-1

R DR NOD Ttrain Ttest
0.1 48.75% 195 3.58 0.15
0.2 58.33% 379 12.76 0.37
0.3 64.58% 441 19.31 0.52
0.4 71.25% 589 36.84 0.61
0.5 82.08% 798 77.43 0.72
0.6 83.33% 927 97.91 0.84
0.7 83.75% 991 146.24 0.92
0.8 85.42% 1093 173.32 0.97
0.9 88.92% 1134 231.22 1.08
1.0 89.25% 1178 242.35 1.16

Both V-detector and RNSAP-1 generate detectors ran-
domly, however RNSAP-1 uses the redundancy (R) instead
of the Estimate Coverage (c0) as the algorithm termination
condition. In Ttable 6 (V-detector), when (c0) grewup from
0.997 to 0.999, DR only increased by approximately 6.6%.

By contrast, NOD (number of detectors) increased approx-
imately 400%. Ttrain increased approximately 1000%and
Ttest increased approximately 300%. This is resultant
from highly redundant detectors in feature space. The-
ses redundant detectors overlapped with each other can
hardly improve the detector rate, but wasted lots of train-
ing resource. Comparing Table 6 (V-detector) to Table 7
(RNSAP-1), when DR got 84.58% (c0=0.999), V-detector
generated 14328 detectors, and took 1054 seconds; ob-
tained a similar DR 85.42%, RNSAP-1 only generate 1093
detectors and took 209 seconds. RNSAP-1 got the highest
DR 89.25% only generate 1178 detectors, and took 274 sec-
onds. The experiment result revealed that by adopting re-
dundancy testing, RNSAP-1 removed a plenty of redundant
detectors and enhanced the quality of conventional detec-
tors, so that RNSAP-1 achieved a higher detection rate with
less detectors and training time.

Table 8: Experiment setting of 3 levels RNSAP on Haberman’s Sur-
vival dataset

Algorithm Training set Testing set rs
RNSAP-1 100%normal 50%anomalous 0.01
RNSAP-2 100%normal 50%anomalous 0.01
RNSAP-3 100%normal,30%anomalous 70%anomalous 0.01

As presented in section 4.2, the RNSAP-1 only gen-
erates conventional detectors, RNSAP-2 generates both
conventional detectors and detectors with spatial pref-
erence, and the RNSAP-3(complete RNSAP) generates 3
kinds of detectors. As shown in Fig. 9(a), by training
the detectors with spatial preference and feature prefer-
ence, RNSAP-3 improved the lowest detection rate from
48.75% to 71.23%, and improved the highest detection
from 89.25% to 96.72%. In Fig. 9(b) and Fig. 9(c), for train-
ing the detectors with evolutionary preference the num-
ber of detectors grew, however the training time increased
less than 15%. It is worth mentioning in Fig. 9, the detec-
tors with feature preference were rarely generated when R
reached 0.5, this because in 3-dimensional space the con-
ventional detectors and the detectors spatial preference
had covered nearly all of the feature space.

At last, compare Table 6 to Fig. 9, for V-detector, when
DR was at 84.58%, 14328 detectors were needed at a cost
of 2368 seconds; RNSAP-3(complete RNSAP) improved DR
to 96.72 % (R=1), and only needed 2112 detectors at a cost
of 274.47 seconds.
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Figure 9: The comparison of 3 levels RNSAP

4.4 Experiments on KDD CUP99 dataset

In this section, a contrast experiment is carried on the 41-
dimension dataset (KDDCUP-99). The same as in section
4.3, firstly a comparison of V-detector and RNSAP-1 (exper-
iment setting is shown in Table 9) is given in Table 10-
Table 12. Secondly, a comparison of RNSAP-1, RNSAP-2 and
RNSAP-3(the experiment setting as shown in Table 13) is
shown in Fig. 10. In these tables, c0 is Estimate Coverage;
R is redundancy; DR is Detection rate; FR is False alarm
rate; MND is Themaximum number of detectors; Ttrain is
training time; Ttest is testing time.

In Table 10, by using the estimated coverage (c0) as
the termination condition, V-detector can barely generate

detectors, it leads to the poor performance. For example,
when c0 = 99.9% only 4 detectors were generated. Al-
though the number of detectors is scarce, the mean ra-
dius of theses detectors reached 3. According to the vol-
ume of hyper-sphere Eq.13, when dimension n=41 and
the hypersphere radius r=3, the volume (V) of single 41-
dimensional detector is approximately 5*1011. In contrast,
the feature space was a 41-dimension hypercube with to-
tal volume=1, so the single detector had covered almost
whole feature space (central area). In that situation, the
"point estimate" Eq.2 would satisfy quickly. It caused to
the algorithm be terminated unexpected when the detec-
tors were not enough. More importantly, as discussed in
section 3.1, in high-dimension space a part of the samples
would distribute in the subspace (edge area), the few ma-
ture 41-dimensional conventional detectors hardly cover
these samples.

In Table 11, by using the Maximum Number of Detec-
tors (MND) as the termination condition, V-detector can
get DR=76.82%. It reflected that if there were enough de-
tectors, V-detector still can recognize the training samples
in high-dimension space. But the disadvantage was ob-
vious by using maximum number of detectors (MND) as
the termination threshold: firstly, the MND is difficult to
accurately forecast; second, with the detectors overlap-
ping each other in feature space, it cannot guarantee that
the mature detectors set can cover enough nonself space
when MND reached the threshold; lastly, plenty of redun-
dant detectors cannot improve thedetector rate butwasted
the calculation resource. In Table 11 after MND reached
10000, theDRfluctuated around 74%. Specially, compared
to MND = 50000, when MND= 10000 the detectors in-
creasedabout 500%,Ttrain increasedabout 900%,but the
detection rate increased less than 3%.

In Table 12, RNSAP-1 adopted the redundancy(R) as
the terminate condition to generate 41-dimension conven-
tional detectors. Compared to Table 10 (V-detector using
c0), RNSAP-1 can improve the DR to 76.91% by generat-
ing enough detectors. Compared to Table 11 (V-detector
using MND), RNSAP-1 can achieve the similar perfor-
mance with less detectors and training time. In Table
11, when DR=76.82% and FR=1.59%, V-detector generated
50000 detectors and cost 1814 seconds. In Table 12, when
DR=76.91%andFR=1.77% (R=1), RNSAP-1 only need 585 de-
tectors and 46.11 seconds.

V = rnπn/2

τ
(︀ n
2 + 1

)︀ , where
τ
(︁n
2 + 1

)︁
=
{︃ (︀

n/2
)︀
!, n is even

π1/2*n!
2n((n−1)/2)! , n is odd

(13)
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Table 9: Experiment setting of 3 levels RNSAP on KDDCUP99

Algorithm Training set Testing set rs
V-detector 50% normal randomly 50% anomalous 0.003
RNSAP-1 50% normal randomly 50% anomalous 0.003

Table 10: The performance of V-detector (co)

c0 DR FR NOD Ttrain Ttest
0.8 5.71% 0.056% 2 0.039 0.078
0.85 6.49% 0.068% 2 0.042 0.085
0.9 7.92% 0.046% 2 0.040 0.079
0.92 8.32% 0.062% 2 0.044 0.089
0.95 8.96% 0.024% 2 0.047 0.083
0.99 9.72% 0.038% 2 0.049 0.092
0.992 9.82% 0.041% 3 0.052 0.113
0.995 9.93% 0.047% 3 0.056 0.093
0.997 10.51% 0.052% 3 0.057 0.108
0.999 12.07% 0.064% 4 0.088 0.113

Table 11: The performance of V-detector (MND)

MND DR FR Ttrain Ttest
300 52.12% 0.41% 4.92 1.86
800 61.03% 0.62% 13.81 5.15
1500 66.32% 0.79% 24.47 11.90
3000 63.91% 0.94% 49.45 19.41
5500 68.40% 1.03% 94.83 37.60
10000 73.88% 1.24% 207.22 53.21
20000 74.42% 1.41% 452.76 84.53
30000 75.49% 1.45% 805.68 171.96
40000 76.53% 1.57% 1308.16 336.68
50000 76.82% 1.59% 1814.13 575.38

Table 12: The performance of NSAP-1

R DR FR NOD Ttrain Ttest
0.1 63.91% 0.66% 264 10.63 2.914
0.2 64.62% 0.73% 313 11.25 3.231
0.3 66.52% 0.81% 321 13.93 3.337
0.4 71.24% 1.09% 402 19.32 3.466
0.5 71.93% 1.18% 424 21.93 3.486
0.6 73.69% 1.17% 474 27.20 3.626
0.7 75.18% 1.29% 492 33.84 3.748
0.8 75.51% 1.43% 517 38.27 3.799
0.9 76.63% 1.61% 536 41.95 3.887
1.0 76.91% 1.77% 585 46.11 3.953

The comparison of the 3 levels RNSAP shown in
Fig. 10. The same as the low-dimension experiment, by

Table 13: Experiment setting of 3 levels RNSAP on KDDCUP99

Algorithm Training set Testing set rs
RNSAP-1 100%normal 50%anomalous 0.003
RNSAP-2 100%normal 50%anomalous 0.003
RNSAP-3 100%normal,30%anomalous 70%anomalous 0.003

training the detectors with spatial preference and feature
preference, RNSAP-3 can improve the DR with similar FR
and acceptable training cost. In Fig. 10(a), RNSAP-3 im-
proved the lowest detection rate from 63.91% to 86.84%,
and improved thehighest detection from76.91% to91.24%.
Although the DR had been improved more than 15%, the
FR only had been raised less than 0.15% (Fig. 10(b)). In
Fig. 10(c), on each redundancy(R) about more than 1000
detectors with evolutionary preference were generated,
however the training time increased less than 300 sec-
onds.

At last, compare Table 10 to Fig. 10, if V-detector
adopted c0 as the termination condition, the DR can
only achieve about 12%, the shorter training time was
due to almost no detectors being generated; V-detector
adopted MND as termination condition, when DR=76.82%
and FA=1.59%, 50000 detectors need generated and cost
1814 seconds; RNSAP-3(complete RNSAP) improved DR to
91.24% (R=1), need only 2086 detectors and cost 313.46 sec-
onds.

5 Conclusion
The negative selection algorithm has caught the attention
of researchers due to its unique property of anomaly de-
tection. However, the problem about how to generate ef-
fective detectors in high-dimensional space has not been
solved properly in previous research work and artificial
immune applications. This paper introduces a real nega-
tive selection algorithmwith evolutionary preference (RN-
SAP). By using redundant as the algorithm termination
threshold andgenerating detectorswith evolutionary pref-
erence, RNSAP can cover the nonself space more effec-
tively in high-dimensional space. Theoretical analysis and
experimental results show that RNSAP has better time ef-
ficiency and detector quality compared with classical neg-
ative selection algorithms, and it can be competent in the
task of anomaly detection for both low-dimensional space
and high-dimensional space.
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Figure 10: The comparison of the 3 levels RNSAP.
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