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Abstract: In this manuscript we investigate electrody-
namic flow. For several values of the intimate parameters
we proved that the approximate solution depends on a re-
producing kernel model. Obtained results prove that the
reproducing kernel method (RKM) is very effective. We ob-
tain good results without any transformation or discretiza-
tion. Numerical experiments on test examples show that
our proposed schemes are of high accuracy and strongly
support the theoretical results.
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1 Introduction

The electrohydrodynamic flow of a fluid is governed by
a non-linear ordinary differential equation. The degree of
non-linearity is stated by a nondimensional variable a and
the equation can be approached by two different linear
equations for very small or very large values of a respec-
tively. The electrohydrodynamic flow of a fluid has been
researched by McKee [21]. The governing equations were
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turned to the following problem [20]:

(1o
H (1 .

with the boundary conditions

Y B
d¢ 1d°¢

drv darB

Y drp >=0, o<r<1, (1)

¢'(0) = p(1) =0, )

where ¢(r) is the fluid speed, r is the radial range from the
center of the cylindrical conduit, H is the Hartmann elec-
tric number, the parameter «a is the size of the power of the
nonlinearityand v = 2, 8 = 1. Paullet [23] showed the exis-
tence and uniqueness of a solution to (1)-(2), and explored
an error in the perturbative and numerical solutions given
in [21] for large values of a.

Fractional calculus is a 300 years old and has been en-
hanced progressively up to now. The concept of differen-
tiation to fractional order was described in 19th century
by Rieman and Liouville. In several problems of physics,
mechanics and engineering, fractional differential equa-
tions have been demonstrated to be a valuable tool in mod-
eling many phenomena. However, most fractional order
equations do not have analytic solutions. Therefore, there
has been an important interest in developing numerical
methods for the solutions of fractional-order differential
equations [18]. Fractional differential equations, as an im-
portant research branch, have attracted much interest re-
cently [9]. We recall that a general solution technique for
fractional differential equations has not yet been consti-
tuted. Most of the solution methods in this area have been
enhanced for significant sorts of problems. Consequently,
a single standard method for problems related fractional
calculus has not been found. Thus, determining credible
and affirmative solution methods along with fast applica-
tion techniques is beneficial and worthy of further exami-
nation [3]. For more details see [10-14, 24, 30].

The goal of this paper is to give approximate solu-
tions to (1)-(2) for all values of the relevant variables
using the RKM. Recently, much interest has been dedi-
cated to the work of the RKM to research several scien-
tific models [4]. The book [6] presents an overview for the
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RKM. Many problems such as population models and com-
plex dynamics have been solved in the reproducing kernel
spaces [7, 17, 26, 27]. For more details of this method see
[1, 2,5, 8,15, 16, 19, 25, 28, 29].

This study is arranged as follows. Section 2 presents
useful reproducing kernel functions. Solutions in W3[0, 1]
and a related linear operator are given in Section 3. This
section demonstrates the fundamental results. The exact
and approximate solutions of (1)-(2) are given in this sec-
tion. Examples are shown in Section 4. Some conclusions
are given in the final section.

Definition 1.1. A Hilbert space H which is defined on
a nonempty set E is denominated a reproducing kernel
Hilbert space if there exists a reproducing kernel function
K:ExE — C.

2 Construction of reproducing
kernel space

Definition 2.1. G1[0, 1] is defined by:
G3[0,1] = {p € AC[0,1] : ¢’ € L*[0,1]}.

1
(@, = pOW(O) + [ ¢/ WD), .y € G0, 1)
0

@l = /(@ @)gy, @ € G3[0, 1],

are the inner product and the norm in G3[0, 1].

and

Lemma 2.2 (See [6, page 17]). Reproducing kernel func-
tion Qg of G1[0, 1] is obtained as:

1+,
og(r)={ T
1+6,

Os<r<0z<1,
0<6O<rs<1.
Definition 2.3. We denote the space W3[0, 1] by
w3[0,1] = {p € AC[0,1] : ¢’, 9" € AC[0, 1],
9@ e 1’00,1], ¢'0) = 0 = p(1)} .

2 1
@by = Y0 OO+ [ ey mar,
i=0 o

@, e W3l0,1]

and

1@lls = ¢ € W3lo, 1],

are the inner product and the norm in W3[0, 1].

(@ Phws>»
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Theorem 2.4. Reproducing kernel function By of W3[0, 1]
is acquired as

5 2p4 1 .2p3_ 5 293, 21 242
5aal 0" — 5170 — 5170 + 45170

5 3p4_ 1 395 5 393, 7 302
gl 0" - g0 — g3 6 + 5170

5 h4ph, 1 4p5, 5 o 4p3 ., 5 4p2
57l 0" + 570 + 5T 0 + 57170
5 4 1 5p4 1 5095 _ 1 503
5l 0+ 37217°0" — 575670 — 1577170
1502 5.2 53,5 4_ 592 5093
el 07— 51— 5+ el — 5607 — 750
5 g4 1g5,. 3 4 1.5
+2e 0 — e + 5+ g, Osr<f<1,
By(r) =

5 024 1923 5 p2.3, 21 2,2
550 250 31201 + 15;0°7

5 3.4 1 p3.5_ 5 p3.3, 7 p3.2
+1575 0 18720 536 0°1" + 1070°7
5 k4, 1 a5, 5 nh3 . 5 b2
572501 + 375507 + 150" + 550"
5 b 1 p54 1 p5.5_ 1 5.3
70T+ 3755071 - 570 - R0
_1p5,2_502_5p93, 5 pg4_ 5,2 _ 5,3
g 560" — 750 + 360" — 51" — 7y
5 4 15,3 ., 1 g5
tiel ~ gl ti3 t 50, 0s=O<rs<l.

€)

Proof. Let @ € W3[0,1]and O < 6 < 1. By using the defi-
nition 3 and integrating by parts, we acquire

5 1
9. Bo)u; = > 0P OBJO)+ [ 9B ar
i=0 0

= p(0)By(0) + ¢'(0)B5(0) + 9" (0)B5 (0)

+ 9" ()BJ(1) - 9" (0)B(0) - ¢’ (1)BY(1)

1
+¢'(0)BY(0) + / o' (VB ()dr.
0
After substituting the values of B,(0), By(0), By (0), B(93)(0),

B(;’)(O), BS)(l), Bg")(l) into the above equation we get

(@, Be)w; = ¢(0).
This completes the proof. O

3 Representation of the solutions

The solution of (1)-(2) is acquired in the W3[0, 1]. We de-
scribe the linear operator T : W3[0, 1] — G3[0, 1] by

1dPo

d7
:Tr(,f ?W’ fPGWg[O, 1]- (4)
The problem (1)—(2) alters to the problem
T = z(r, @), )
p(1)=0, ¢'(0)=0,

where z(r, ) = —-H? (1 - 1—(€w) .
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Theorem 3.1. Tis a bounded linear operator.

Proof. We will show ||Tg0|\é% <K \|<p||§,g . We get

1
1Tl = (T, Tole = [Tp(O] + [ [To'0)]" ar
0

by definition 2.1. By the reproducing property, we obtain
@) = (9(), Br())y;

and
To() = (9() TB/()) ;3 -

Thus,

|T0()| < [9llws I TBr s = K1 9]l »
where K; > 0. Therefore,

[(Tp) (0)]

Considering that

dr < K3 |19 -

(Te) (1) = (), (TBY () 3 »

then

((To) ()] < ll@llws [(TBY || 3 = K2 l|0llw3 »

where K; > 0. Thus, we acquire

(TeY ()] < K3 0l »

and

1
/ (Te) (") dr < K3 [|glls -
0

Therefore, we get

1

ITpll, = () O) + [ [(To) () ar

0
< (K2 +13) ol = Kol

where K = K2 + K2 > 0. This completes the proof. O

We denote p;(r) = Qy,(r) and n;(r) = T"p;(r). The orthonor-
mal system {7); (r)}°° of W3[0, 1] is obtained from Gram-
Schmidt orthogonalization process of {n;(r)};>; and

ﬁi(r) = Z Uikrlk(r), (Oii > 0, l = 1’ 23 . -)- (6)

k=1
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Theorem 3.2. Let {r;};-; be dense in [0, 1] and n;(r) =
TgB,(6)|9 Then, the sequence {n;(r)}_, is a complete
system in W2 [0, 1].

Proof. We obtain

nin) = (T°e)(0) = ((T'2)(6), BAO)) = ((2)(6), ToB:(6))
TeBr(0)],.,. -

Therefore, n;(r) € W3[0, 1]. For each fixed ¢(r) <
w3[0, 1], let {p(r), ni(r)) =0, (i=1,2,...), ie.,

(9. (T'2)M) = (T(), @) = (Tg)(r) =

Thus, (Te)(x) = 0 and ¢ = 0. This completes the
proof. O

Theorem 3.3. If ¢(r) is the exact solution of (5), then

o) =T2(r, )= > > ouzlr, 9, ()

i=1 k=1

where {(r;)}2; is dense in [0, 1].

Proof. We acquire

o(r) = Z<go(r) 1i(1)) 3 ()

Z T (91, (1)) s 1)

i

s M :

[}
[un

0w (90, T'o(0)  Ailr)
k=1 2

i

'P"18

I
[=N

aik (Tp(r), 0i(1) 6y M),

k=1

from (6). By uniqueness of the solution of (5), we acquire

oo

o) = ou(z(r, ), Qu) g 1)

=1 k=1
oo i
=33 0wzl er)ii(n).
=1 k=1
O
The approximate solution ¢n(r) is achieved as
n i
on() =D > ouzlri, er)i(). ®)

i=1 k=1

Theorem 3.4. Let ¢ be any solution of (1) in W3[0, 1].
Then

n — oo,

llon = @llw: =0,
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Moreover the sequence ||¢n - @||y; is monotonically de-
creasing in n.

Proof. We obtain

33 0wz, 9 i)

[on = @lly: = .
i=n+1 k=1 w3
by (7) and (8). Therefore
1on = Pllwz =0, n— oo
Furthermore
. 2
oo 1
lon =013 = | 32 3" ouzlre, o))
i=n+1 k=1 Wg

oo i 2
=> ( ﬁiklpi> .
i=n+1 \ k=1

Obviously, ||¢n - <p||W§ is monotonically decreasing in n.
O

4 Numerical experiments

We solve (1)-(2) numerically in this section. Tables 1-2
present the approximate solutions of the problem (1)-(2)
for different values of ~, § and a. Figures 1-2 show the
approximate solutions for several values of the intimate
variables. The results depend on both H and a. We use
MAPLE to solve the BVP. In figures 1-2 we give numeri-
cal solutions of the BVP for values of a = 0.5, 1.0 and
H?=0.5,1.0,2.0.

REMARK 4.1. A Spectral Method [22] and Homotopy anal-
ysis method [20] have been applied to the electrohydrody-
namic flow. Our results are in good agreement with the re-
sults obtained by these methods. Therefore the RKM is a
reliable method for electrohydrodynamic flow.

Approximate Solutions

0.0 0.2 0.4 05 08 10

Figure 1: Graph of numerical results fora = 0.5,y = 2, = 1 and
several values of H.

Appradmate Solutions

Figure 2: Graph of numerical results fory = 2, § = 1, a = 1.0 and
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several values of H.

Table 1: Approximate solutions of (1)-(2) when a = 0.5.

r v=1.9,8=0.9 v=1.9,8=1.0
0.0 0.381236310 0.3771173839
0.1 0.374950080 0.3713730420
0.2 0.359968470 0.3575225829
0.3 0.342105510 0.3401839144
0.4 0.315723980 0.3146921558
0.5 0.284128540 0.2835844577
0.6 0.244546771 0.2445250520
0.7 0.197105564 0.1974472101
0.8 0.141053509 0.1415539908
0.9 0.075613972 0.0760178037
1.0 2.9691x 10711 -5.856x 10710

Table 2: Approximate solutions of (1)-(2) when a = 1.0.

r v=1.9,=0.9 ~v=1.9,=1.0
0.0 0.317659270 0.3348212962
0.1 0.311127694 0.3288793293
0.2 0.297816605 0.3162240251
0.3 0.285820932 0.3028615829
0.4 0.265485319 0.2812364427
0.5 0.245783017 0.2579063018
0.6 0.215406643 0.2247358955
0.7 0.176723589 0.1834843558
0.8 0.128333833 0.1327839543
0.9 0.069612052 0.0718612844
1.0 2.858x 10711 -7.983 x107°

5 Conclusion

In this work, the reproducing kernel method (RKM) has
been performed to acquire solutions for a nonlinear
boundary value problems. We came across an important
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challenge in regard to attaining solutions however, we
have shown that the solutions obtained are convergent.
We obtained good results for different values of a, § and
~ in (1)-(2). Reproducing kernel functions were found to
be very useful to get these results and they prove that the
RKM is very effective.

Competing interests: The authors declare that they have
no competing interests.
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