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Abstract: In this manuscript we investigate electrody-
namic flow. For several values of the intimate parameters
we proved that the approximate solution depends on a re-
producing kernel model. Obtained results prove that the
reproducing kernel method (RKM) is very effective. We ob-
tain good results without any transformation or discretiza-
tion. Numerical experiments on test examples show that
our proposed schemes are of high accuracy and strongly
support the theoretical results.
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1 Introduction
The electrohydrodynamic flow of a fluid is governed by
a non-linear ordinary differential equation. The degree of
non-linearity is stated by a nondimensional variable α and
the equation can be approached by two different linear
equations for very small or very large values of α respec-
tively. The electrohydrodynamic flow of a fluid has been
researched by McKee [21]. The governing equations were
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turned to the following problem [20]:

d𝛾φ
dr𝛾 + 1

r
dβφ
drβ

+ H2
(︂
1 − φ

1 − αφ

)︂
= 0, 0 < r < 1, (1)

with the boundary conditions

φ′(0) = φ(1) = 0, (2)

where φ(r) is the fluid speed, r is the radial range from the
center of the cylindrical conduit, H is the Hartmann elec-
tric number, the parameter α is the size of the power of the
nonlinearity and 𝛾 = 2, β = 1. Paullet [23] showed the exis-
tence anduniqueness of a solution to (1)–(2), and explored
an error in the perturbative and numerical solutions given
in [21] for large values of α.

Fractional calculus is a 300 years old andhas been en-
hanced progressively up to now. The concept of differen-
tiation to fractional order was described in 19th century
by Rieman and Liouville. In several problems of physics,
mechanics and engineering, fractional differential equa-
tions have beendemonstrated to be a valuable tool inmod-
eling many phenomena. However, most fractional order
equations do not have analytic solutions. Therefore, there
has been an important interest in developing numerical
methods for the solutions of fractional-order differential
equations [18]. Fractional differential equations, as an im-
portant research branch, have attracted much interest re-
cently [9]. We recall that a general solution technique for
fractional differential equations has not yet been consti-
tuted. Most of the solution methods in this area have been
enhanced for significant sorts of problems. Consequently,
a single standard method for problems related fractional
calculus has not been found. Thus, determining credible
and affirmative solution methods along with fast applica-
tion techniques is beneficial and worthy of further exami-
nation [3]. For more details see [10–14, 24, 30].

The goal of this paper is to give approximate solu-
tions to (1)–(2) for all values of the relevant variables
using the RKM. Recently, much interest has been dedi-
cated to the work of the RKM to research several scien-
tific models [4]. The book [6] presents an overview for the
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RKM.Many problems such as populationmodels and com-
plex dynamics have been solved in the reproducing kernel
spaces [7, 17, 26, 27]. For more details of this method see
[1, 2, 5, 8, 15, 16, 19, 25, 28, 29].

This study is arranged as follows. Section 2 presents
useful reproducing kernel functions. Solutions inW3

2 [0, 1]
and a related linear operator are given in Section 3. This
section demonstrates the fundamental results. The exact
and approximate solutions of (1)–(2) are given in this sec-
tion. Examples are shown in Section 4. Some conclusions
are given in the final section.

Definition 1.1. A Hilbert space H which is defined on
a nonempty set E is denominated a reproducing kernel
Hilbert space if there exists a reproducing kernel function
K : E × E → C.

2 Construction of reproducing
kernel space

Definition 2.1. G1
2[0, 1] is defined by:

G1
2[0, 1] = {φ ∈ AC[0, 1] : φ′ ∈ L2[0, 1]}.

⟨φ, ψ⟩G1
2
= φ(0)ψ(0) +

1∫︁
0

φ′(r)ψ′(r)dr, φ, ψ ∈ G1
2[0, 1]

and
‖φ‖G1

2
=
√︁

⟨φ, φ⟩G1
2
, φ ∈ G1

2[0, 1],

are the inner product and the norm in G1
2[0, 1].

Lemma 2.2 (See [6, page 17]). Reproducing kernel func-
tion Qθ of G1

2[0, 1] is obtained as:

Qθ(r) =
{︃
1 + r, 0 ≤ r ≤ θ ≤ 1,
1 + θ, 0 ≤ θ < r ≤ 1.

Definition 2.3. We denote the spaceW3
2 [0, 1] by

W3
2 [0, 1] =

{︀
φ ∈ AC[0, 1] : φ′, φ′′ ∈ AC[0, 1],

φ(3) ∈ L2[0, 1], φ′(0) = 0 = φ(1)
}︁
.

⟨φ, ψ⟩W3
2
=

2∑︁
i=0

φ(i)(0)ψ(i)(0) +
1∫︁

0

φ(3)(r)ψ(3)(r)dr,

φ, ψ ∈ W3
2 [0, 1]

and
‖φ‖W3

2
=
√︁

⟨φ, φ⟩W3
2
, φ ∈ W3

2 [0, 1],

are the inner product and the norm inW3
2 [0, 1].

Theorem 2.4. Reproducing kernel function Bθ of W3
2 [0, 1]

is acquired as

Bθ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(3)

Proof. Let φ ∈ W3
2 [0, 1] and 0 ≤ θ ≤ 1. By using the defi-

nition 3 and integrating by parts, we acquire

⟨φ, Bθ⟩W3
2
=

2∑︁
i=0

φ(i)(0)B(i)θ (0) +
1∫︁

0

φ(3)(r)B(3)θ (r)dr

= φ(0)Bθ(0) + φ′(0)B′θ(0) + φ
′′(0)B′′θ (0)

+ φ′′(1)B(3)θ (1) − φ′′(0)B(3)θ (0) − φ′(1)B(4)θ (1)

+ φ′(0)B(4)θ (0) +
1∫︁

0

φ′(r)B(5)θ (r)dr.

After substituting the values of Bθ(0), B′θ(0), B
′′
θ (0), B

(3)
θ (0),

B(4)θ (0), B(3)θ (1), B(4)θ (1) into the above equation we get

⟨φ, Bθ⟩W3
2
= φ(θ).

This completes the proof.

3 Representation of the solutions
The solution of (1)–(2) is acquired in the W3

2 [0, 1]. We de-
scribe the linear operator T : W3

2 [0, 1] → G1
2[0, 1] by

Tφ = d
𝛾φ
dr𝛾 + 1

r
dβφ
drβ

, φ ∈ W3
2 [0, 1]. (4)

The problem (1)–(2) alters to the problem{︃
Tφ = z(r, φ),
φ(1) = 0, φ′(0) = 0,

(5)

where z(r, φ) = −H2
(︁
1 − φ

1−αφ

)︁
.
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Theorem 3.1. T is a bounded linear operator.

Proof. We will show ‖Tφ‖2G1
2
≤ K ‖φ‖2W3

2
. We get

‖Tφ‖2G1
2
= ⟨Tφ, Tφ⟩G1

2
=
[︀
Tφ(0)

]︀2 + 1∫︁
0

[︀
Tφ′(r)

]︀2 dr,
by definition 2.1. By the reproducing property, we obtain

φ(r) =
⟨︀
φ(·), Br(·)

⟩︀
W3

2
,

and
Tφ(r) =

⟨︀
φ(·), TBr(·)

⟩︀
W3

2
.

Thus, ⃒⃒
Tφ(r)

⃒⃒
≤ ‖φ‖W3

2
‖TBr‖W3

2
= K1 ‖φ‖W3

2
,

where K1 > 0. Therefore,[︀
(Tφ) (0)

]︀2 dr ≤ K2
1 ‖φ‖2W3

2
.

Considering that

(Tφ)′(r) =
⟨︀
φ(·), (TBr)′(·)

⟩︀
W3

2
,

then ⃒⃒
(Tφ)′(r)

⃒⃒
≤ ‖φ‖W3

2

⃦⃦
(TBr)′

⃦⃦
W3

2
= K2 ‖φ‖W3

2
,

where K2 > 0. Thus, we acquire[︀
(Tφ)′(r)

]︀2 ≤ K2
2 ‖φ‖2W3

2
,

and

1∫︁
0

[︀
(Tφ)′(r)

]︀2 dr ≤ K2
2 ‖φ‖2W3

2
.

Therefore, we get

‖Tφ‖2G1
2
≤
[︀
(Tφ) (0)

]︀2 + 1∫︁
0

[︀
(Tφ)′(r)

]︀2 dr
≤
(︁
K2
1 + K2

2

)︁
‖φ‖2W3

2
= K ‖φ‖2W3

2
,

where K = K2
1 + K2

2 > 0. This completes the proof.

We denote ϱi(r) = Qri (r) and ηi(r) = T*ϱi(r). The orthonor-
mal system

{︀̂︀ηi(r)}︀∞i=1 of W3
2 [0, 1] is obtained from Gram-

Schmidt orthogonalization process of {ηi(r)}∞i=1 and

̂︀ηi(r) = i∑︁
k=1

σikηk(r), (σii > 0, i = 1, 2, . . .). (6)

Theorem 3.2. Let {ri}∞i=1 be dense in [0, 1] and ηi(r) =
TθBr(θ)

⃒⃒
θ=ri

. Then, the sequence
{︀
ηi(r)

}︀∞
i=1 is a complete

system in W3
2 [0, 1].

Proof. We obtain

ηi(r) = (T*ϱi)(r) =
⟨
(T*ϱi)(θ), Br(θ)

⟩
=
⟨︀
(ϱi)(θ), TθBr(θ)

⟩︀
= TθBr(θ)

⃒⃒
θ=ri

.

Therefore, ηi(r) ∈ W3
2 [0, 1]. For each fixed φ(r) ∈

W3
2 [0, 1], let

⟨︀
φ(r), ηi(r)

⟩︀
= 0, (i = 1, 2, . . .), i.e.,⟨

φ(r), (T*ϱi)(r)
⟩
=
⟨︀
Tφ(·), ϱi(·)

⟩︀
= (Tφ)(ri) = 0.

Thus, (Tφ)(x) = 0 and φ ≡ 0. This completes the
proof.

Theorem 3.3. If φ(r) is the exact solution of (5), then

φ(r) = T−1z(r, φ) =
∞∑︁
i=1

i∑︁
k=1

σikz(rk , φ(rk))̂︀ηi(r), (7)

where {(ri)}∞i=1 is dense in [0, 1].

Proof. We acquire

φ(r) =
∞∑︁
i=1

⟨︀
φ(r), ̂︀ηi(r)⟩︀W3

2
̂︀ηi(r)

=
∞∑︁
i=1

i∑︁
k=1

σik
⟨︀
φ(r), ηk(r)

⟩︀
W3

2
̂︀ηi(r)

=
∞∑︁
i=1

i∑︁
k=1

σik
⟨
φ(r), T*ϱk(r)

⟩
W3

2

̂︀ηi(r)
=

∞∑︁
i=1

i∑︁
k=1

σik
⟨︀
Tφ(r), ϱk(r)

⟩︀
G1
2
̂︀ηi(r),

from (6). By uniqueness of the solution of (5), we acquire

φ(r) =
∞∑︁
i=1

i∑︁
k=1

σik
⟨︀
z(r, φ), Qrk

⟩︀
G1
2
̂︀ηi(r)

=
∞∑︁
i=1

i∑︁
k=1

σikz(rk , φ(rk))̂︀ηi(r).

The approximate solution φn(r) is achieved as

φn(r) =
n∑︁
i=1

i∑︁
k=1

σikz(rk , φ(rk))̂︀ηi(r). (8)

Theorem 3.4. Let φ be any solution of (1) in W3
2 [0, 1].

Then
‖φn − φ‖W3

2
→ 0, n →∞.
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Moreover the sequence ‖φn − φ‖W3
2
is monotonically de-

creasing in n.

Proof. We obtain

‖φn − φ‖W3
2
=

⃦⃦⃦⃦
⃦

∞∑︁
i=n+1

i∑︁
k=1

σikz(rk , φ(rk))̂︀ηi(r)
⃦⃦⃦⃦
⃦
W3

2

,

by (7) and (8). Therefore

‖φn − φ‖W3
2
→ 0, n →∞.

Furthermore

‖φn − φ‖2W3
2
=

⃦⃦⃦⃦
⃦

∞∑︁
i=n+1

i∑︁
k=1

σikz(rk , φ(rk))̂︀ηi(r)
⃦⃦⃦⃦
⃦
2

W3
2

=
∞∑︁

i=n+1

(︃ i∑︁
k=1

βik ̂︀Ψi
)︃2

.

Obviously, ‖φn − φ‖W3
2
is monotonically decreasing in n.

4 Numerical experiments
We solve (1)–(2) numerically in this section. Tables 1–2
present the approximate solutions of the problem (1)–(2)
for different values of 𝛾, β and α. Figures 1–2 show the
approximate solutions for several values of the intimate
variables. The results depend on both H and α. We use
MAPLE to solve the BVP. In figures 1–2 we give numeri-
cal solutions of the BVP for values of α = 0.5, 1.0 and
H2 = 0.5, 1.0, 2.0.

Remark 4.1. A Spectral Method [22] and Homotopy anal-
ysis method [20] have been applied to the electrohydrody-
namic flow. Our results are in good agreement with the re-
sults obtained by these methods. Therefore the RKM is a
reliable method for electrohydrodynamic flow.

Figure 1: Graph of numerical results for α = 0.5, 𝛾 = 2, β = 1 and
several values of H.

Figure 2: Graph of numerical results for 𝛾 = 2, β = 1, α = 1.0 and
several values of H.

Table 1: Approximate solutions of (1)–(2) when α = 0.5.

r 𝛾 = 1.9, β = 0.9 𝛾 = 1.9, β = 1.0
0.0 0.381236310 0.3771173839
0.1 0.374950080 0.3713730420
0.2 0.359968470 0.3575225829
0.3 0.342105510 0.3401839144
0.4 0.315723980 0.3146921558
0.5 0.284128540 0.2835844577
0.6 0.244546771 0.2445250520
0.7 0.197105564 0.1974472101
0.8 0.141053509 0.1415539908
0.9 0.075613972 0.0760178037
1.0 2.9691 × 10−11 −5.856 × 10−10

Table 2: Approximate solutions of (1)–(2) when α = 1.0.

r 𝛾 = 1.9, β = 0.9 𝛾 = 1.9, β = 1.0
0.0 0.317659270 0.3348212962
0.1 0.311127694 0.3288793293
0.2 0.297816605 0.3162240251
0.3 0.285820932 0.3028615829
0.4 0.265485319 0.2812364427
0.5 0.245783017 0.2579063018
0.6 0.215406643 0.2247358955
0.7 0.176723589 0.1834843558
0.8 0.128333833 0.1327839543
0.9 0.069612052 0.0718612844
1.0 2.858 × 10−11 −7.983 × 10−9

5 Conclusion
In this work, the reproducing kernel method (RKM) has
been performed to acquire solutions for a nonlinear
boundary value problems. We came across an important
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challenge in regard to attaining solutions however, we
have shown that the solutions obtained are convergent.
We obtained good results for different values of α, β and
𝛾 in (1)–(2). Reproducing kernel functions were found to
be very useful to get these results and they prove that the
RKM is very effective.

Competing interests: The authors declare that they have
no competing interests.

References
[1] Abbasbandy S., B. Azarnavid, M. S. Alhuthali, A shooting re-

producing kernel Hilbert space method for multiple solutions
of nonlinear boundary value problems. J. Comput. Appl. Math.,
2015, 279, 293–305

[2] Akgül A., New reproducing kernel functions, Math. Probl. Eng.,
pages Art. ID 158134, 2015, 10

[3] Akgül A., Inc M., Karatas E., Baleanu D., Numerical solutions of
fractional differential equations of Lane-Emden type by an accu-
rate technique, Adv. Difference Equ., 2015, 220

[4] Aronszajn N., Trans. Amer. Math. Soc., 1950, 68, 337–404
[5] Bushnaq S., Maayah B., Momani S., Alsaedi A., A reproducing

kernel Hilbert space method for solving systems of fractional
integro differential Equations, Abstr. Appl. Anal., pages Art. ID
103016, 2014, 6

[6] Cui M., Lin Y., Nova Science Publishers Inc., New York, 2009
[7] Du J., Cui M., Solving the forced Duflng equation with inte-

gral boundary conditions in the reproducing kernel space. Int.
J. Comput. Math., 2010, 87(9), 2088–2100

[8] Geng F. Z., Qian S. P., Solving singularly perturbed multi pan-
tograph delay equations based on the reproducing kernel
method. Abstr. Appl. Anal., pages Art. ID 794716, 2014, 6

[9] Geng F., Cui M., A reproducing kernel method for solving nonlo-
cal fractional boundary value problems. Appl. Math. Lett., 2012,
25(5), 818–823

[10] HashemiM.S., Constructing anewgeometric numerical integra-
tion method to the nonlinear heat transfer equations. Commun.
Nonlinear Sci. Numer. Simul., 2015, 22(1-3), 990-1001

[11] Hashemi M. S., Abbasbandy S., A geometric approach for solv-
ing troesch’s problem, Bulletin of the Malaysian Mathematical
Sciences Society, 2015, 1-20

[12] Hashemi M. S., Baleanu D., Numerical approximation of higher-
order time fractional telegraph equation by using a combination
of a geometric approach and method of line, J. Comput. Phys.,
2016, 316, 10–20

[13] HashemiM. S., Baleanu D., Haghighi M. P., A lie group approach
to solve the fractional poisson equation, Romanian Journal of
Physics, 2015, 60, 1289–1297

[14] Hashemi M. S., Baleanu D., Haghighi M. P., Darvishi E., Solving
the timefractional diffusion equation using a lie group integra-
tor, Therm. Sci., 2015, 19, 77–83

[15] Inc M., Akgül A., Kilicman A., Numerical solutions of the second
order One-dimensional telegraph equation based on reproduc-
ing kernel Hilbert space method. Abstr. Appl. Anal., pages Art.
ID 768963, 2013, 13

[16] Javadi S., Babolian E., Moradi E., New implementation of repro-
ducing kernel Hilbert space method for solving a class of func-
tional integral equations, Commun. Numer. Anal., pages Art. ID
00205, 2014, 7

[17] Jiang W., Cui M., Solving nonlinear singular pseudoparabolic
equations with nonlocal mixed conditions in the reproducing
kernel space, Int. J. Comput. Math., 2010, 87(15), 3430-3442

[18] Jiang W., Tian T., Numerical solution of nonlinear Volterra inte-
gro differential equations of fractional order by the reproducing
kernel method. Appl. Math. Model., 2015, 39(16), 4871-4876

[19] Komashynska I., Smadi M. A. , Iterative reproducing kernel
method for solving second-order integrodifferential equations
of Fredholm type, J. Appl. Math., pages Art. ID 459509, 2014, 11

[20] MastroberardinoA., Homotopyanalysismethodapplied to elec-
trohydrodynamic flow. Commun. Nonlinear Sci. Numer. Simul.,
2011, 16(7), 2730-2736

[21] McKee S., Watson R., Cuminato J. A., Caldwell J., Chen M. S.,
Calculation of electrohydrodynamic flow in a circular cylindrical
conduit, Z. Angew. Math. Mech., 1997, 77(6), 457-465

[22] Moghtadaei M., Nik H. S., Abbasbandy S., A spectral method for
the electrohydrodynamic flow in a circular cylindrical conduit,
Chin. Ann. Math. Ser. B, 2015, 36(2), 307- 322

[23] Paullet J. E., On the solutions of electrohydrodynamic flow in a
circular cylindrical Conduit, ZAMMZ. Angew.Math.Mech., 1999,
79(5), 357-360

[24] SakarM. G., Iterative reproducing kernel Hilbert spacesmethod
for Riccati differential equations, J. Comput. Appl. Math., 2017,
309, 163–174

[25] Shawagfeh N., Arqub O. A., Momani S., Analytical solution of
nonlinear second-order periodic boundary value problem using
reproducing kernel method, J. Comput. Anal. Appl., 2014, 16(4),
750-762

[26] Kumar B., Vangeepuram S., Reproducing Kernel Space Embed-
dings and Metrics on Probability Measures, ProQuest LLC, Ann
Arbor, MI, Thesis (Ph.D.)–University of California, San Diego,
2010

[27] Wu B., Li X., Application of reproducing kernel method to third
order three-point boundary value problems. Appl. Math. Com-
put., 2010, 217(7), 3425-3428

[28] Xu L., Luo B., Tang Y., Ma X., An eflcient multiple kernel learn-
ing in reproducing kernel Hilbert spaces (RKHS), Int. J. Wavelets
Multiresolut. Inf. Process., 13(2):1550008, 2015, 13

[29] Zayed A. I., Solution of the energy concentration problem in re-
producingkernel Hilbert space, SIAM J. Appl. Math., 2015, 75(1),
21–37

[30] Zhang R., Lin Y. , A novel method for nonlinear boundary value
problems. J. Comput. Appl. Math., 2015, 282, 77-82


	1 Introduction
	2 Construction of reproducing kernel space
	3 Representation of the solutions
	4 Numerical experiments
	5 Conclusion

