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Abstract: This paper presents the alternative construction
of the diffusion-advection equation in the range (1; 2). The
fractional derivative of the Liouville-Caputo type is ap-
plied. Analytical solutions are obtained in terms of Mittag-
Leffler functions. In the range (1; 2) the concentration ex-
hibits the superdiffusion phenomena and when the order
of the derivative is equal to 2 ballistic diffusion can be ob-
served, these behaviors occur in many physical systems
such as semiconductors, quantum optics, or turbulent dif-
fusion. This mathematical representation can be applied
in the description of anomalous complex processes.
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1 Introduction

The diffusion-advection equation (DAE) describes the ten-
dency of particles to be moved along by the fluid it is sit-
uated in (the convective terms arise when changing from
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Lagrangian to Eulerian frames) and the diffusion refers
to the dissipation/loss of a particles property (such as
momentum) due to internal frictional forces [1]. The dy-
namical systems of fractional order are non-conservative
and involve non-local operators [2-7]. Several approaches
have been used for investigating anomalous diffusion,
Langevin equations [8, 9], random walks [10, 11], or frac-
tional derivatives, based on fractional calculus (FC) sev-
eral works connected to anomalous diffusion processes
may be found in [12-19]. Scher and Montroll [20] pre-
sented a stochastic model for the photocurrent transport in
amorphous materials. Mainardi in [21] presented the inter-
pretation of the corresponding Green function as a prob-
ability density, the fundamental equation was obtained
from the conventional diffusion equation by replacing the
second-order space derivative with a Riesz-Feller deriva-
tive and the first-order time derivative with a Liouville-
Caputo derivative. Luchko in [22-24] presents the gener-
alized time-fractional diffusion equation with variable co-
efficients. Jespersen in [25] presented a Riesz/Weyl form of
the DAE considered Lévy flights subjected to external force
fields, the corresponding Fokker-Planck equation contains
a fractional spatial derivative. In the work [26], the frac-
tional DE, DAE and the Fokker-Planck equation were pre-
sented, the equations were derived from basic random
walk models. In the work [27] the authors proposed an
alternative solution for the fractional DAE via derivatives
of Liouville-Caputo type of order (0, 1). Based on the pre-
vious works developed by Gémez [27, 28], this paper ex-
plores the alternative construction of the DAE in the range
(1; 2) for the space-time domain. The paper is organized as
follows. In the next section, we present the fractional op-
erators. In Section 3, the analytic solution of the fractional
DAE is performed. Finally, some concluding remarks are
drawn in Section 4.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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2 Basic Tools

The Riemann-Liouville fractional integral operator of or-
der a = 0 is defined as

a 1 / a-1
Jf) = 5 [ (x- )" f()dt, a>0, oy
T(a)o/

If 00 =f(0).

The Liouville-Caputo fractional derivative (C) of a
function f(x) is defined as [29]

Df () = e {f(x)} ®

dxm

1 [ fm

Fom=a ) -0

form-1<a<m,meN,x>0,fecCm.
Also, the fractional derivative of f(x) in the Liouville-
Caputo sense satisfies the following relations

m-1 k
J*Df60 =F (0= Y_F™ (0) 35

k=0

x>0, 3)

DI f () =f ().

Laplace transform to Liouville-Caputo fractional
derivative is given by [29]

m-1
LIEDEFD] = SUF(S) - > s W), @
k=0

where

LISDF(H)] = s“F(s) - s“1f(0) O<a<1, (5)

LIEDEF(O] = s“F(s) - s*'f(0) - s*%f/(0) (6)
l1<ac<?2.

The inverse Laplace transform requires the introduc-
tion of the Mittag-Leffler function [30]

Ea,ﬁ(t) = % m, (a>0), B>0. @
Some common Mittag-Leffler functions are [30, 31]
Ei)(22) = ezz[l + erfc(z)], (8)
Ei(x2) = e*,

E>(-2%) = cos(2),

Es(2) = %[ezm +2e" 27 cos (?21/3)},
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Eu(2) = % (cos(zl/“) + cosh(z”“)) ,

_n) s-1
ZZK(l r)

Es/z,r(Z) _ Zle-(s/2+r)(exp(’B]_ZZK))(B?/Z
j=0

S
2n-1 k

z
; T(sk/2 +u)’

+ erfc(ﬁl.l/zz")) -z

wherex =1/s,r=ns+u,n=0,1,2,3,...,u=1,2,3,...
[32, 33]. The erfc(z) denotes the error function [30]

erfc(z) = \/Zﬁo/exp(—tz)dt. 9)

3 Local Diffusion-Advection
Equation

The equation (10) describes the processes of diffusion-
advection
DazC(x, t) . SaC(x, t) oC(x,t) _
ox?2 ox ot
where C is the concentration, D is the diffusion coefficient
and 3 is the drift velocity, this equation predicts the con-
centration distribution onto one dimensional axis x.

o, (10)

3.1 Nonlocal Time Diffusion-Advection
Equation

Based on the previous work developed by Gémez [27], we
introduce an auxiliary parameter g; as follows

9,1 o
ot ga ore

11

n-1<acsn,

where nisinteger, the parameter o+ has dimensions of time
(seconds). The authors of [34] used the Planck time, t, =
5.39106 x 107** seconds, with the finality to preserve the
dimensional compatibility, the o; parameter corresponds
to the t, in our calculations. Consider (11) in the eq. (10),
the temporal fractional equation of order a € (1, 2] be-
comes

aac(x, t) _ 1-a aC(Xs t) _ 1-a az C(Xs t) _
YL S - Dt S5 =0, (12)
Suppose the solution
Clx, ©) = Coe™u(t), (13)

where k is the wave number in the x direction and Cj is a
constant. Substituting (13) into (12) we obtain

d*u(x)
dte

+(DK? - i9k)t, u(t) = 0, (14)
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where
w? = (DI? - i9k), (15)
is the dispersion relation and
@* = (DI* - 19K)t," % = w’t," ", (16)

where @? is the fractional dispersion relation in the
medium and w? is the ordinary dispersion relation. From
the fractional dispersion relation (15) we have

w=2E8-1ip, 17)
substituting (17) into (16) we have
(6-ip)* = 6> -2ibp - ¢°, (18)
where
8% - 2i6¢p — * = (DK* - i9k)t,' ™%, (19)
solving for ¢ we obtain
9k . 1
(p = ﬁtpl a, (20)
and for 6
a1 1 ]’
8=ky\/Dty"™* | S xS [1+ 555 | (21)
substituting (21) into (20) we have
0-5 : G @)

Now the fractional natural frequency is, @ = 6 - i¢p,
where § and ¢ are given by (21) and (22) respectively

14.1 1+£_
272V kD?

(NI

@=|kV/D (23)

% |2
1+W

The equation (23) describes the real and the imaginary part
of @ in terms of the wave number k, the viscous drag 9, the
diffusion coefficient D and the fractional temporal compo-
nents o;.

Substituting (16) into (14) we obtain

d;‘;gt) +@*u(t) =0, (24)
where
u(t) = Eo(-@?t%). (25)
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The particular solution of equation (24) is

Clx, ) = Co - e Eo(-°t%), (26)

now we will analyze the case when a takes different values.
When a = 3/2, we have, @* = w?t,"'/?, substituting
this expression in (26) we have

Clx, t) = Co - e B3, (- 1), 27)
where
X 11 9 |*
@=|kvD S5\ 12 (28)
9
—i Vit 2,
1 1 92 % ’
2D [7 +34/1+ W}

where, Es; is given by (9), in this case z = -@*¢*/2. Sub-
stituting E3/, into (27) the solution is

Clx, t) = Co - . %iﬁf” (exp (,szm)) (29)
j=0

k

2n-1
(ﬁf/z + erfe (le/zz1/3)) _ g kz 1"(3k72+}1)} )
=0

this equation represent the fractional concentration in the
medium for a = 3/2.

When a = 2, we have, @ = w’t, !, substituting this
expression in (26) we have

C(x, t) = Co - €% - Ey(~@?t?), (30)
where
N 11 9 |*
@=|kv/D 5t5\ 1 1z (31
—i 9 - ty™*
2vD [%1%,/1+k‘%]

Substituting E, given by (8) into (30) the solution is

Cx, t) = R[Co - ®~00], (32

(6 - ip)\/t, L. The
first exponential e/®-5Vt™ gives the well-kown plane-
wave variation of the concentration. The second exponen-
tial e 9Vt gives and exponential decay in the amplitude
of the wave.

R indicates the real part and @ =
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In this case exists a physical relation given by

a=wtp = 0 <ty < To, (33)

P
To’
we can use this relation (33) in order to from equation (26)
as

C, B) = Co - % - Eq ( - aHi“). (34)

Figure 1 and 2 show the simulation of the equation (34)
for a values arbitrarily chosen between [1.3, 2). For a ¢
[1.3, 2), we observe superdiffusion and for a = 2 ballistic
diffusion [26].

Concentration

Figure 1: Concentration distribution for the temporal case. Simula-
tion of equation (34) fora € [1.3, 1.6].

Concentration

Figure 2: Concentration distribution for the temporal case. Simula-
tion of equation (34) fora € [1.3,2]. If & = 2 we find the ballistic
diffusion.
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3.2 Nonlocal Space Diffusion-Advection
Equation

Now, we consider

0 1 0

x ol o G5)

n-1<asn,
where n is integer, the parameter ox has dimensions of
length (meters). In our calculations we used the Planck
length, I, = 1.616199 x 107>° meters, with the finality
to preserve the dimensional compatibility, the parameter
ox = l. The spatial fractional equation of order a € (1, 2]
is

0% C(x,t) 9, 1.40%C(x, )
ot DY oxd (36)
1, 20-090C(x, 1) _
kd o
A particular solution is given by
C(x, t) = Coe™'u(x), 37)

where w is the natural frequency and Cy is a constant.
Substituting (37) into (36) we obtain

d*u(x) 9, 1.du() W, 200, _
e Tl e 5Ip u(x)=0. (38)
The solution of (38) is given by
_ 9,1
Clx, ) = Coe ‘”f-Ea(— L ) (39)

2
(- [§ - o),

For the underdamped case, with (§ - %) =0,9 =
2V wD. Considering 9 = 2v/wD and C(0) = C in equation
(39), K2 = % s the wave vector and a® = 5J; is the damping
factor. Now we will analyze the case when a takes different
values.

When a = 3/2, from equation (39) we have

(40)

Cl, ) = Coe“‘”-Eg/z(_ 9 —1/2X3/z)_

Pk
w 9? -1.3
B (=[5 ap) ),
where E3, is given by (9) and E3 by (8), for the case of E5 5,
2=l P andfor B3,z = (= [$ - | 1 7'%).
When a = 2, from equation (39) we have

2%1;&) : (1)
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where E, is given by (8), for E, z = (— [% - 4‘9—;2} lp’zx“).

In this case a physical relationship between a and I,
is given by

- (‘” 5 (42)

3 1
B_W) Ip, 0<lp57.

1
92 2
(8- )
Then, the solution (39) for the underdamped case 9 <
2vwDorn < Ko takes the form

Ok, ) = Coe™ - Ea | ——— a5 | - (&3)
N
. E2a (_az(l—a))-zZa)
SN
where ¥ = (% - 4‘97) ’x.

Due to the condition 9 < 2v/wD we have

5 . 5 os Y oo (@)
2D/ 8- 5% 2D/ 4 -2

Thus, the solution (39) takes its final form
> _ -wt _1 l-azal, _201-a)z2a
C(%, t) = Coe E( Ja x)Em( a20% ) (45)

Figures 3 and 4 show the simulation of equation (45)
for a € [1.3, 2).

In the overdamped case, n > Ko or § > 2v/wD, the
solution of the equation (39) is given by

Clx, t) = Coe ™ - Eq <—%lp1‘“x“> . (46)

'92 w % 1-a
E(anu} b Xa)’

Concentration

Figure 3: Concentration distribution for the underdamped spatial
case. Simulation of the equation (45) for a € [1.3, 1.6].
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Concentration

Figure 4: Concentration distribution for the underdamped spatial
case. Simulation of the equation (45) for a € [1.3, 2].

Now we will analyze the case when a takes different
values.
If « = 3/2, from equation (46) we have

- . 9
_ ot | B 1/2.3/2 .
Clx, t) = Coe Es3p ( 5D L, ""x )

92 ]’ .
IR )

where Ej), is given by (9), for the case of E3p, z1 =
1/2
_%lp—1/2X3/2 and z, = (_ [ 9 _ g} lp—1/2X3/2>.

(47)

4?2~ D
Now, from a = 2 we have

9

Clx, t) = Coe ™ - E, (—lp‘lxz) . (48)

2D

9 CU% -1,2
'EZ<_[W_D} L, x|,

substituting E, given by (8) into (48) we obtain the solu-

tion
Clx, t) = Coe ™t - cos iI 1y (49)
’ 2D”?
92 ]2 B
- COS [W - ﬁ:| lp X
In this case a physical relation is given by
P w\: 1
a=(m—5> Ip, 0<IPS71. (50)

(&-3)
4D~ D
substituting the relation (50), the solution (46) takes the
form
s 7 -wt 9 l-aza
Cx,t)=Coe™ Ey | —————=a %

92 w
2D\/43p — D

(1)
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. Ea (_al—aia) ,

1
~ 2 2
where % = (‘9— - %) X.

4D?
Due the condition 9 > 2v/wD, we have
$=2, 1<#<°¢. (52)
92 92
20\/3f - 2D/ -
Then, the solution (46) is given by
Cx,t) = Coe @ - Eq (—20{1’“)"(“) . (53)

-Eq (—al"“ia) .

Figures 5 and 6 show the simulation of the equation
(53) for a € [1.3, 2), where the values of a are arbitrarily
chosen.

Concentration

0.1

0.05 M

C(i,t)

—-0.05

Figure 5: Concentration distribution for the underdamped spatial
case. Simulation of the equation (45) for a € [1.3, 1.6].

Concentration

N

js A
v

0.1

0.05 -

C(i,1)

-0.05

-0.1

Figure 6: Concentration in the overdamped spatial case. Simulation
of the equation (45) fora € [1.3, 2].
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3.3 Nonlocal Time-Space
Diffusion-Advection Equation

Now we consider the fractional DAE, when t = 0, x > 0
and x = L, C(0, t) = 0 and initial conditions 0 < x < L, t =
0:T(,0)=To>0and0<x<L,t=0
Applying the Fourier method we have

. %b(—)oo = 0.

C(t,x) = X(x)T(t), (54)
X0)T(t) = DX" () T(b),
X'(x) _ T _
X(x) DT
x(0) =0; T(t) = Bexp(CDt).
The full solution of the equation (10) is
Clx, t) = i Bm - Ex (—Do}'“)l%ni“) (55)
m=1 . [
S |Eig (Amoko%%) | + fm(T)dT
B (Amox57) | <32 /

- Eq (—Da}'“}tfnia) .S [El-a ()lma,l(‘“i("‘)] .

where S indicates the imaginary part, when a = 1, we have
the classical solution

oo

Cx, t) = ZB'" - exp (-DAZ,t) - sin(Amx)

=1

(56)

+>

m
oo
m=1

t
/ fn(T)dT | - exp (~DAZt) - sin(Amx).
0

w _ 9
D~ &D?
rameters and f3 is a constant. Figures 7, 8, 9, 10 and 11 show

1
~ -, o~ 2 . .
where, t = @t, X = ( ) x are a dimensionless pa-

Concentration
8 T
(== 0a=1.6
e a=1.5
- = =-qa=14
61 0=1.3
st b 1
;)

4t \a b
Sl
e 3 I 1
S o

2t & E

:‘.
1t "y 1
<
\ KAt
or y >
- S -
A} N ]
2 . . . .
0 2 4 6 8 10
Z,t

Figure 7: Concentration in space-time. Simulation of the equation
(55) fora € [1.3, 1.6].
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Concentration

-20

-100

-120

Figure 8: Concentration in space-time. Simulation of the equation
(55) fora € [1.7, 2].

Concentration

folch)

Figure 9: Concentration in space-time. Simulation of the equation
(55) fora = 1.7.

the simulation of equation (55), where the values of a are
arbitrarily chosen.

4 Conclusions

In this paper we introduced an alternative representation
of the fractional DAE in the range (1, 2), the nonlocal equa-
tions were examined separately; with fractional spatial
derivative and with fractional temporal derivative. In par-
ticular, a one dimensional model was considered in de-
tail. Our results indicate that the fractional order a has
an important influence on the concentration. For the tem-
poral case, in the range @ < (1, 2) the diffusion is fast
(superdiffusion phenomena and mixed diffusion-wave be-
havior) and when a = 2 we see ballistic diffusion. In the

DE GRUYTER OPEN

Concentration

O

Figure 10: Concentration in space-time. Simulation of the equation
(55) fora = 1.9.

Concentration

Figure 11: Concentration in space-time. Simulation of the equation
(55) for a = 2.0.

spatial case, in the range a € (1, 2), the diffusion ex-
hibits an increment of the amplitude and the behavior be-
comes anomalous dispersive (the diffusion increases with
increasing order of a), we observe the Markovian Lévy
flights [26].

The methodology proposed in this work can be poten-
tially useful to study rotating flow, Richardson turbulent
diffusion, diffusion of ultracold atoms in an optical lattice
and turbulent systems.
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