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Abstract: This paper presents the alternative construction
of the diffusion-advection equation in the range (1; 2). The
fractional derivative of the Liouville-Caputo type is ap-
plied. Analytical solutions are obtained in terms of Mittag-
Le�er functions. In the range (1; 2) the concentration ex-
hibits the superdiffusion phenomena and when the order
of the derivative is equal to 2 ballistic diffusion can be ob-
served, these behaviors occur in many physical systems
such as semiconductors, quantum optics, or turbulent dif-
fusion. This mathematical representation can be applied
in the description of anomalous complex processes.
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1 Introduction
The diffusion-advection equation (DAE) describes the ten-
dency of particles to be moved along by the fluid it is sit-
uated in (the convective terms arise when changing from
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Lagrangian to Eulerian frames) and the diffusion refers
to the dissipation/loss of a particles property (such as
momentum) due to internal frictional forces [1]. The dy-
namical systems of fractional order are non-conservative
and involve non-local operators [2–7]. Several approaches
have been used for investigating anomalous diffusion,
Langevin equations [8, 9], random walks [10, 11], or frac-
tional derivatives, based on fractional calculus (FC) sev-
eral works connected to anomalous diffusion processes
may be found in [12–19]. Scher and Montroll [20] pre-
senteda stochasticmodel for thephotocurrent transport in
amorphousmaterials. Mainardi in [21] presented the inter-
pretation of the corresponding Green function as a prob-
ability density, the fundamental equation was obtained
from the conventional diffusion equation by replacing the
second-order space derivative with a Riesz-Feller deriva-
tive and the first-order time derivative with a Liouville-
Caputo derivative. Luchko in [22–24] presents the gener-
alized time-fractional diffusion equation with variable co-
efficients. Jespersen in [25] presented a Riesz/Weyl form of
the DAE considered Lévy flights subjected to external force
fields, the correspondingFokker-Planck equation contains
a fractional spatial derivative. In the work [26], the frac-
tional DE, DAE and the Fokker-Planck equation were pre-
sented, the equations were derived from basic random
walk models. In the work [27] the authors proposed an
alternative solution for the fractional DAE via derivatives
of Liouville-Caputo type of order (0, 1). Based on the pre-
vious works developed by Gómez [27, 28], this paper ex-
plores the alternative construction of the DAE in the range
(1; 2) for the space-time domain. The paper is organized as
follows. In the next section, we present the fractional op-
erators. In Section 3, the analytic solution of the fractional
DAE is performed. Finally, some concluding remarks are
drawn in Section 4.
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2 Basic Tools
The Riemann-Liouville fractional integral operator of or-
der α ≥ 0 is defined as

Jα f (x) = 1
Γ (α)

x∫︁
0

(x − t)α−1 f (t)dt, α > 0, (1)

J0f (x) = f (x) .

The Liouville-Caputo fractional derivative (C) of a
function f (x) is defined as [29]

Dα f (x) = Jm−α d
m

dxm

[︂
f (x)

]︂
(2)

= 1
Γ (m − α)

x∫︁
0

f (m) (t)
(x − t)α−m+1

dx,

for m − 1 < α ≤ m, m ∈ N, x > 0, f ∈ Cm.
Also, the fractional derivative of f (x) in the Liouville-

Caputo sense satisfies the following relations

JαDα f (x) = f (x) −
m−1∑︁
k=0

f (m)
(︀
0+
)︀ xk
k! , x > 0, (3)

DαJα f (x) = f (x) .

Laplace transform to Liouville-Caputo fractional
derivative is given by [29]

L[C0Dαt f (t)] = SαF(S) −
m−1∑︁
k=0

Sα−k−1f (k)(0), (4)

where

L[C0Dαt f (t)] = sαF(s) − sα−1f (0) 0 < α ≤ 1, (5)

L[C0Dαt f (t)] = sαF(s) − sα−1f (0) − sα−2f ′(0) (6)
1 < α ≤ 2.

The inverse Laplace transform requires the introduc-
tion of the Mittag-Le�er function [30]

Eα,β(t) =
∞∑︁
m=0

tm
Γ(αm + β) , (α > 0), (β > 0). (7)

Some common Mittag-Le�er functions are [30, 31]

E1/2(±z) = ez
2
[1 ± erfc(z)], (8)

E1(±z) = e±z ,
E2(−z2) = cos(z),

E3(z) =
1
2

[︁
ez

1/3
+ 2e−(1/2)z

1/3
cos
(︁√3

2 z1/3
)︁]︁

,

E4(z) =
1
2

(︁
cos(z1/4) + cosh(z1/4)

)︁
,

Es/2,r(z) =
z2κ(1−r)
s

s−1∑︁
j=0

β1−(s/2+r)j (exp(βjz2κ))(βs/2j

+ erfc(β1/2j zκ)) − z−2n
2n−1∑︁
k=0

zk
Γ(sk/2 + µ) ,

where κ = 1/s, r = ns+ µ, n = 0, 1, 2, 3, . . ., µ = 1, 2, 3, . . .
[32, 33]. The erfc(z) denotes the error function [30]

erfc(z) = 2√
π

z∫︁
0

exp(−t2)dt. (9)

3 Local Diffusion-Advection
Equation

The equation (10) describes the processes of diffusion-
advection

D ∂
2C(x, t)
∂x2 + ϑ ∂C(x, t)∂x − ∂C(x, t)∂t = 0, (10)

where C is the concentration, D is the diffusion coefficient
and ϑ is the drift velocity, this equation predicts the con-
centration distribution onto one dimensional axis x.

3.1 Nonlocal Time Diffusion-Advection
Equation

Based on the previous work developed by Gómez [27], we
introduce an auxiliary parameter σt as follows

∂
∂t →

1
σ1−αt

· ∂
α

∂tα , n − 1 < α ≤ n, (11)

where n is integer, theparameter σt hasdimensionsof time
(seconds). The authors of [34] used the Planck time, tp =
5.39106 × 10−44 seconds, with the finality to preserve the
dimensional compatibility, the σt parameter corresponds
to the tp in our calculations. Consider (11) in the eq. (10),
the temporal fractional equation of order α ∈ (1, 2] be-
comes
∂αC(x, t)
∂tα − ϑtp1−α

∂C(x, t)
∂x − Dtp1−α

∂2C(x, t)
∂x2 = 0. (12)

Suppose the solution

C(x, t) = C0eikxu(t), (13)

where k is the wave number in the x direction and C0 is a
constant. Substituting (13) into (12) we obtain

dαu(x)
dtα + (Dk2 − iϑk)tp1−αu(t) = 0, (14)
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where
ω2 = (Dk2 − iϑk), (15)

is the dispersion relation and

ω̃2 = (Dk2 − iϑk)tp1−α = ω2tp1−α , (16)

where ω̃2 is the fractional dispersion relation in the
medium and ω2 is the ordinary dispersion relation. From
the fractional dispersion relation (15) we have

ω = δ − iφ, (17)

substituting (17) into (16) we have

(δ − iφ)2 = δ2 − 2iδφ − φ2, (18)

where
δ2 − 2iδφ − φ2 = (Dk2 − iϑk)tp1−α , (19)

solving for φ we obtain

φ = ϑk
2δ tp

1−α , (20)

and for δ

δ = k
√︁
Dtp1−α

[︃
1
2 ±

1
2

√︂
1 + ϑ2

k2D2

]︃ 1
2

, (21)

substituting (21) into (20) we have

φ = ϑ2 ·
1

√
D
[︂
1
2 ±

1
2

√︁
1 + ϑ2

kD2

]︂ 1
2

√︁
tp1−α . (22)

Now the fractional natural frequency is, ω̃ = δ − iφ,
where δ and φ are given by (21) and (22) respectively

ω̃ =

⎛⎝k√D [︃12 ± 12
√︂
1 + ϑ2

kD2

]︃ 1
2

(23)

−i ϑ

2
√
D
[︂
1
2 ±

1
2

√︁
1 + ϑ2

kD2

]︂ 1
2

⎞⎟⎟⎟⎠
√︁
tp1−α .

The equation (23) describes the real and the imaginarypart
of ω̃ in terms of thewave number k, the viscous drag ϑ, the
diffusion coefficient D and the fractional temporal compo-
nents σt.

Substituting (16) into (14) we obtain

dαu(t)
dtα + ω̃2u(t) = 0, (24)

where
u(t) = Eα(−ω̃2tα). (25)

The particular solution of equation (24) is

C(x, t) = C0 · e−ikx · Eα(−ω̃2tα), (26)

nowwewill analyze the casewhen α takesdifferent values.
When α = 3/2, we have, ω̃2 = ω2tp−1/2, substituting

this expression in (26) we have

C(x, t) = C0 · e−ikx · E3/2(−ω̃2t3/2), (27)

where

ω̃ =

⎛⎝k√D [︃12 ± 12
√︂
1 + ϑ2

kD2

]︃ 1
2

(28)

−i ϑ

2
√
D
[︂
1
2 ±

1
2

√︁
1 + ϑ2

kD2

]︂ 1
2

⎞⎟⎟⎟⎠
√︁
tp−1/2,

where, E3/2 is given by (9), in this case z = −ω̃2t3/2. Sub-
stituting E3/2 into (27) the solution is

C(x, t) = C0 · eikx ·

⎡⎣1
3

2∑︁
j=0

β−3/2j

(︁
exp

(︁
βjz2/3

)︁)︁
(29)

(︁
β3/2j + erfc

(︁
β1/2j z1/3

)︁)︁
− z−2n

2n−1∑︁
k=0

zk
Γ(3k/2 + µ)

]︃
,

this equation represent the fractional concentration in the
medium for α = 3/2.

When α = 2, we have, ω̃2 = ω2tp−1, substituting this
expression in (26) we have

C(x, t) = C0 · eikx · E2(−ω̃2t2), (30)

where

ω̃ =

⎛⎝k√D [︃12 ± 12
√︂
1 + ϑ2

kD2

]︃ 1
2

(31)

−i ϑ

2
√
D
[︂
1
2 ±

1
2

√︁
1 + ϑ2

kD2

]︂ 1
2

⎞⎟⎟⎟⎠
√︁
tp−1.

Substituting E2 given by (8) into (30) the solution is

C(x, t) = ℜ[C0 · ei(kx−ω̃t)], (32)

ℜ indicates the real part and ω̃ = (δ − iφ)
√︀
tp−1. The

first exponential ei(kx−δt
√
tp−1) gives the well-kown plane-

wave variation of the concentration. The second exponen-
tial e−φt

√
tp−1 gives and exponential decay in the amplitude

of the wave.
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In this case exists a physical relation given by

α = ωtp =
tp
T0

, 0 < tp ≤ T0, (33)

we can use this relation (33) in order to from equation (26)
as

C(x, t̃) = C0 · eikx · Eα
(︁
− α1−α t̃α

)︁
. (34)

Figure 1 and 2 show the simulation of the equation (34)
for α values arbitrarily chosen between [1.3, 2). For α ∈
[1.3, 2), we observe superdiffusion and for α = 2 ballistic
diffusion [26].
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Figure 1: Concentration distribution for the temporal case. Simula-
tion of equation (34) for α ∈ [1.3, 1.6].
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Figure 2: Concentration distribution for the temporal case. Simula-
tion of equation (34) for α ∈ [1.3, 2]. If α = 2 we find the ballistic
diffusion.

3.2 Nonlocal Space Diffusion-Advection
Equation

Now, we consider

∂
∂x → 1

σ1−αx
· ∂

α

∂xα , n − 1 < α ≤ n, (35)

where n is integer, the parameter σx has dimensions of
length (meters). In our calculations we used the Planck
length, lp = 1.616199 × 10−35 meters, with the finality
to preserve the dimensional compatibility, the parameter
σx = lp. The spatial fractional equation of order α ∈ (1, 2]
is

∂2αC(x, t)
∂x2α + ϑ

D lp
1−α ∂αC(x, t)

∂xα (36)

− 1
D lp

2(1−α) ∂C(x, t)
∂t = 0,

A particular solution is given by

C(x, t) = C0e−ωtu(x), (37)

where ω is the natural frequency and C0 is a constant.
Substituting (37) into (36) we obtain

d2αu(x)
dx2α + ϑ

D lp
1−α dαu(x)

dxα + ωD lp
2(1−α)u(x) = 0. (38)

The solution of (38) is given by

C(x, t) = C0e−ωt · Eα
(︁
− ϑ
2D lp

1−αxα
)︁
· (39)

· E2α
(︁
−
[︁ω
D −

ϑ2
4D2

]︁
lp2(1−α)x2α

)︁
.

For the underdamped case, with (ωD −
ϑ2
4D2 ) = 0, ϑ =

2
√
ωD. Considering ϑ = 2

√
ωD and C(0) = C0 in equation

(39), K⃗2 = ω
D is the wave vector and α

2 = ϑ
2D is the damping

factor. Nowwewill analyze the casewhen α takes different
values.

When α = 3/2, from equation (39) we have

C(x, t) = C0e−ωt · E3/2
(︁
− ϑ
2D lp

−1/2x3/2
)︁
· (40)

· E3
(︁
−
[︁ω
D −

ϑ2
4D2

]︁
lp−1x3

)︁
,

where E3/2 is given by (9) and E3 by (8), for the case of E3/2,
z = − ϑ

2D lp
−1/2x3/2 and for E3, z =

(︁
−
[︁
ω
D −

ϑ2
4D2

]︁
lp−1x3

)︁
.

When α = 2, from equation (39) we have

C(x, t) = C0e−ωt cos
(︃√︂

ϑ
2D lp

−1x
)︃
· (41)

· E4
(︂
−
[︂
ω
D −

ϑ2
4D2

]︂
lp−2x4

)︂
,



672 | F. Gómez et al.

where E4 is given by (8), for E4, z =
(︁
−
[︁
ω
D −

ϑ2
4D2

]︁
lp−2x4

)︁
.

In this case a physical relationship between α and lp
is given by

α =
(︁ω
D −

ϑ2
4D2

)︁ 1
2 lp , 0 < lp ≤

1(︁
ω
D −

ϑ2
4D2

)︁ 1
2
. (42)

Then, the solution (39) for the underdamped case ϑ <
2
√
ωD or η < K⃗0 takes the form

C(x̃, t) = C0e−ωt · Eα

⎛⎝− ϑ

2D
√︁

ω
D −

ϑ2
4D2

α1−α x̃α
⎞⎠ · (43)

· E2α
(︁
−α2(1−α) x̃2α

)︁
,

where x̃ =
(︁
ω
D −

ϑ2
4D2

)︁ 1
2 x.

Due to the condition ϑ < 2
√
ωD we have

ϑ

2D
√︁

ω
D −

ϑ2
4D2

= 1
3 , 0 ≤ ϑ

2D
√︁

ω
D −

ϑ2
4D2

< ∞. (44)

Thus, the solution (39) takes its final form

C(x̃, t) = C0e−ωt ·Eα
(︁
− 13α

1−α x̃α
)︁
·E2α

(︁
−α2(1−α) x̃2α

)︁
. (45)

Figures 3 and 4 show the simulation of equation (45)
for α ∈ [1.3, 2).

In the overdamped case, η > K⃗0 or ϑ > 2
√
ωD, the

solution of the equation (39) is given by

C̃(x, t) = C̃0e−ωt · Eα
(︂
− ϑ
2D lp

1−αxα
)︂
· (46)

· Eα

(︃
−
[︂
ϑ2
4D2 −

ω
D

]︂ 1
2

lp1−αxα
)︃
,
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Figure 3: Concentration distribution for the underdamped spatial
case. Simulation of the equation (45) for α ∈ [1.3, 1.6].
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Figure 4: Concentration distribution for the underdamped spatial
case. Simulation of the equation (45) for α ∈ [1.3, 2].

Now we will analyze the case when α takes different
values.

If α = 3/2, from equation (46) we have

C̃(x, t) = C̃0e−ωt · E3/2
(︂
− ϑ
2D lp

−1/2x3/2
)︂
· (47)

· E3/2

(︃
−
[︂
ϑ2
4D2 −

ω
D

]︂ 1
2

lp−1/2x3/2
)︃
,

where E3/2 is given by (9), for the case of E3/2, z1 =

− ϑ
2D lp

−1/2x3/2 and z2 =
(︂
−
[︁
ϑ2
4D2 − ω

D

]︁1/2
lp−1/2x3/2

)︂
.

Now, from α = 2 we have

C̃(x, t) = C̃0e−ωt · E2
(︂
− ϑ
2D lp

−1x2
)︂
· (48)

· E2

(︃
−
[︂
ϑ2
4D2 −

ω
D

]︂ 1
2

lp−1x2
)︃
,

substituting E2 given by (8) into (48) we obtain the solu-
tion

C̃(x, t) = C̃0e−ωt · cos
(︃√︂

ϑ
2D lp

−1x
)︃
· (49)

· cos

⎛⎝√︃[︂ ϑ2
4D2 −

ω
D

]︂1/2
lp−1x

⎞⎠ .

In this case a physical relation is given by

α =
(︁ ϑ2
4D2 −

ω
D

)︁ 1
2 lp , 0 < lp ≤

1(︁
ϑ2
4D2 − ω

D

)︁ 1
2
. (50)

substituting the relation (50), the solution (46) takes the
form

C̃(x̃, t) = C̃0e−ωt · Eα

⎛⎝− ϑ

2D
√︁

ϑ2
4D2 − ω

D

α1−α x̃α
⎞⎠ · (51)
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· Eα
(︁
−α1−α x̃α

)︁
,

where x̃ =
(︁

ϑ2
4D2 − ω

D

)︁ 1
2 x.

Due the condition ϑ > 2
√
ωD, we have

ϑ

2D
√︁

ϑ2
4D2 − ω

D

= 2, 1 < ϑ

2D
√︁

ϑ2
4D2 − ω

D

< ∞. (52)

Then, the solution (46) is given by

C̃(x̃, t) = C̃0e−ωt · Eα
(︁
−2α1−α x̃α

)︁
· (53)

· Eα
(︁
−α1−α x̃α

)︁
.

Figures 5 and 6 show the simulation of the equation
(53) for α ∈ [1.3, 2), where the values of α are arbitrarily
chosen.
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Figure 5: Concentration distribution for the underdamped spatial
case. Simulation of the equation (45) for α ∈ [1.3, 1.6].
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Figure 6: Concentration in the overdamped spatial case. Simulation
of the equation (45) for α ∈ [1.3, 2].

3.3 Nonlocal Time-Space
Diffusion-Advection Equation

Now we consider the fractional DAE, when t = 0, x ≥ 0
and x = L, C(0, t) = 0 and initial conditions 0 < x < L, t =
0 : T(t, 0) = To > 0 and 0 < x < L, t = 0 : ∂C

∂x |x→∞ = 0.
Applying the Fourier method we have

C(t, x) = X(x)T(t), (54)
X(x)Ṫ(t) = DX′′(x)T(t),

X′′(x)
X(x) = Ṫ(t)

DT(t) = C

x(0) = 0; T(t) = β exp(CDt).

The full solution of the equation (10) is

C(x, t) =
∞∑︁
m=1

βm · Eα
(︁
−Dσ1−αt λ2m t̃α

)︁
(55)

· ℑ
[︁
Eiα
(︁
λmσ1−αx x̃α

)︁]︁
+

∞∑︁
m=1

⎡⎣ t∫︁
0

fm(τ)dτ

⎤⎦
· Eα

(︁
−Dσ1−αt λ2m t̃α

)︁
· ℑ
[︁
Eiα
(︁
λmσ1−αx x̃α

)︁]︁
.

whereℑ indicates the imaginary part,when α = 1,wehave
the classical solution

C(x, t) =
∞∑︁
m=1

βm · exp (−Dλ2m t) · sin(λmx) (56)

+
∞∑︁
m=1

⎡⎣ t∫︁
0

fm(τ)dτ

⎤⎦ · exp (−Dλ2m t) · sin(λmx).
where, t̃ = ω⃗t, x̃ =

(︁
ω
D −

ϑ2
4D2

)︁ 1
2 x are a dimensionless pa-

rameters and β is a constant. Figures 7, 8, 9, 10 and 11 show
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Figure 7: Concentration in space-time. Simulation of the equation
(55) for α ∈ [1.3, 1.6].
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Figure 8: Concentration in space-time. Simulation of the equation
(55) for α ∈ [1.7, 2].

Figure 9: Concentration in space-time. Simulation of the equation
(55) for α = 1.7.

the simulation of equation (55), where the values of α are
arbitrarily chosen.

4 Conclusions
In this paper we introduced an alternative representation
of the fractionalDAE in the range (1, 2), thenonlocal equa-
tions were examined separately; with fractional spatial
derivative and with fractional temporal derivative. In par-
ticular, a one dimensional model was considered in de-
tail. Our results indicate that the fractional order α has
an important influence on the concentration. For the tem-
poral case, in the range α ∈ (1, 2) the diffusion is fast
(superdiffusion phenomena andmixed diffusion-wave be-
havior) and when α = 2 we see ballistic diffusion. In the

Figure 10: Concentration in space-time. Simulation of the equation
(55) for α = 1.9.

Figure 11: Concentration in space-time. Simulation of the equation
(55) for α = 2.0.

spatial case, in the range α ∈ (1, 2), the diffusion ex-
hibits an increment of the amplitude and the behavior be-
comes anomalous dispersive (the diffusion increases with
increasing order of α), we observe the Markovian Lévy
flights [26].

The methodology proposed in this work can be poten-
tially useful to study rotating flow, Richardson turbulent
diffusion, diffusion of ultracold atoms in an optical lattice
and turbulent systems.
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