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Abstract: The time-dependent density functional theory
(TDDFT)methodwas performed to investigate the excited-
state intramolecular double proton transfer (ESIDPT) reac-
tion of calix[4]arene (C4A) and the role of the intramolecu-
lar hydrogen bonds in the ESIDPT process. The geometries
of C4A in the ground state and excited states (S1, S2 and
T1) were optimized. Four intramolecular hydrogen bonds
formed in the C4A are strengthened or weakened in the S2
and T1 states compared to those in the ground state. Inter-
estingly, upon excitation to the S1 state of C4A, two pro-
tons H1 and H2 transfer along the two intramolecular hy-
drogenbondsO1-H1· · · O2 andO2-H2· · · O3,while the other
two protons do not transfer. The ESIDPT reaction breaks
the primary symmetry of C4A in the ground state. The po-
tential energy curves of proton transfer demonstrate that
the ESIDPT process follows the stepwise mechanism but
not the concerted mechanism. Findings indicate that in-
tramolecular hydrogen bonding is critical to the ESIDPT
reactions in intramolecular hydrogen-bonded systems.
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1 Introduction
Hydrogen bonding is one of the most important con-
cepts in the disciplines of physics, chemistry, and biol-
ogy [1, 2]. Hydrogen bonding includes intermolecular hy-
drogen bonds and intramolecular hydrogen bonds, which
often play a remarkable role in conformational preference,
and photochemical and photophysical processes [3–5].
For example, Zhao et al. investigated intramolecular hy-
drogen bonding in both singlet and triplet excited states
of aminofluorenones, and their findings indicated that the
intramolecular hydrogen bond can facilitate an intersys-
tem crossing (ISC) process and inhibit the occurrence of
twisted intramolecular charge transfer (TICT) [6].

Proton transfer reactions in the excited state at-
tract a lot of attention in physical, chemical, and bi-
ological systems [7–13]. Due to molecular structure,
proton transfer can be intermolecular as well as in-
tramolecular. Excited-state intramolecular proton trans-
fer (ESIPT) reactions in hydrogen-bonded systems have
been studied experimentally and theoretically [14–
17]. A large number of organic molecules which un-
dergo ESIPT have been identified, such as 4’-N,N-
diethylamino-3-hydroxyflavone (DEAHF) [18], 2,5-bis(2-
benzoxazolyl)-4-methoxyphenol (BBMP) [19], and 2-
(2’-hydroxyphenyl)benzazole (HBO) [20]. Specifically,
[2,2’-bipyridyl]-3,3’-diol (BP(OH)2) [21, 22], a diamino-
bipyridine basedC3-symmetrical diskmolecule (TAB) [23],
and a subgroup molecule (DAC) [23] show interesting
excited-state intramolecular double proton transfers (ES-
IDPT).

The calixarenes are particularly attractive as a basic
skeleton for new supramolecular systemsdue to theirwell-
defined molecular framework [24–28]. The calix[4]arene
(C4A) has four conformers [25, 29–32]. Previous studies
have demonstrated that the cone conformer is the most
stable [29, 32]. Four intramolecular hydrogen bonds O-
H· · · O are formed in the cone conformers of C4A, which
allows C4A to act as host for a wide range of guests. Thus,
C4A is an excellentmodel inwhich to study intramolecular
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hydrogen bonding in the excited state [32–35]. However,
little information is available on electronic excited-state
intramolecular hydrogen bonding due to the extremely
short timescales involved. The ESIPT reaction may take
place in the excited state of C4A.

Recently, it has been reported that excited-state dou-
ble proton transfer (ESDPT) in 2-aminopyridine (2AP)/acid
systems is facilitated by electronic excited-state hydro-
gen bond strengthening and employs the stepwise mech-
anism [36]. However, the mechanism of the ESIPT pro-
cess and the role of intramolecular hydrogen bonding in
the ESIPT process of C4A are still unknown. This study
is concentrated on the cone conformer and the geomet-
ric conformations of C4A in the ground state and the ex-
cited state using the density functional theory (DFT) and
time-dependent density functional theory (TDDFT) meth-
ods, respectively. The TDDFT method has been confirmed
as a very useful and reliable tool to study the excited states
of large molecules [37–44]. This study probes the excited-
state geometries of C4A and the changes in excited-state
intramolecular hydrogen bonding. How many protons
transfer in the excited state? We focus our attention on
the mechanism of the ESIPT reaction and the role of in-
tramolecular hydrogen bonding in the ESIPT reaction.

2 Computational methods
The ground-state and electronic excited-state geometry
optimizations of C4A were performed by the DFT and
TDDFT methods, respectively [45–49]. In our DFT and
TDDFT calculations, the B3-LYP (Becke’s three-parameter
hybrid exchange function with Lee-Yang-Parr gradient-
corrected correlation) functional and theTZVP (triple-ζ va-
lence quality with one set of polarization functions) ba-
sis set were used [50, 51]. Fine quadrature grids 4 were
also employed [52]. Harmonic vibrational frequencies in
the ground state were determined by diagonalization of
the Hessian [53]. The infrared intensities were determined
from the gradients of the dipole moment [54]. All the elec-
tronic structure calculations were carried out using the
TURBOMOLE program suite [55–58].

3 Results and discussion

3.1 Ground-state geometric conformations

Fig. 1 shows the optimized geometric conformations of
C4A in the ground state. C4A consists of methylene linked

Figure 1: Optimized geometric conformations of calix[4]arene (C4A)
in the ground state.

Figure 2: Calculated infrared spectra of calix[4]arene (C4A) in the
ground state.

by four phenol molecules with a cavity. There are four in-
tramolecular hydrogen bonds forming a ring in the C4A
molecule. The structural parameters of C4A in the ground
state are labeled in Table 1. For the C4A molecule, these
parameters are almost the same, including the lengths
of intramolecular hydrogen bonds, the lengths of C-O
bonds, and the angles of intramolecular hydrogen bonds
(e.g. ∠O1-H1· · · O2). Thus, the four intramolecular hydro-
gen bonds are equal. The infrared vibrational spectrum of
C4A in the ground state is calculated (Fig. 2). It can be
seen that the calculated H-bonded OH stretching vibra-
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Figure 3: Optimized geometric conformations of calix[4]arene (C4A) in the excited states.

tional frequency in the ground state is 3181 cm−1. The cor-
responding experimental datum is 3158 cm−1 [33].

3.2 Excited-state geometric conformations
and the excited-state intramolecular
double proton transfer reaction

Optimized geometric conformations of C4A in the S1, S2
and T1 states are shown in Fig. 3. It is noted that the
ESIDPT process occurs for the C4A molecule in the S1
state. Interestingly, upon excitation to the S1 state, both
the protons H1 and H2 of the C4A molecule transfer along
the intramolecular hydrogen bonds O1-H1· · · O2 and O2-

H2· · · O3, respectively, while the protons H3 and H4 do not
transfer. Furthermore, with the ESIDPT reaction proceed-
ing in the S1 state, the symmetry of C4A (C4v in the ground
state) is broken.

As shown in Fig. 3 and Table 1, the geometric confor-
mations of C4A in the S2 and T1 states are not changed
much compared with the ground state. For the C4A
molecule in the S2 state, the intramolecular hydrogen
bonds O1-H1· · · O2 and O3-H3· · · O4 are longer by 0.075 Å
and 0.207 Å than in the ground state, respectively. At
the same time, the intramolecular hydrogen bonds O2-
H2· · · O3 and O4-H4· · · O1 are shorter by 0.101 Å and
0.018 Å than in the ground state, respectively. In other
words, when photoexcited to the S2 state, the four in-
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Table 1: Calculated lengths (Å) and angles (∘) of intramolecular
hydrogen bonds and intramolecular hydrogen-bonded groups of
calix[4]arene (C4A) in the ground state and excited states.

ground
state

excited state

S0 S1 S2 T1
C1-O1 1.381 1.265 1.389 1.381
C2-O2 1.381 1.394 1.347 1.381
C3-O3 1.381 1.488 1.409 1.383
C4-O4 1.381 1.394 1.353 1.374
O1-H1

(O1· · ·H1)
0.987 1.722 0.979 0.986

H1· · ·O2
(H1-O2)

1.701 0.982 1.776 1.700

O2-H2
(O2· · ·H2)

0.987 1.586 1.010 0.986

H2· · ·O3
(H2-O3)

1.701 1.015 1.600 1.715

O3-H3 0.987 1.014 0.973 0.983
H3· · ·O4 1.702 1.588 1.909 1.771
O4-H4 0.987 0.982 0.993 0.987
H4· · ·O1 1.702 1.726 1.684 1.738

O1-H1· · ·O2
(O1· · ·H1-O2)

163.5 158.6 158.7 164.0

O2-H2· · ·O3
(O2· · ·H2-O3)

163.6 167.9 165.6 163.5

O3-H3· · ·O4 163.6 167.8 152.6 162.6
O4-H4· · ·O1 163.6 158.4 161.4 160.9

tramolecular hydrogen bonds are weakened and strength-
ened in turn in comparison with the ground state. In the
T1 state, the intramolecular hydrogen bond O1-H1· · · O2
is shortened by 0.001 Å compared with the ground state,
and the intramolecular hydrogen bonds O2-H2· · · O3, O3-
H3· · · O4 and O4-H4· · · O1 are lengthened by 0.014 Å,
0.069 Å and 0.036 Å, respectively.

3.3 Excited-state intramolecular double
proton transfer reaction mechanism

In the S1 state of C4A, the protonsH1 andH2 transfer along
the intramolecular hydrogen bonds O1-H1· · · O2 and O2-
H2· · · O3, respectively. The fundamental question is theES-
IDPT reaction mechanism. Three types of possible ESIDPT
process for C4A are shown in Scheme 1. In the concerted
mechanism, proton H1 transfers along the intramolecular
hydrogen bond O1-H1· · · O2, and proton H2 transfers along
O2-H2· · · O3. The two protons move concertedly. The step-

Figure 4: Calculated potential energy curves of Calix[4]arene (C4A)
along the proton transfer (PT) coordinate with different mecha-
nisms. (a) represents transfer of the first proton. (b) represents
transfer of the second proton.

wise 1 mechanism has proton H1 transferring along the
intramolecular hydrogen bond O1-H1· · · O2. After the pro-
ton H1 arrives, proton H2 starts to transfer along the in-
tramolecular hydrogen bond O2-H2· · · O3. The stepwise 2
mechanism has the sequence opposite to the stepwise 1
mechanism. However, the exact mechanism still needs to
be investigated.

The potential energy curves are very helpful for inves-
tigating the proton transfer reaction mechanism. Fig. 4a
presents three calculated potential energy curves in the S1
state along theproton transfer coordinates of C4A. Thefirst
corresponds to the stepwise 1 mechanism, where the pro-
ton H1 transfers along the intramolecular hydrogen bond
O1-H1· · · O2. The excited-state potential energy curves are
calculated and scannedby increasing the length of theO1–
H1 bond with a step of 0.1 Å. The second curve belongs to
the stepwise 2 mechanism, in which proton H2 transfers
along the intramolecular hydrogen bond O2-H2· · · O3. The
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Scheme 1: Three types of the excited-state intramolecular double proton transfer (ESIDPT) reaction mechanism of calix[4]arene (C4A).

potential energy curves in the excited state are calculated
and scanned by increasing the length of the O2-H2 bond
with a step of 0.1 Å. The third type is in accordance with
the concertedmechanism, where protons H1 and H2 begin
tomove simultaneously. In this case, it is proposed that the
rate of proton H1 transfer is approximately equal to that of
proton H2. Hence, the lengths of both the O1-H1 and O2-H2
bonds are synchronously tuned with a step of 0.1 Å. It can
be seen that the barrier of the potential energy curve with
the concertedmechanism is the highest of the three poten-
tial energy curves. Furthermore, the potential energy curve
with the concertedmechanism is higher than the other two
potential energy curveswith stepwisemechanisms. There-
fore, it is demonstrated that the concerted mechanism is
impossible for C4A. In addition, due to the two protons H1
and H2 being equal in the molecular structure, the differ-
ence between the barriers of the potential energy curves
with the stepwise 2mechanism and stepwise 1mechanism
is not so obvious. Hence, it is demonstrated that the step-
wise 1 and 2 mechanisms are both possible for the ESIDPT
reaction of C4A.

To further confirm the stepwise mechanism and ex-
clude the concerted mechanism, Fig. 4b shows and addi-
tional three potential energy curves in the S1 state along
the proton transfer coordinate for C4A. Of the three po-
tential energy curves, the first (stepwise 1 mechanism)
denotes that the proton H2 transfers along the hydrogen

bond O2-H2· · · O3 after the proton H1 has arrived. The sec-
ond curve (stepwise 2 mechanism) denotes that the pro-
ton H1 transfers along the hydrogen bond O1-H1· · · O2 af-
ter the proton H2 has arrived. The third curve (concerted
mechanism) denotes that the protonH1 transferswhen the
proton H2 is located in the intermediate site of the hydro-
gen bondO2-H2· · · O3. One can clearly note that the barrier
of the third potential energy curve is always the highest
among the three possibilities. Hence, the concerted mech-
anism is excluded and the stepwisemechanism for the ES-
DPT process is confirmed again. Additionally, the barriers
of the potential energy curves with the stepwise mecha-
nisms in Fig. 4a are higher than those of corresponding
potential energy curves in Fig. 4b. It is demonstrated that
a proton (H2 or H1) is easier to transfer after the other pro-
ton (H1 or H2) has arrived. In other words, the transfer of
one proton, before which no protons has transferred, oc-
curs with more difficulty.

3.4 The role of intramolecular hydrogen
bonding in the excited-state
intramolecular double proton transfer

An interesting question is put forward: for the C4A
molecule in the S1 state, why do only the two protons H1
and H2 transfer along the intramolecular hydrogen bonds
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rather than all of the protons? For the C4A molecule in
the S1 state, the distance between H1 and O2/H2 and O3
is drastically shortened by 0.719 Å/0.686 Å in comparison
with the ground state, which may be caused by the proton
transfer reaction. However, the intramolecular hydrogen
bonds O3-H3· · · O4 and O4-H4· · · O1 are shortened by only
0.114 Å in the former case and even lengthened by 0.024 Å
in the latter in the S1 state, which may not induce the pro-
ton to transfer. In the S2 state of C4A, the intramolecular
hydrogen bonds O1-H1· · · O2 and O3-H3· · · O4 are length-
ened and O2-H2· · · O3 and O4-H4· · · O1 are only shortened
by 0.101 Å and 0.018 Å compared to the ground state,
which may not induce the protons to transfer. The case
study for C4A in the T1 state is similar to the S2 state.
Hence, it is demonstrated that the changes of intramolec-
ular hydrogen bonds in the excited state play a crucial role
in the ESIDPT reaction. The ESIDPT reaction can be facili-
tated by the strengthening of the excited-state intramolec-
ular hydrogen bonds.

4 Conclusion
The intramolecular hydrogen bonds in C4A are strength-
ened or weakened in the S2 and T1 states compared to
those in the ground state. Upon excitation to the S1 state
of C4A, the two protons H1 and H2 transfer along the
two intramolecular hydrogen bonds O1-H1· · · O2 and O2-
H2· · · O3, while the other two protons do not transfer. The
ESIDPT reaction breaks the primary symmetry of C4A in
the ground state. The potential energy curves of proton
transfer were calculated to investigate the ESIDPT mecha-
nism. It is demonstrated that for C4A, the concertedmech-
anism is excluded. The stepwise 1 mechanism (H1 trans-
fers first) and stepwise 2mechanism (H2 transfers first) are
both possible due to the equivalence of protons H1 and H2
in themolecular structure. In addition, some intramolecu-
lar hydrogen bonds are strengthened remarkably in the S1
state and strong enough to lead to proton transfer, which
could directly influence the molecular structures and re-
activity. The ESIDPT reaction could directly influence the
molecular structures and reactivity. The important role of
intramolecular hydrogen bonding in the ESIDPT reactions
may exist in other intramolecular hydrogen-bonded sys-
tems.
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