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Abstract: Propagators approximated by meromorphic
functions with complex conjugated poles are widely used
to model the infrared behavior of QCD Green’s functions.
In this paper, analytical solutions for two point correlators
made out of functions with complex conjugated poles or
branch points have been obtained in the Minkowski space
for the first time. As a special case the Gribov propagator
has been considered as well. The result is different from
the naive analytical continuation of the correlator primar-
ily defined in the Euclidean space. It is free of ultraviolet
divergences and instead of Lehmann it rather satisfies Gri-
bov integral representation.
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1 Introduction
The explanation of hadron properties in terms of QCD de-
grees of freedom represents a hard non-perturbative task,
especially when the energy of a process does not com-
ply with the asymptotic freedom and particle like descrip-
tion of hadron constituents. Chiral symmetry breaking and
confinement are themain phenomenabeyond the applica-
bility of perturbation theory.

That confinement can be naturally encoded in analyti-
cal properties ofQCDGreen’s functions is anold-fashioned
conjecture [1–9]. Quark and gluon propagators with com-
plex conjugated singularities are long-standing outcomes
of many Bethe-Salpeter and Schwinger-Dyson equation
(SDEs) studies [10–16], noting here that considered prop-
agators, either calculated or phenomenologically used,

*Corresponding Author: Vladimir Šauli: Department of Theo-
retical Physics, Institute of Nuclear Physics Rez near Prague, CAS,
Czech Republic; Email: sauli@ujf.cas.cz

usually exhibit not one but several complex conjugated
poles (infinite number of poles with zero measure i.e. the
cuts are possible as well). For instance, the quark propa-
gator considered as a series

Sq =
∑︁
i

ri
̸ p − mi

+ ri
̸ p − m*i

, (1)

where mi are complex numbers and ri real residua, ac-
tually provides a good ingredient for calculations of pion
observables. Note that in practice, most non-perturbative
studies (and all cited above) are based on the use of Eu-
clidean metric from the beginning and the calculations
performed in Minkowski space that are due to the known
obstacles very rare [17, 18]. Guiding by simple assumption
that physics in Minkowski space can be read from the an-
alytical continuation of the solutions via Euclidean the-
ory, the lattice data has been checked against the form of
Stjieltjes representation [19, 20]. Also the solutions of SDEs
[21–23] have been discussed in the context of the usual dis-
persion relation.

The assumed structure of propagators describing the
confinement of quarks and gluons, i.e. the form repre-
sented by (1), implies the loss of perturbative analyticity.
In this paper we readdress some important issues of ana-
lytical properties of the 2-point Green’s function. For this
purpose we consider a 2-point correlation function of the
following form

Π(p) = i
∫︁

d4l
(2π)4 ΓG(l)ΓG(l − p) . (2)

Using the Gribov propagator:

G(p2) = 1
p2 + µ4

p2
, (3)

Here we ignore the spin structure as considering a tenso-
rial structure is straightforward. We will explicitly calcu-
late the correlator (2) in Minkowski space and show that
the correlator does not satisfy spectral representation but
it reflects and in fact it reproduces the Gribov form in its
own continuous integral representation. Recall that the
loss of reflection positivity is expected for theory with con-
finement. This is the specific form of analyticity, which en-
sures the non existence of spectral (Lehmann) representa-
tion at all.
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The choice of the function (3) is well motivated due to
the fact that the propagator with Gribovmass µ appears as
the solution of Gribov copy problem [1, 3]. Actually, it was
shown in [24–26] that if QCD is properly quantized then
the gluon propagator in Landau gauge receives the Gribov
form in a non-perturbative manner. Notice, it has the sim-
plest non-trivial complex conjugated poles, which are lo-
cated on the imaginary axis of the p2 complex plane.

The purpose of this presented paper is twofold: the
first point is to show that the evaluation of the loop with
the propagators (3,1) inMinkowski space is feasible and its
analytical evaluation is certainly not too demanding. For
the second point, wemention the possible related physics.

The knowledge of correct analytical behaviour in the
whole complex momentum plane is highly useful. How-
ever, let us stress that we start with Minkowskian defini-
tion and thus the final result is not given by analytical
continuation of the expression primarily defined within
the use of a real Euclidean theory. As a consequence, we
will show that the correlator with Gribov propagators pro-
duces a purely imaginary result, contradicting thus the
usual naive Wick rotation. Furthermore, the obtained re-
sult is ultraviolet finite which is another striking outcome
of the presented calculation.

Regarding the two point correlator matrix (2), it has
played a long-standing and historically unprecedented
role inphysics. Such twopoint functions can stand forQED
like V−V or A−A current correlators considered originally
in QCD SumRules [27, 28] or it can represent colored gluon
polarization functions, quark self-energy etc. depending
on what we mean by the vertex Γ and the propagator(s) G.
While the results do not support too much the old conjec-
ture of quark-hadron duality, the integral representation
derived thorough this paper can actually be used in prac-
tice for bound states and form factor calculations. Remem-
bering here its weak coupling prerequisite: the Perturba-
tion Theory Integral Representation [29], which has found
its own application in bound state calculations [30, 31] in
non-confining theory.

We will consider not only a Gribov propagator, but a
wider class of the functions which have the complex con-
jugated singularities including the poles as well as branch
points in general. Before going aheadwe simplify and con-
sider the analytical structure alone. Note however, that us-
ing suitable "trace projectors" and after some trivial alge-
bra, any correlatormatrix (2) canbe cast into the sumof the
product of matrices,tensors and the following scalar form
factors

Π(p2) = iI(p2) = i
∫︁

d4l
(2π)4 Γ(l, p)G(l)G(l − p) , (4)

where all the functions in Rel. (4) are Lorentz scalars.
Throughout this paper we also neglect the momentum de-
pendence of the vertex function and simply take Γ = 1, im-
plying thus that all the analytical behaviour is solely due
to theMinkowski spacemeasure and the form of functions
G. Obviously a more complete solution of the SDEs with
nontrivial momentum dependence of the vertex would re-
quire analysis beyond the scope of the presented study.We
presentMinkowski space calculations for the correlator (4)
made out of Gribov propagators in the next Section (2).

In order to see the effect of changing the pole position
we also consider the correlator made out of propagators
with shifted poles. For this purpose we consider the fol-
lowing super-convergent toy model propagator function

G(l) = 1
(l2 − a)2 + b2 , (5)

where a represents a real part of thepole location.As in the
last casewe consider also the convolutionof "propagators"
which have complex conjugated branch points. The later
example with the function G defined as

G(l) = 1√︀
(l2 − a)2 + b2

, (6)

is considered in the Section 4.

2 Correlator with Gribov
propagators

The Gribov propagator (3) represents a simple rational
function and whilst it has a usual perturbative ultravio-
let asymptotic, its infrared structure is drastically differ-
ent from the free particle propagator. Instead of the real
pole associated with free particle modes, it has two simple
imaginary poles associated with the confinement scale b.
Its reality and the absence of the real axis singularity im-
plies that the function I = −iΠ should be real again. Also
the direct integration in theMinkowski space iswell estab-
lished without the need of (sometimes unavoidable) ana-
lytical continuation to the auxiliary Euclidean space. How-
ever, as the momentum integration is particularly easy
within the use of the Euclideanmetric, the method of ana-
lytical continuation still remains a powerful technical tool
andwewill use it carefully in our case aswell. Before start-
ing doing so, it is convenient to make a little algebra and
we rewrite the correlator Π(p2) in the following way:

Π(p2) = i
4

∫︁
d4l
(2π)4

[︂
1

(l2 + ib)(q2 + ib)

+ 1
(l2 − ib)(q2 − ib) +

2
(l2 + ib)(q2 − ib)

]︂
, (7)
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where each line in bracket is hermitean and we label mo-
mentum q = l − p and the square of Gribov mass b = µ2.
Feynman parametrization represents a useful trick, which
allows evaluation of perturbative loops in closed form. Us-
ing this the first line in (7) can be written as

i
∫︁

d4l
(2π)4

1∫︁
0

dx
[︂

1
[l2 + p2x(1 − x) + ib]2 (8)

+ 1
[l2 + p2x(1 − x) − ib]2

]︂
,

where we assume the shift of variable l as well as the in-
terchange of the integration order granted by the symme-
try (we will add the omitted factor 1/4 in (7) at the end).
Considering lo integration we will use the usual contour,
which is literally known as a Wick rotation (WR), for the
first term, while we will use the contour which is mirror
symmetric to theWick rotation (MWR) to integrate the sec-
ond term (forWick rotation see the standard textbook ([32])
. Cauchy lemma then allows us to write

∫︁
d4lE
(2π)4

1∫︁
0

dx
[︂

−1
[−l2E − p2Ex(1 − x) + ib]2

(9)

+ 1
[−l2E − p2Ex(1 − x) − ib]2

]︂
,

where −p2 → p2E = p24 + p21 + p22 + p23 in our metric conven-
tion.

Matching two terms in (9) together in the following
manner

∫︁
d4lE
(2π)4

1∫︁
0

dx (10)

4ib(−l2E − p2Ex(1 − x))
[−l2E − p2Ex(1 − x) − ib]2[−l2E − p2Ex(1 − x) + ib]2

=
∫︁

d4lE
(2π)4

1∫︁
0

dx
1∫︁

0

dy Γ(4)4iby(1 − y)(−l
2
E − p2Ex(1 − x))

[l2E + p2Ex(1 − x) + ib(1 − 2y)]4
.

The result is obviously finite and one can integrate over
the momentum l without use of any regulator. However it
requires the integration over two auxiliary variables x, y
and there is a slightly easy way, which is to integrate each
term individually. This step requires some usual regular-
ization (translation and other symmetries keeping), how-
ever the infinite pieces cancel each other. Independently
on the procedure, it leads to the result:

1
(4π)2

1∫︁
0

dx ln
(︂
p2Ex(1 − x) + ib
p2Ex(1 − x) − ib

)︂
. (11)

In order to get the analytical structuremore explicit, it
is advantageous to have all logs linearly dependent on the
integral variable. An easyway is to exploit the substitution
u = x − 1/2 as a first. Then , realizing the integrand is the
even function of u one can change the u-integral bound-
aries such that

∫︀ 1/2
−1/2 du → 2

∫︀ 1/2
0 du. Then changing vari-

able u → ω such that u =
√︀
(1/4 − b/ω) one gets

b
(4π)2

∞∫︁
4b

dω

ω2
√︁

1
4 −

b
ω

ln
(︂
p2E + iω
p2E − iω

)︂

= −4ib
(4π)2

∞∫︁
4b

dω

ω2
√︁
1 − 4b

ω

tan−1
(︂
− ωp2

)︂
. (12)

The expression (12) defines function of p2 which has two
symmetric cuts along the imaginary axis going from i4b to
i∞ and from −i4b to −i∞.

Note that there is no real cut associated with the par-
ticle threshold and the usual of dispersion relation be-
tween absorptive and real part does not apply there. In
other words: there is no Lehmann representation for the
correlator made out of Gribov propagators in Minkowski
space. The correlator has no real part anywhere for the real
Minkowski space argument p2. In formal analogywith per-
turbation theory, which deals with the usual particle like
propagators, an analogous integral representation to spec-
tral ones can be written down, however here, they have
Gribov formagain (i.e.denominator of such representation
has complex conjugated zeros). To write down such repre-
sentation explicitly one can use per-partes integration in
ω variable getting the following:

i
(4π)2

⎡⎣π sgn(p2) − 2 ∞∫︁
4b

dω
p2

√︁
1 − 4b

ω

p22 + ω2

⎤⎦ , (13)

which shows us how the spectral representation for par-
ticles turns to the continuous sum of Gribov propagators
of confined objects. The same arguments apply for the re-
maining term in Eq. (7) for which we are going to derive
the appropriate result now. Matching together its denom-
inators by using Feynman variable x we can write for the
second line of Rel. (7)

i
∫︁

d4l
(2π)4

1∫︁
0

2[︀
l2 + p2x(1 − x) + ib(2x − 1)

]︀2 . (14)

To arrive to the known Euclidean integral we use
x−parameter dependent contours in the complex lo plane.
For b(2x−1) positive (negative) we can useWR (MWR) and
employ Cauchy lemma (assuming the same for the exter-
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nal momentum). This directly gives the following result:

2
∫︁

d4lE
(2π)4

1∫︁
0

dx
[︀
−Θ(2x − 1) + Θ(1 − 2x)

]︀[︀
l2E + p2Ex(1 − x) − ib(2x − 1)

]︀2 . (15)

Integrating over the Euclidean momentum we arrive into
the finite expression

2
4π2

⎛⎜⎝− 1∫︁
1/2

dx +
1/2∫︁
0

dx

⎞⎟⎠ ln
(︁
−p2Ex(1 − x) + ib(2x − 1)

)︁
,

(16)
noting that separate integration over the first or over the
second step function in Eq. (15) would require the intro-
duction of some regulator method (like in the previous
case, the regulator canbe avoidedby summing these terms
before the integration, for which purpose one can use
Feynman trick once again.We are not showing these trivial
details).

In addition we offer several integral representations,
which in principle can be useful in the future. Making the
substitution x = (1 + z)/2(x = (1 − z)/2)) in the first (the
second) term one immediately gets

1
(4π)2

1∫︁
0

dz ln −p
2
E(1 − z2)/4 − ibz

−p2E(1 − z2)/4 + ibz
(17)

= 2i
(4π)2

1∫︁
0

dz tan−1 4bz
p2E(1 − z2)

.

As aforementioned it cannot be cast into the form of
spectral representation. The reason for this is obvious as
the correlator has a branch cut along the imaginary axis of
p2 instead of the real one. Actually using the substitution
z → ω one gets for (17) the following representation

i
(4π)2

⎡⎣−π sgn(p2) + ∞∫︁
0

dω
(p22 + ω2)

p2ω
(b +

√︀
b2 + ω2/4)

⎤⎦
(18)

or alternatively

1
(4π)2

⎡⎣−iπ sgn(p2) − 1
2

∞∫︁
−∞

dω
(ip2 − ω)

|ω|
(b +

√︀
b2 + ω2/4)

⎤⎦ .

(19)
To conclude, the correlator Π is given by (quarter of)

the sum of two contributions (13) and (18) and satisfies
continuous "Gribov" integral representation

Π(p2) = i
∞∫︁
0

dω ρG(ω) p2

p22 + ω2
ρG(ω)(4π)2 (20)

= 1
4

ω
b +

√︀
b2 + ω2/4

− 1
2

√︂
1 − 4b

ω Θ(ω − 4b)

Likewise the Lehmann representation reflects the analytic-
ity of Feynman propagator G−1 = p2 −m2 + iϵ, the correla-
tormade out twoGribovpropagators copiously reproduces
the analytical structure of Green’s functions involved.

The last undone integration can be performed as well
but being a lengthy expression it is not presented here. Nu-
merical values for the function Π are shown against the
Minkowski variable p2 in Fig. 1. There is infra-red discon-
tinuity in the origin of the complex p2 plane, which can be
adjusted by the change of position pole of the Gribov prop-
agator. This analytical behaviour is worthwhile to study
and we do this in the next Section.

Figure 1: Correlator with Gribov propagators, the momentum is in
units where b = 1.

At last but not at least we comment the ultraviolet
finiteness of the result. The result we obtained here is fi-
nite, however, we should stress that ultraviolet finiteness
is not a general property of the correlatormadeout of prop-
agators with complex conjugated poles. Usual "log" diver-
gence arises for the convolution of two different Gribov
propagators. This divergence is proportional to the differ-
ence of the pole positions ≃ b1 − b2 and if necessary it
can removed by some sort of symmetry keeping regular-
ization. Recall here, the Gribov form of QCD propagators is
assumed to be a good approximation in the infrared, while
it is likely less useful for the study of ultraviolet properties.
However, as the serious Minkowski space study of QCD
with Gribov propagators is lacking, an outcome could be
challenging.



574 | V. Šauli

3 Correlators with generalized
Gribov propagators

3.1 Shifting the branch point

In the previous section we have derived Gribov integral
representation,which ariseswhen twoGribov propagators
convolute in 3+1 momentum space. An obvious question
arises: what would happen to the correlator Π when one
considers a more general structure for the propagator, e.g.
shifted pole, branch points, etc. As an example we will
consider the correlator Π(p2) with propagators of the fol-
lowing form:

G(l) = 1
(l2 − a)2 + b2 . (21)

Due to the same reasoning, the function Π(p2) should
be a purely imaginary function for all p2. Contrary to the
Gribov case the finiteness is obvious from the beginning
since its Euclidean counterpart is finite (note the UV be-
haviour has no dramatic effect here). Thus the adjective
"generalized" in the title is solely due to the shift of thepole
position by the real amount a.

To arrive at the analytical expression here we slightly
change the calculation procedure and start with the Feyn-
man parametrization from the beginning. For this purpose
let’s write

1
(p2 − a)2 + b2 = 1

p2 − a + ib
1

p2 − a − ib (22)

=
1∫︁

0

dx 1
[p2 − a + ib − 2ibx]2 .

The product of two such propagators in (4) can be written
as

1∫︁
0

dx1dx2 (23)

1
[l2 − a + ib − 2ibx1]2

1
[(l − p)2 − a + ib − 2ibx2]2

=
1∫︁

0

dydx1dx2

y(1 − y)Γ(4)
[l2y + (l − p)2(1 − y) − a + ib − 2ib(x1y + x2(1 − y))]4

Lorentz invariance of the measure as well as the kernel
here both imply that the finite shift of the integral variable
leaves the result invariant. This symmetry dictated prop-
erty is valid for reasonably theory, e.g.QCD, andwe cannot
discuss details here (we assume that all re-normalizable
models belong to this class but interesting questions arise

if for instance about what would happen to more compli-
cated diagrams, e.g. anomaly triangle). Shifting momen-
tum l one gets for the correlator:

Π(p2) = i
∫︁

d4l
(2π)4

1∫︁
0

dydx1dx2
y(1 − y)Γ(4)

[l2 + p2(1 − y)y − Ω]4 ,

Ω = a − ib + 2ib(x1y + x2(1 − y)). (24)

The position of the pole now depends on the parameters
and we interchange the ordering of integrations and inte-
grate over the four-momentum as a first. Like in the pre-
vious case we use MWR for ℑΩ < 0 , while for positive Ω,
when the pole is located in the lower half plane of com-
plex l2, we will use the usual WR. In both cases the inner
part of the intended curve is thus free of singularities and
the use of Cauchy lemma switches to the Euclidean met-
ric (performing similar for the external momentum). Do-
ing this explicitly, one gets the following prescription for
the integral

i
∫︁

d4l
(2π)4 f (l, p) → −

∫︁
d4lE
(2π)4Θ(ℑΩ)f (lE , pE) (25)

+
∫︁

d4lE
(2π)4Θ(−ℑΩ)f (lE , pE),

wherein the subscript E implies the arguments of fE uses
an Euclidean metric l2E = l21 + l22 + l23 + l24. In accordance
with causality, we assume a > 0 in order to avoid poles
at the space like region of momenta. Integrating over the
momentum l one gets

Π(p2) =
1∫︁

0

dydx1dx2
y(1 − y)

[︀
−Θ(ℑΩ) + Θ(−ℑΩ)

]︀
(4π)2[p2y(1 − y) − Ω]2 , (26)

where p is Minkowski momentum again, and the function
Π(p2 > 0) is an analytical continuation of Π(p2 < 0).

Performing the substitution x1 → z such that z = 1 −
2(x1y + x2(1 − y)), one gets

Π(p2) = (27)
1∫︁

0

dydx2

1−2x2(1−y)∫︁
1−2(y+x2(1−y))

dz
(1 − y)

[︀
−Θ(z) + Θ(−z)

]︀
(4π)2[p2y(1 − y) − a + ibz]2 .

For the purpose of the integration over the variable
z let’s distinguish three cases. The first case we define is
such that upper anddown z−integral boundaries are nega-
tive. This allows to consider only the mirror Wick rotation.
Integrating over the variable z leads to the following for-
mula:

−1
2ib

1∫︁
0

dydx2
(1 − y)
(4π)2 Σi=1,2

(−1)1+i
[︀
Θ(2x2(1 − y) − 1)

]︀
p2y(1 − y) − a + ibzi

,

(28)
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where z1 = 1 − 2x2(1 − y) and z2 = 1 − 2(y + x2(1 − y)).
The second case is defined by inequalities z1 > 0 and

z2 < 1. Both step functions are relevant and they just split
the z integration domain to two integrals with boundaries
z2, 0 and 0, z1 respectively. Integrating over the variable z
is straightforward and the result for the second case reads

−1
2ib

1∫︁
0

dy
1∫︁

0

dx2
(1 − y)Θ(z1)Θ(−z2)

(4π)2 (29)

[︂
2

p2y(1 − y) − a − Σi=1,2
1

p2y(1 − y) − a + ibzi

]︂
,

with two variables zi defined previously.
The third and the ultimate case corresponds with the

condition z1 > z2 > 0, for which one gets

−1
2ib

1∫︁
0

dy
1∫︁

0

dx2
(1 − y)Θ(z2)

(4π)2 Σi=1,2(−1)i (30)

1
p2y(1 − y) − a + ibzi

.

The scalar polarization correlator Π is then equal to the
sum of expressions (28), (29) and (30).

Further analytical integration is possible as well, for
instance the integration over the variable x2 gives for (29)

1
(2ib)2

1
(4π)2 (31)⎡⎢⎣ 1/2∫︁

0

dy ln R − 2ibyR + 2iby +
1∫︁

1/2

ln R + ib(2y − 1)
R + ib(1 − 2y) +

1∫︁
1/2

ln R + ibR − ib

⎤⎥⎦
+ i
2b

1
(4π)2

⎡⎢⎣ 1/2∫︁
0

dy−yR +
1∫︁

1/2

dy 1R

⎤⎥⎦ ,

where we have defined R = p2y(1 − y) − a for purpose of
brevity.

Using the identity

ln R − 2ibyR + 2iby = 2i tan−1 2by
p2y(1 − y) − a (32)

for the first and similarly for other terms in (31), one imme-
diately sees that the result for (29) is purely imaginary.

Further, summing (28) and (30) together and integrat-
ing over x2 gives, after some trivial algebra, the following
formula:

1
(−2ib)2

1
(4π2)

1/2∫︁
0

dy
[︀
− ln(R + 2ib) + ln(R + ib) (33)

− ln(R + ib(1 − 2y)) + ln(R) + c.c.
]︀
,

where c.c. stands for complex conjugated term. Recall,
as was discussed in the beginning, the total result must
be completely imaginary. Thus since Rel. (29) already is,
while the Rel. (33) is purely real, the later must be exactly
zero for all p and the total contribution is given solely by
the expression (31).

All integrals in (31) can be further integrated analyti-
cally, providing the following final result:

Π = i
2b(4π)2

{︂
1
2s ln

(a + s/4)2 + b2
a2 + b2 (34)

− 1
4s ln

(a − s/4)2
a2 + 1

2b tan−1 ba

− 1

s
√︁

4a−s
s

tan−1
√︂

s
4a − s

⎫⎬⎭
− 1
4b2(4π)2

{︂√
D
s tan−1 −2ib + s√

D
−
√
D
s tan−1 −2ib√

D

− c.c. +
√
D1
s tan−1 2ib√

D1
−
√
D1
s tan−1 2ib − s√

D1
− c.c.

−
√︂
D2
s tan−1

√︂
s
D2
− c.c.

}︃
.

where we have used the following abbreviations

D = s(4a − s) + 4b2 ; D1 = s(4a − s) + 4b2 + 4ibs; (35)
D2 = 4a + 4ib − s ; s = p2.

The inverse tangent function of complex argument is de-
fined through the multi-valuable complex logarithm. As
one can see, apart of complex singularities, there is a real
branch point presented as well. This branch point has co-
incided with the origin of the complex plane in the previ-
ous case, where a = 0 case was considered only.

3.2 Π composed from propagators with
branch points

Quark and gluon propagators can be obtained via solu-
tions of SDEs and the result can be in principle approx-
imated as a series (1). It is well known that the interac-
tion is reflected in the analytical properties of amplitudes.
For instance, in a relatively simple theory like QED, the
effect of dressing an electron propagator by photon self-
exchange entails that a simple pole structure of the elec-
tron propagator turns to the branch point singularity. In
QCD one can expect the similar, if not stronger effect and
it is plausible that the other considerable expansions are
much faster convergent, especially when their first terms
catch the main properties of the exact solution. As a fur-
ther reasonable candidate, we consider a propagator with
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square root non-analyticity. Guiding by simplicity as well
as its ultraviolet asymptotic of a free propagator, let us cal-
culate the correlatorwith thepropagator (6). In this special
case the argument of the correlator reads

1√︀
((l − p)2 − a)2 + b2

1√︀
(l2 − a)2 + b2

. (36)

As the first step we start with the root decomposition of
square-root arguments, then using the Feynman trick it
gives us

1
(p2 − a + ib)1/2

1
(p2 − a − ib)1/2

(37)

=
1∫︁

0

dx
x1/2(1 − x)1/2 Γ(1)

Γ2(1/2)
p2 − a + ib − 2ibx .

Depending on the value of variable x, the denominator in
the right hand side of Eq. (37) has a positive imaginary
part for a small x and positive b. It turns to be negative
for a larger value of x. Using the variable x1 and x2 for
each propagator in (36) and further using the variable y to
match propagators together one gets for Rel. (36) the fol-
lowing expression

1∫︁
0

dx1 dx2 dy
√︀
x1(1 − x1)x2(1 − x2) Γ(2)

Γ4(1/2)
l2y + (l − p)2(1 − y) − Ω , (38)

where Ω is defined by (24) in the previous Section. After
the standard shift one gets for the correlator

Π(p2) (39)

= i
∫︁

d3+1l
(2π)4

1∫︁
0

dx1 dx2 dy
√︀
x1(1 − x1)x2(1 − x2) Γ(2)

Γ4(1/2)

[l2 − ∆]2

∆ = −p2(1 − y)y + Ω.

Nowwe will integrate over the momenta as in the pre-
vious case. It means that for case when ℑ∆ < 0 WR is
used, while when the denominator has singularities at the
first and the third quadrant of complex lo MWR is used.
The conditions ℑ∆ < 0 and ℑ∆ > 0 limits the Feynman
parameters integration domain. The integration over the
momentum, if taken separately, includes UV divergence.
Obviously, resulting infinite constants cancel against each
other at the end. Using dimensional regularization for this
purpose one can write

Π(p2) =
∫︁

1
(4π)2

1∫︁
0

dx1 dx2 dy (40)

√︀
x1(1 − x1)x2(1 − x2)

(︂
2
ϵ − ln(∆) − 𝛾 + O(ϵ)

)︂

[︀
Θ(−ℑΩ) − Θ(ℑΩ)

]︀
.

Note that only the ℑ parts of the expression in the
large bracket in Eq. (40) can survive at the end. The result
will not depend on the re-normalization scale at all and as
mentioned it is finite. The remaining 3d integral over the
Feynman variables can be performed numerically. If one
wishes, the vanishment of the real part can be regarded
as test of numerical precision. Actually, numerically we
get ℜΠ/ℑΠ < 10−15 (here we did not find the analytical
expression for the integration over the Feynman parame-
ters due to the presence of square-root function). The re-
sulting correlator is plotted in Fig. (2). Obviously one can
see the evidence for a real branch point at the momentum
p2 = 4a2.

Figure 2: Scalar crrelator made out of the two propagators with
branch point singularity. Momentum is scaled by the values of a, b,
which are shown explicitly.

4 Conclusion
Correlators defined as a convolution of two Green’s func-
tions with the analytical structure, which admits con-
finement, have been studied in the Minkowski space. We
have restricted to the choice of real propagators with
complex conjugated singularities. The Gribov propaga-
tor, which plays important role in SU(3) Yang-Mills the-
ory was considered primarily. It was shown that Feynman
parametrization allows the analytical integration over the
momentum in all studied cases, providing unique and ul-
traviolet finite results in the Minkowski space. Contrary
to calculations performed in the Euclidean space [7–9],
the Minkowski space correlator with Gribov propagators
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remains finite and does not require renormalization. Nei-
ther of correlators satisfies Khallen-Lehmann representa-
tion and in the case of the Gribov propagator the integral
representation copiously reproduces the Gribov form in its
continuous version. In other cases, the analytical structure
ismore complicated and there is no easyway to classify all
branch points and related cuts. The correlator made out
of generalized Gribov propagators exhibits the real qua-
sithreshold as well. The later strikes itself as a sharp cusp
in the graph of Π(p2) and is located at the usual point
p2T = 4a2 (p2T = 0 for Gribov).

The ramifications of theMinkowski space calculations
can only be explored in conjunction with quantum Chro-
modynamics in strong coupling regions. It is very likely
the Gribov form can appear as a not an ultimate approx-
imation of QCD propagators and many steps remain to
be finished in this respect. Meanwhile there are the first
attempts [18, 33] to solve Schwinger-Dyson and Bethe-
Salpeter equations directly in the momentum Minkowski
space, the presented study shows the pertinent existence
of discontinuities (cuts) when passing the real axis of mo-
menta in Minkowski space. It obviously can make the di-
rect Minkowskian momentum space integration of SDEs
difficult, cumbersome, if not even impossible in some
cases. In this respect, the integral representation derived
here can be very useful when looking for hadronic observ-
ables in the framework of SDEs.
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