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Abstract: In wavelet-based solution of eigenvalue-type dif-
ferential equations, like the Schrödinger equation, refine-
ment in the resolution of the solution is a costly task, as
the number of the potential coefficients in the wavelet ex-
pansion of the solution increases exponentially with the
resolution.
Predicting the magnitude of the next resolution level coef-
ficients from an already existing solution in an economic
way helps to either refine the solution, or to select the co-
efficients, which are to be included into the next resolu-
tion level calculations, or to estimate themagnitude of the
error of the solution. However, after accepting a solution
with a predicted refinement as a basis, the error can still
be estimated by a second prediction, i.e., from a prediction
to the second finer resolution level coefficients. These sec-
ondary predicted coefficients are proven to be oscillating
around the values of the wavelet expansion coefficients of
the exact solution. The optimal averaging of these coeffi-
cients is presented in the following paper using a sliding
average with three optimized coefficients for simple, one-
dimensional electron structures.

Keywords:Wavelet analysis, Schrödinger equation, varia-
tion, prediction of refinement

PACS: 02, 31

*Corresponding Author: Brigita Sziová: Department of In-
formatics, Széchenyi István University, Győr, Hungary, E-mail:
szi.brigitta@sze.hu
Szilvia Nagy: Department of Telecommunications, Széchenyi István
University, Győr, Hungary, E-mail: nagysz@sze.hu
János Pipek: Department of Theoretical Physics, Budapest Uni-
versity of Technology and Economics Budapest, Hungary, E-mail:
pipek@phy.bme.hu

1 Introduction
Wavelet analysis [1, 2] is mainly used for data processing
or image compression [3, 4]. As inwavelet theory the key is
to divide the space into resolution levels (i.e., components
of different frequency), and the various frequency terms
also have a spatial index, it is possible to create local re-
finement with wavelets. The wavelets themselves are the
basis functions of such refinement levels, thus it is pos-
sible to write a function as a linear combination of these
wavelet basis functions. Theoretically wavelet expansions
can contain infinitely fine resolution terms, however, usu-
ally a finite maximum resolution is sufficient, or at least
the function can be approximated reasonably well at a fi-
nite resolution level.

The basis functions of the wavelet theory provide a
system,where high resolution terms can be either omitted,
where there is no fine detail in the function to be repre-
sented, or included, if it is necessary. This local refinement
possibility is desirable also indiscretization [5] and solving
[6, 7] differential equations, as mostly the solutions have
fine details, quick variation only at certain positions and
in most of the space they are smooth. The other advantage
of using wavelet basis set is that the discretization of the
differential operator is usually quite simple, and it is the
same for any system – provided that the operator and the
used basis set are the same –, so after calculating the ele-
ments of thematrix that represents an operator, thematrix
element can be used at any other system, where the same
operator arises.

For an adaptively refining solution, the differential
equationhas to be solved againwith the basis functions al-
ready included in the previous, rough solution completed
with the basis functions at the position where the refine-
ment is necessary. This problem is more emphasized in
case of differential equations that lead to eigenvalue-type
discretized equations, as the cost of solving an eigenvalue
equation, even in a sparse matrix is significantly larger
than to solve a set of linear equations. This is the reason
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whymost of the applications of wavelets, like [6, 8–10] are
for non-eigenvalue type of equations.

In electron structure calculations wavelets first ap-
peared in the 1990s [11–13], and by now there are a cou-
ple of groups using wavelet [11, 12, 14, 15] or multiwavelet
[16–19] differential equation solutionmethods in quantum
chemistry. The solvers are usually for two resolution lev-
els, but in the literature some more resolution level using
algorithms are also presented [20–25].

In [24] we presented a method for an economic pre-
diction of the finer resolution wavelet coefficients from
the previously calculated rough resolution level solution
based on a one wavelet perturbation of the solution. This
prediction method gives reasonably good approximation
of the coefficients (though almost always overshooting a
bit) for a very low cost. In [25] we further applied the same
algorithm to get a second prediction from the first pre-
dicted solution, and the solution is found to be oscillat-
ing around the exact expansion coefficients. These former
results are summarized in Section III. In Section IV we
summarize the way of calculating matrix elements of dif-
ferential, polynomial and step function operators. In Sec-
tion V an optimization method is described and tested for
getting a good second prediction from the oscillating val-
ues in order to approximate the error of the first predic-
tion. The secondary predicted coefficient values are aver-
aged using their first and second neighbors with different
weights, and the idealweights are given for bothEuclidean
and max norms. The test systems are 1-dimensional har-
monic oscillator and electron in a box.

2 Wavelet based discretization of
differential eqauations

In discrete wavelet analysis of the square integrable func-
tions’ Hilbert space there are two types of basis functions
completing one another. The elements of first type, which
expand the resolution levels are called scaling functions.
All the scaling functions of a basis set are generated from
one mother scaling function ϕ(x) as

ϕm,k(x) = 2m/2ϕ(2mx − k) (2.1)

with k being the position or shift index, and m the resolu-
tion level index. The refinement levels are embedded into
one another, thus there is a special condition, a so called
refinement equation connecting the neighboring resolu-

tion level scaling functions, i.e.,

ϕ(x) = 21/2
Ns∑︁
i=0

hiϕ(2x − i). (2.2)

The coefficients hi determine the shape of the scaling func-
tions, with the condition

∑︀Ns
i=0 hi =

√
2.

The other type of basis functions ensure the refine-
ment between the consecutive resolution levels. These ba-
sis functions, the wavelets are very similarly generated
from one mother wavelet ψ(x), as the scaling functions,
i.e.,

ψm,k(x) = 2m/2ψ(2mx − k). (2.3)

As the wavelets expand the subspace between the two
scaling function subspaces, they are also elements of the
finer resolution level subspace, i.e., they can be written as

ψ(x) = 21/2
Ns∑︁
i=0

giϕ(2x − i), (2.4)

where the coefficient gi = (−1)ihNs−i.
Any square integrable function, like thewave function

of the electron system, can be expanded at resolution level
M in two ways,

Ψ [M](x)=
∑︁
ℓ∈ΩM

cMℓ ϕMℓ(x), (2.5)

Ψ [M](x)=
∑︁
ℓ∈Ω0

c0ℓ ϕ0ℓ(x) +
M−1∑︁
m=0

∑︁
ℓ∈Ωw,m

dmℓ ψmℓ(x), (2.6)

either purely with theMth level scaling functions, or start-
ing from a rough resolution level m = 0 scaling function
expansion and completing with wavelets from the resolu-
tion level between the starting levelm = 0 and the desired
resolution M. In both of the formulae, the index sets Ωm
consist of the indices of the scaling functions that are nec-
essary for expanding the function at resolution level m.
Similarly, the sets with w in the index correspond to the
wavelets that are needed for the mixed, scaling function–
wavelet expansions.

It is usual, to use a common notation for the two basis
function types, the basis function

χτ(x) =
{︃
ϕm,k(x), if τ = {ϕ,m, k}
ψm,k(x), if τ = {ψ,m, k}

(2.7)

with the composite index which contains the the type (ϕ
or ψ), resolution level (m), and the shift (k) indices.

For discretizing a differential equation, such as the
Schrödinger equation

ĤΨ = EΨ (2.8)



Optimization of the prediction of second refined wavelet coeflcients in electron structure calculations | 645

at resolution level M, we can use (2.5) or (2.6) for wave
function Ψ , and arrive at a matrix equation

H[M]Ψ [M] = E[M]Ψ [M]. (2.9)

Thenotation is the following, the energy E has itsMth level
approximation E[M], whereas the differential operator Ĥ is
discretized receiving the matrix elements

H[M]
ρτ = ⟨χρ|Ĥ|χτ⟩

=
∫︁
χ*ρ(x) · Ĥ

(︀
χτ(x)

)︀
dx. (2.10)

Here the * is complex conjugation, x is the variable of the
functions (it can be also d > 1 dimensional), and Ĥf is the
effect of operator Ĥ to function f .

Solving such an equation at very high resolution level,
and discarding those coefficients dm,ℓ that are approxi-
mately 0 is clearly an extremely expensive task. It is also
expensive to go from one rough resolution level to a finer
by first including all the wavelets of the finer resolution
level that are in the domain of the problem and then se-
lecting the large ones. In electron structures thewave func-
tions have such a wavelet expansion, where the domain
of the refinement is shrinking as the resolution increases
[21, 22], thuswe canwin a lot of timebynot including those
domains to the next refinement level, that had already not
been in the previous refinement level. However, by pre-
dicting the next resolution level expansion coefficients,we
can include only those wavelets, that will really be impor-
tant in the next level expansion, and the gap between the
two sets of wavelets (i.e., the wavelets that seem to be im-
portant based on the previous important domain, and the
wavelets that seem to be important based on the predic-
tion) can still win a lot of computing time.

3 First and second prediction
Based on a one-wavelet perturbation

Φ[M+1](αk) = Ψ [M] + αM,k · ψM,k (3.1)

of the Mth level wave function solution Ψ [M] we have
proved [24] that the prediction

αM,k =

⎧⎪⎨⎪⎩
−λ +

√
λ2 + 1, if ⟨ψM,k|Ĥ|Ψ [M]⟩ > 0

−λ −
√
λ2 + 1, if ⟨ψM,k|Ĥ|Ψ [M]⟩ < 0
0 if ⟨ψM,k|Ĥ|Ψ [M]⟩ = 0

(3.2)

approximates the exact wavelet expansion coefficients
rather well, the difference of the predicted and the exact

coefficients is less than 20 percent even in very rough res-
olution levels, moreover, the difference percentage is de-
creasingwith the increase of the resolution. Here we intro-
duced the notation

λ =
E[M] − ⟨ψM,k|Ĥ|ψM,k⟩

2⟨ψM,k|Ĥ|Ψ [M]⟩
. (3.3)

These predicted coefficients αM,k can be used as not
only for selecting, which coefficients should be included
into the refinement, but also for estimating the error we
caused by not including the next resolution level into the
solution. However, there is a temptation for using it as a
cheap last refinement step. In order to have an approxima-
tion of the solution thus arising, we need a second predic-
tion of the coefficients, based on the first prediction.

Starting from the predicted wave function

ΨM+1
pred = Ψ

[M] +
∑︁
k
αkψM,k , (3.4)

i.e., from the wave function Ψ [M] calculated from the M
resolution level eigenvalue equation, and the predicted
wavelet coefficients αk, we can introduce a second one-
wavelet perturbation

ΦM+2
pred(βk) = Ψ

M+1
pred + βk · ψM+1,k . (3.5)

Using this as a basis of the Ritz variation principle, sim-
ilarly to the first prediction, we arrive at the second pre-
dicted coefficients

βk =

⎧⎪⎨⎪⎩
−µ +

√︀
µ2 + 1, if ⟨ψM+1,k|Ĥ|ΨM+1

pred⟩ > 0
−µ −

√︀
µ2 + 1, if ⟨ψM+1,k|Ĥ|ΨM+1

pred⟩ < 0
0 if ⟨ψM+1,k|Ĥ|ΨM+1

pred⟩ = 0
.

(3.6)
with

µ =
EM+1
pred − ⟨ψM+1,k|Ĥ|ψM+1,k⟩

2⟨ψM+1,k|Ĥ|ΨM+1
pred⟩

. (3.7)

This expression is more complicated than the first predic-
tion, as the predicted energy EM+1

pred does not arise from
the already calculated solution, like in case of solving the
eigenvalue equation, but has to be calculated from the pre-
dictedwave function, however, as in higher resolution lev-
els the energy does not changemuch compared to other el-
ements in the expression (3.7), the eigenvalue energy can
be used for the purpose.

We showed that the above considerations give good re-
sults not only for ground state, but for excited states, too
[24, 25].
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4 Calculation of the matrix
elements

Weused twomodel systems, both one dimensional. As the
matrix elements of a harmonic potential and a box poten-
tial can be calculated relatively easily [10, 26], we selected
the harmonic oscillator and the electron in a potential box
problem. These problems describe some properties of the
real life wave functions well, the one having smooth tails,
the other derivative singularities.

Calculation of the matrix elements ⟨ψm,k|Ĥ|ψn,ℓ⟩ can
be derived from matrix elements ⟨ϕ0,0|Ĥ|ψ0,i⟩. In our test
systems the Hamiltonian operator consists of a kinetic en-
ergy part,

K̂ ∼ ∂2/∂x2, (4.1)

and a potential energy term, which is in case of the har-
monic oscillator

V̂HO ∼ x2·, (4.2)

and in case of the electron in a box problem

V̂box ∼
{︃

0 if x ∈ Ωbox
hbox·, if x ∈ ̸ Ωbox

, (4.3)

where Ωbox is the support of the box. According to (4.1),
(4.2), and (4.3), the following matrix elements should be
calculated,

Kmk,nℓ =
⟨
χm,k

⃒⃒⃒
∂2
∂x2

⃒⃒⃒
χn,ℓ

⟩
, (4.4)

Vmk,nℓ = ⟨χm,k|x2|χn,ℓ⟩, (4.5)

Ymk,nℓ = ⟨χm,k|χn,ℓ⟩
⃒⃒⃒
x∈ ̸Ωbox

. (4.6)

Using the refinement equation (2.2), its ath derivatives,

ϕ(a)(x) = 2a · 21/2
Ns∑︁
i=0

hiϕ(a)(2x − i), (4.7)

and their wavelet counterparts (2.4) and

ψ(a)(x) = 2a · 21/2
Ns∑︁
i=0

giϕ(a)(2x − i), (4.8)

the matrix elements (4.4), (4.5) and (4.6) can be expressed
– by lengthy but straightforward calculations containing
integral variable exchanges – using the simpler terms

Ki =
⟨
ϕ0,0

⃒⃒⃒
∂2
∂x2

⃒⃒⃒
ϕ0,i

⟩
, (4.9)

Vi = ⟨ϕ0,0|x2|ϕ0,i⟩, (4.10)

Yi = ⟨ϕ0,0|ϕ0,i⟩
⃒⃒⃒
x∈ ̸Ωbox

. (4.11)

For the above matrix elements the integration can be car-
ried out either numerically, or analytically. Numerical in-
tegration is of course computationally very costly, and
for chemical calculation high precision is necessary. Even
though the matrix elements have to be calculated only
once (and stored and loaded afterwards during the actual
solution of the differential equation) it is still worth to per-
form the analytic calculation as the results are more pre-
cise, and simpler to obtain.

During the analytic calculation [26] of the matrix ele-
ments of the derivative operator (4.1), the integration itself
can be written as

Ki=
∞∫︁

−∞

ϕ*(x) · ∂
2

∂x2 ϕ(x − i)dx

=8
Ns∑︁
k=0

Ns∑︁
ℓ=0

h*khℓ

∞∫︁
−∞

ϕ*(2x − k) · ∂
2

∂x2 ϕ(2x − 2i − ℓ)dx

=4
Ns∑︁
k=0

2i−k+Ns∑︁
j=2i−k

h*khj+k−2iKj , (4.12)

which is, as it can be seen, an eigenvalue equation for the
non-zeromatrix elements Ki. Note, that similar eigenvalue
equations are valid for the 0th, 1st, 3rd, etc. derivatives,
only the constant in front of the summation is different:
instead of 4, in case of the non-derivative the constant is 1,
for the first derivative 2, for the third derivative 8, etc. The
matrix elements Ki are non-zero, if (−Ns) < i < Ns.

In case of the harmonic potential the calculation is a
bitmore complex, and a notation for the power of the poly-
nomial is to be introduced, thus

Vx
2

i =
∞∫︁

−∞

ϕ*(x)x2ϕ(x − i)dx

=2
Ns∑︁
k=0

Ns∑︁
ℓ=0

h*khℓ

×
∞∫︁

−∞

ϕ*(2x − k) · x2 · ϕ(2x − 2i − ℓ)dx

=2
Ns∑︁
k=0

Ns∑︁
ℓ=0

h*khℓ

×
∞∫︁

−∞

ϕ*(y)
(︂
y + k
2

)︂2
ϕ(y + k − 2i − ℓ)dy2

=14

Ns∑︁
k=0

2i−k+Ns∑︁
j=2i−k

h*khj+k−2i
(︁
Vx

2

j + 2k · Vx
1

j + k2 · Vx
0

j

)︁
.

(4.13)

Here, the matrix element of the 0th order polynomial can
be calculated according to the note after (4.12); it is the 0th
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derivative as well. The matrix elements of the higher order
polynomials can be calculated from thematrix elements of
all the lower order polynomials by a matrix equation sim-
ilar to (4.13), as it is detailed in [24].

The matrix elements of the box potential can be de-
rived from matrix elements of unit length boxes, i.e., from

aYi = ⟨ϕ0,0|ϕ0,i⟩a =
a+1∫︁
a

ϕ*(x)ϕ(x − i)dx. (4.14)

The calculation is very similar to (4.12) and (4.13),

aYi=
a+1∫︁
a

ϕ*(x)ϕ(x − i)dx

=2
Ns∑︁
k=0

Ns∑︁
ℓ=0

h*khℓ

a+1∫︁
a

ϕ*(2x − k)ϕ(2x − 2i − ℓ)dx

=2
Ns∑︁
k=0

Ns∑︁
ℓ=0

h*khℓ

2a−k+2∫︁
2a−k

ϕ*(y)ϕ(y + k − 2i − ℓ)dy2

=
Ns∑︁
k=0

2i−k+Ns∑︁
j=2i−k

h*khj+k−2i
(︁
2a−kYj + 2a−k+1Yj

)︁
. (4.15)

It can be seen, that the result is again an eigenvalue equa-
tion, but whereas in (4.12) the number of the non-zero el-
ements Ki – i.e., the size of the eigenvalue problem – was
(2Ns−1), here, the size is (Ns ·Ns). (The support of the scal-
ing function ϕ0,0 is [0, Ns], thus with each of the Ns inter-
vals, where the function ϕ0,0 is not zero, Ns of the shifted
scaling functions ϕ0,i overlap.)

If thematrix elements are at the basic resolution level,
but none of them has 0 shift index, a straightforward inte-
gral variable exchange can transform the matrix elements
to Ki, Vx

p

i and aYi as

K0k,0ℓ = Kℓ−k , (4.16)

V0k,0ℓ = Vx
2

ℓ−k + 2kV
x1
ℓ−k + k

2Vx
0

ℓ−k , (4.17)
aY0k,0ℓ =a−k Yk−ℓ. (4.18)

In the last formula the integral is not restricted to thewhole
domain outside of the box, like in (4.6), but to the interval
[a, a + 1] as aY0k,0ℓ =

∫︀ a+1
a ϕ(x − k)ϕ(x − ℓ)dx.

If the matrix elements are between higher resolution
level scaling functions, the refinements equation (2.2) and
its derivatives (4.7) can be used for stepping down one res-
olution level. For example, let us see one step in case of the

kinetic energy matrix elements,

K00,1i=
∞∫︁

−∞

ϕ*(x) · ∂
2

∂x2 ϕ(2x − i)dx

=21/2
Ns∑︁
k=0

h*k

∞∫︁
−∞

ϕ*(2x − k) · ∂
2

∂x2 ϕ(2x − i)dx

=2−1/2
Ns∑︁
k=0

h*kKi−k , (4.19)

Similarly, any resolution level can be reached for both of
the basis functions, in case of all the three operators.

Also changing one or both of the basis functions to
wavelets can be carried out by using the wavelet expan-
sion (2.4) or (4.8).

5 Calculated predictions and
averaging

In case of the harmonic oscillator and the electron in a box
the one-dimensional problems are solved, and first and
second predictions were calculated for the ground state
and the first 5 excited states. The resolution level varied
from m = 0 wavelets (in this case only first predictions
could be made from the scaling function expansion) to
m = 4. Twoexamples at amodest resolution level are given
in Fig. 1 and Fig. 2.
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Figure 1:Wavelet expansion coeflcients at resolution level M = 2
for a harmonic oscillator with oscillation coeflcient of 1 unit. 1st ex-
cited state. All the coeflcients are either calculated from the eigen-
value equation or approximate values of the same dM,k. Atomic
units are used.
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Figure 2:Wavelet expansion coeflcients at resolution level M = 2
for an electron in a box with wall height of 100 units at positions of
x = −10 and x = 10. 2nd excited state. All the coeflcients are either
calculated from the eigenvalue equation or approximate values of
the same dM,k. Atomic units are used.

The first prediction overestimates usually the real
value of the coefficients. The second prediction clearly os-
cillates around the exact value of the coefficient. We ap-
plied a sliding average

βk,avg = aβk + b(βk−1 + βk+1) + c(βk−2 + βk+2) (5.1)

with a + 2b + 2c = 1. Using parameters a and b for the op-
timization, we got the optimized second prediction given
in blue line in Fig. 1 and Fig. 2.

The values of a, b and c are not independent, thus a
two-parameter optimization can be carried out. We used
two types of norms to determine the distance of the opti-
mized coefficients βk,avg from the exact coefficients dM,k,
first, the maximum of the distances of the corresponding
elements, and second the Euclidean distance of the vec-
tors (only the components at the last, highest resolution
level M, we did not measure the variation of in the lower
resolution part of the coefficient vector).

In Fig. 3 an example from the box potential case can
be seen. For this system, theminimumdistances tend to be
around theparameter space point (a = 0.6, b = 0.2) (prac-
ticallyno c is necessary), both for themaximumand for the
Euclidean distance case. The errors are usually between
10−4 and 10−3. In Fig. 4 examples from the harmonic os-
cillator case are presented, here, the minima tend to be
nearer to the axis b (i.e., c plays an essential role in com-
pensating theoscillationof thepredicted coefficients), and
also the error can larger up to 3 · 10−3.

In case of both of the model systems such cases ap-
pear, where no minimum can be found at the studied in-
terval, like the second row of Fig. 4, though in case of the
harmonic oscillator this happens more often.
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Figure 3:Maximum and average distance of the optimized coefl-
cient vector βk,avg from the real eigenvector components dM,k, in
case of the electron in a box with wall height of 100 units at posi-
tions of x = −10 and x = 10. M = 2 and ground state. Atomic units
are used.

The optimized values vary a bit for the two systems,
for the five resolution levels, and for the various excita-
tions. The average value of the optimized parameters are
a = 0.5, b = 0.2, and the remaining c = 0.05 gives a good
approximation of the wavelet coefficients, at least for er-
ror prediction, as it can be seen in Figs. 1 and 2. Note, that
the goodnessmeasure (the deviation from the exact eigen-
vector elements dm,k) is very flat, so a quite broad range of
parameters fulfill the job of averaging quite well, produc-
ing about 20 percent more error than the first prediction in
quadratic distance measure.

6 Conclusion
In the previous considerations we studied, whether the
method for generating coefficients using a one-wavelet
perturbation can be carried out for already predicted so-
lutions. Two model systems, the one-dimensional har-
monic oscillator and the one-dimensional electron in a
box model was used to derive the conclusion. The second
prediction coefficients alone give much higher error, than
the first predictions, however,with a uniformoptimization
process using sliding averaging, the second prediction can
be improved and used for estimating the error of the first
predicted result. Knowing this fact opens a door in front
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Figure 4:Maximum and average distance of the optimized coefl-
cient vector βk,avg from the real eigenvector components dM,k, in
case of the harmonic oscillator model. Upper row: M = 2 and 2nd
excited state, nice minimum can be observed in both the maximum
and the Euclidean distance, lower row: M = 1 and 1st excited state,
no minimum in the studied parameter field. Atomic units are used.

of an economic last step refinement (i.e., the first predic-
tion) for wavelet-based solutions of quantum mechanical
systems or other eigenvalue type differential equations.
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