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Abstract: In this paper, we discuss non-local derivatives
on fractal Cantor sets. The scaling properties are given
for both local and non-local fractal derivatives. The local
and non-local fractal differential equations are solved and
compared. Related physical models are also suggested.
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1 Introduction

Fractional calculus became an important tool which ap-
plied successfully in many branches of science, engineer-
ing etc [1-5]. The models based on fractional derivatives
are crucial for describing processes with memory effects
[6]. Local fractional has been defined on the real-line [7].
As it is well known the integer, fractional and complex
order derivatives and integrals are defined on the real-
line. Fractal analysis have been conducted by many re-
searchers [8-10]. The fractal curves and the functions on
fractal space are not differentiable in the sense of stan-
dard calculus. Using this as motivation recently a seminal
paper has suggested F¥-calculus as a framework for the
fractal sets and fractal curves [11-14]. F*-calculus is gen-
eralized and applied in physics as a new and useful tool
for modelling processes on fractals. Newtonian mechanics
and Schrodinger equation on the fractal sets and curves
are given [15-17]. The gauge integral is utilized to gen-
eralized F%-calculus for unbound and singular functions
[18]. The fractal grating is modeled by F*-calculus and
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corresponding diffraction is presented [18]. One of the im-
portant aspects of fractional calculus was transferred re-
cently to fractal derivatives. The concept of non-local frac-
tal derivatives was introduced in [20]. In this manuscript
our main aim is to define the fractal non-local derivatives
and study their properties.

The outline of this work is as follows:

In Section 2 we summarize the basic definitions and prop-
erties of the the local fractional derivatives. In Section 3 the
scaling properties of local and non-local derivatives are de-
rived. We develop the theory of fractal local and non-local
Laplace transformations in Section 4. In Section 5 the com-
parison of local and non-local linear fractal differential
equations are presented. In Section 6 we indicate some il-
lustrative applications. Section 7 contains our conclusion.

2 Preliminaries

In this section we recall some basic definitions and proper-
ties of the local fractal calculus (LFC) and non-local fractal
calculus (NLFC) [11, 20].

2.1 Local fractal calculus

In the seminal paper local F*-calculus is built on fractal
Cantor set which is shown in Figure [1] [11]. The integral
staircase function S%(x) of order a for the triadic Cantor set

Figure 1: We present triadic Cantor set by iteration.

© 2016 Alireza K. Golmankhaneh and D. Baleanu, published by De Gruyter Open.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.



DE GRUYTER OPEN

The integral staircase function
1 T T T T T

09t
0&f 50509 ()
0.7
06
0sr
041
0.3F
0.2F

01F

DD D.‘1 D.‘Q DI3 D.‘d DIS D.‘E D.‘? D.‘B D.‘B 1
X

Figure 2: We indicate the integral staircase function for a triadic

Cantor set F.

F is defined in [11] by
“(F,a0,x) if x=
sipy = {7 aox) i x=ag o)
-v%(F, ap, x) otherwise,

where aq is an arbitrary real number. The plot of the
integral staircase function is depicted in Figure [2]. F*-
derivative is defined for a function with this support as fol-
lows [11]

F-lim M if xeF,
DEf(x) = S-S @
o, otherwise,

if the limit exists. For more details we refer the reader to
[11].

2.2 Non-local fractal calculus

In this section, we review the non-local derivatives and ba-
sic definitions [20].

Definition 1. A function f(S#(x)), x > 0 is in the space
Crp, p € N if there exists a real number p > p, such
f(SEM)) = SE(Pf1(SE(), where f1(SE(x)) € Cla, b], and
itis in the G}f"p[a, b] if and only if

(DE)"f(SFX)) € €pp, neN. €)

Here and subsequently, we define the fractal left-sided
Riemann-Liouville integral as follows

P00

e
t a
F“(ﬁ / (5300 - dt.

se()ep *)
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where S%(x) > Sk(a).
Definition 2. The fractal left-sided Riemann-Liouville
derivative is defined as

aDhf(x)
i £
n t
" Tan /3)( F) Sa(/ ) (S8(x) - S(0)- e dit. ()

Definition 3. For A f(x) € C*"[a, b], na — a < B < an the
fractal left-sided Caputo derivative is defined as

SDEF00
SE(x)
Fa(n / (SE00) - SHOV“ (DR F(OdE. (6)
S“(a)

Definition 4. The fractal Griinwald and Marchaud deriva-
tive of a function f(x) with support of fractal sets is defined
as

SDPf(xo) =
1 [S%x0)\ P& rak-p)
nh_?lora( ﬁ)( n ) Ol‘gk+1)

f (5300 - )

Definition 5. The generalized fractal standard Mittag-
Leffler functions is defined as [20]

LS

S%(x)k
EFq( )_Zra(gk 1)

The fractal two parameter , v Mittag-Liffler function is de-
fined as

n>0, veR. 7

ES, 00 = i SEY o ven. @
Fnv I (nk+v)’ ’ '

Definition 6. For a given function f(S%(x)) the fractal
Laplace transform is denoted by F(s) and defined as [20]

S%(c0)
TE(SY(s)) = LEF00)] = / fe SO gay  (9)
5%(0)

where S%(s) is limited by the values that the integral con-
verges. The function f(S%(x)) is F-continuous and has fol-
lowing condition

FS300)]

SUP si(osito

oo, Sk(c)eR, SEx)>o. (10)
In view of the above conditions the fractal Laplace trans-

form exists for all SE(s) > S%(c). We follow the notation as
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LEIFOO] = TE(SE(s)) and LE[g(0] = GE(SE(s)).
Remark 1. We denote that if we choose § = a then we have

aDgf(X) = D%,xf(X)|x=sg(a)- (11)

3 Scale properties of fractal local
and non-local fractal calculus

In this section we study the scale properties of the LFC and
NLFC.

3.1 Scale change on the local fractal
derivatives

A function f(S%(x)) is called fractal homogenous of degree-
ma or invariant under fractal rescalings if we have

F(SFAX)) = A" (SE(0)), (12)

where for some m and for all A. The fractals have self-
similar properties, namely for the case of function with

the fractal Cantor set support we choose m = 1 and A =
1/3",n=1,2,... then
f(SF(— X)) = (—) *f(SE(), (13)

where « = 0.6 is the dimension of triadic Cantor
set. The fractal derivative of the fractal homogenous func-
tion f(S%(x)) rescaling as follows

Dif(SF(AX)) = A" f(SE(X)). (14)

3.2 Scale change on the non-local fractal
derivatives

By a scale change of the fractal function f(S%(x)), we imply

x — Ax = SE(Ax) = A°SE(x), (15)
and using Eq. (5) and choosing a = 0 we derive
o DE(F(SEAN) = P2 o DE (F(SEAN)),  (16)

which is called scale change on the non-local fractal
derivatives.

DE GRUYTER OPEN

4 Laplace transformation on
fractals

We provide some important lemmas that are useful for
finding the fractal Laplace transforms of function f(S%(x)).
Lemma 1. The fractal Laplace transform of the non-local
fractal Caputo derivative of order ma-a < f < ma,me N
is

aCqyB _ (SE(s)™ATE(s) - (SE(s)™*f(SF(0))
LF{ODXf(X)} - Sg(s)m"“ﬁ
~(SEE)™ DI cosy) = -+ = DF W e-sgo

1
(17)

Proof: We first compute the Laplace fractal transform of
the fractal Caputo fractional derivative of order f as fol-
lows

L& §DEF(0Y
= L8 (oI P(DO™F(x)}
_ LEIDR)™f ()]

gma-f (18)

In view of Eq. (28) which completes the proof.

Lemma 2. For a given {, u > 0, S%(a) € % and S%(s)* >
|SE(a)] the fractal Laplace transform is

ot [ SH(s)* }
F18%(s)¢ + S%(a)

= SEOOMTER £, (-SH@)SE). (19)

Proof: Using the series expansion we have

acs)S-u

S%(s) _ 1 1a 20)

S%(s)¢ + S%(a) SE(SH 1 4 Si@

Sa(s)¢

_ 1 i -S%(a)\"
SEs) 2= \ Sa(s)°
(=Sg(a@)"

Z Sa(s)n(+y (21)

The inverse fractal Laplace transform of Eq. (20) leads to

( sa ( Sa(x)n(+u—1
Z o F“(n(+ )

a (=S%(a) SE(x)*)"
= S )'”Z T%(n + )

= SFOO* 1EF,¢,,4(—SF(a)sF(x)< ).

(22)
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Lemma 3. Suppose { > u > 0, S%(a) € ® and S&(s)** >
|S%(a)| then we have

o g
B LSKs)S + SE(@)SE syt

g _(Qu k
_ S%(X)((ml)—l Z Fﬂ(k( (Sp(a))
k=

(- +(n+1))

(n K k) IO (23)

Proof: Let us use following expression
s (st
(1 + SE0o)r+1 —

Therefore we can write

1
(SE(s)¢ + SE(a)Sg(spm+
1 1

= (ca Qn+1 S%(a)
(SESD™ (1 4 Selo

n+k -S%(a) k
(sa(s))mz( )(sg(s)Cﬂ) '

The proof is complete.
Lemma 4. For { > u, { > £, S%(a) € R, S&(s)°* > |S%(a)|
and \Sj',i(s)( + S(a)S¢(s)#| we have

Lol SF(S){
E]8a(s)¢ + S%(a)Sa(s)# + Sa(b)

)n+1

oo oo

it (580" (-SH@)*
SFOTD Dm0

<n ’t k) S%(X)k((_”)m(.

Proof: Since we can write

(25)

Si(s)®
S4(s) + S&(a)S&(s)* + S&(b)
S4(s)* 1

" S4(s5)¢ + S%(a)SA(s)K S&(b)
F( ) ( ) F( ) 1+ 7&'“(5)“5?@)3‘}(5)“

(26)

i SE(s)* (=SE(B)"

£~ SE(s)S + SE(@)SE(s)

according to the Lemma 3. the proof is complete.
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Some important formulas of the local fractal cal-
culus are given below : [11, 20]:

ATl (AN Fa(n +1)
LF[SF(X) 1= W,
SE(x)
L8 / F(SEO)d2t
54(0)
S
LH[SE00"F(SE00)] = (~1)" (DY) TE(s),
S§(x)
L8 / F(S500) - SHO)g(SHO)d2t
5(0)

= TF(SE(s))SF(SE(s)),

= Lf [ oIXf(SE(®))]

(27)
and

DY (SECO)
= (SB(S)"FH(s) ~ (SN F(S50))
- (SHE)™ 2 DEF 0O c-s500) -

- (DPf () x=s2(0)- (28)

Remark 2. If we choose a = 1 we obtain the standard re-
sult.

The important formulas of non-local fractal calculus
are as follows [20]:

ﬂ 144 F (rl + 1) a +ﬁ
0I5 (SFC))" = W(S FOO)!
Bsa)t = —LFM*D) car vn-p
0D (SFO))" = Ffé(z 50 (SFO™P.
Bioya) = ¢ a () B
oDi(cxF) = 51 =) (SF(x))
ap aBey - JFSEES))
LrloTif (0] = W 29)

where c is constant.

Remark 3. If we choose 8 = a then we arrive at to the local
fractal derivative whose order is equal the dimension of
the fractal.

5 Comparison between the local
fractal differential and non-local
fractal differential

In this section, we compare the local and non-local fractal
differential equations.
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()

Figure 3: We plot the solution of Eq. (30).

Example 1. Consider the linear local fractal differential
equation

Dry(x) +y(x) =0, (30)
with initial-value
Y(X)|xesa0) = 15 (31
Hence the solution to Eq. (30) is
y() = €75, (32)

where a = 0.6309 is the y-dimension of the triadic Cantor
set [11, 20].

In Figure 3 we give the graph of Eq. (32).

Example 2. Consider linear non-local fractal differential
equation as

SDEy(0) +y(0) =0, (33)
with the initial condition
Y(lx=sao) =1, DEY(O)|=sa(o) = O- (34)
In view of Eq. (17) we have
a aqa _
ca(§DBrcoy = SFENIFE) 1 (35)

Sg(s)*F
Applying the fractal Laplace transformation on both sides
of Eq. (33) and using Eq. (17) we obtain

(SE(s))*Tr(s) -1

acey _
Sgﬁ(s)“*ﬁ +Fg(s) =0. (36)
It follows that 5
ary  SE()T®
T = Ty sap (37)

using fractal inverse Laplace transform Eq. (19) we arrive
at the solution of Eq. (33) as follows

y(x) = S Ef o (-SECF) -

In Figure 4 we present the graph of Eq.( 38).

(38)
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(a) If we choose B = 0.33 in Eq. (38)

(b) If we choose 8 = 0.25 in Eq. (38)

Figure 4: We draw the graph of Eq. (38).

6 Application of non-local fractal
differential equations

In this section we provide the applications and new mod-
els to non-local fractal derivatives [20].

Fractal Abel’s tautochrone: As a first example we gener-
alized Abel’s problem which is the curve of quick descent
on the fractal time-space. Using the conservation of energy
in the fractal space the differential equation of the motion
a particle is

a .
dpsp _

39)
dst

a a
Dp sF =

-\/285(S80) - S5vo)),

where s% is fractal arc length, and g% fractal space gravi-
tational constant, and y is the high particle from the refer-
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ence of potential. As a result we have
S#(B)

|

$5(4)

SE(T) = dpsg.  (40)

(S#(y) - Sg(m)

Let us consider

sg = hE(SE(n)), (41)
so that we have
$%(0)
1 _
SHT) - - / (S&(y) - SE) /2D, h&(p)d.
F /28% F F FnlF F
SE)
(42)
Utilizing Dﬁi’nhf‘:(sg(y)) = f(S%(y)) we arrive at
S§(0)
1 _
SHD =~ / (SE() - SE) 2F(SEO . (43)
SE)
It follows
2 a
VISEsa(r) = oDL2F(y). (44)

r()
The solution of Eq.(44) is called the fractal cycloid.
Fractal models for the viscoelasticity: We generalize the
viscoelasticity models to the fractal mediums in the case
of ideal solids and ideal liquids. Namely, the fractal ideal
solids described by

of(t) = EFef(t), (45)

which is called Hooke’s Law of fractal elasticity. Where o
is fractal stress, €} is fractal strain which occurs under the
applied stress and E% is the elastic modulus of the fractal
material.

The fractal ideal fluid can be modeled and described by
Newton’s Law of fractal viscosity as follows

o%(t) = A% DEeR(0), (46)

where A% is the viscosity of the fractal material. But in na-
ture we have real martials which have properties between
the ideal solids and ideal liquids. It is clear that in the
Hooke’s Law of fractal elasticity Eq. (45) fractal stress is
proportional to the 0-order derivative of the fractal strain
and in Newton’s Law of fractal viscosity the stress is pro-
portional to the a-order derivative of the fractal strain.
Therefore, more general model is

of(0) = EfEF oDEek(0),  XEF-7E, (@)
which is called fractal Blair’s model. Here, we suggest the
fractional non-local order fractal derivative f as an index

Non-local Integrals and Derivatives on Fractal Sets = 547
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Figure 5: We sketch e%(f) = x§ which is characteristic function of the
triadic Cantor set.

of memory. Namely, if we choose 8 = 0 the process is equiv-
alent to "nothing forgotten" and the case of § = a the pro-
cess is memoryless. Hence if we choose 0 < § < a it shows
the processes with memory on fractals.
If we choose

er(t) = XF, (48)
where y is characteristic function of the triadic Cantor set.
In Figure 5 we plot the ef(¢). Utilizing Eq. (47) we obtain the
fractal stress as follows

1

) B
ra - SHO”

o%(t) = EX(x3)P (49)
In Figure 6 we show the graph of o%(¢) fractal stress.

Remark 4. If we choose 8 = 0 and 8 = a in Eq. (47) we will
have the fractal stress and the fractal strain relations for
the cases of fractal ideal solids and the fractal ideal fluids,

respectively.

I I L I L L I I L
0.1 02 03 04 04 06 07 08 o9 1
t

Figure 6: We sketch o%(t) for the fractal stress substituting 8 = 0.5
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Conclusion

In this paper we generalized fractal calculus involving the
non-local derivatives. The scaling properties of local and
non-local derivatives are studied because they are impor-
tant in physical applications. Using an illustrative example
we compared the local and non-local linear fractal differ-
ential equations. We also suggested some applications for
the new non-local fractal differential equations.
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