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Abstract: Fast prediction modeling via proper orthogo-
nal decomposition method combined with Galerkin pro-
jection is applied to incompressible single-phase fluid
flow in porous media. Cases for different configurations
of porousmedia, boundary conditions and problem scales
are designed to examine the fidelity and robustness of the
model. High precision (relative deviation 1.0 × 10−4%~ 2.3
× 10−1%) and large acceleration (speed-up 880 ~ 98454
times) of POD model are found in these cases. Moreover,
the computational time of POD model is quite insensitive
to the complexity of problems. These results indicate POD
model is especially suitable for large-scale complex prob-
lems in engineering.

Keywords: POD; Porous Media; Single-Phase Flow; Model
Reduction

PACS: 47.56.+r

1 Introduction
Fluid flow in porous media is a very important physical
phenomenon in many aspects of engineering, such as cat-
alytic reaction in chemical engineering [1], transport of
oil/gas/water in petroleum engineering [2], etc. Numerical
simulation is needed to predict the flow details [3]. This
usually leads to numerous simulations and long-time it-
erations of a large-partial-differential-equation system per
simulation [4–9]. Therefore, the total computational time
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is usually very long and as a result this type of simulation
is not practical for the demands of fast prediction in engi-
neering.

Proper orthogonal decomposition (POD) is an effi-
cientmethod for reducing the computational time through
Galerkin projection with good precision [10]. It has been
successfully used in wide range of physics and engineer-
ing problems, such as turbulent flow [11, 12], heat trans-
fer [13, 14], oil transportation [15], etc. Thus, the utiliza-
tion of POD-Galerkin method can be expected to greatly
increase the efficiency of simulation in porous media. Al-
though POD method for flow in subsurface porous me-
dia was discussed in reference, emphasis was mainly on
precision [16–18] rather than acceleration. In this paper,
we demonstrate high acceleration and precision of POD-
Galerkin model for incompressible single-phase flow in
porous media via a series of numerical cases. For state-
ment convenience,weonly discuss two-dimensional cases
here.

2 Establishment of the
POD-Galerkin Model

2.1 Description of the Original Governing
Equations

Incompressible single-phase flow in porous media are de-
scribed by the mass balance equation (Eq. (1)) and the
Darcy’s law (Eq. (2)) as follows:

∇ · u = q (1)

u = −kµ (∇p − ρg∇z) (2)

where u = u⃗i + v⃗j is Darcy velocity, k =
[︃
kxx

kyy

]︃
is per-

meability tensor, p is pressure, g is the gravitational ac-
celeration, q is injection or production rate, ρ and µ are
density and dynamic viscosity of fluid respectively, z is the
depth. The components of Darcy velocity and permeabil-



POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media | 589

ity are u, kxx in the x direction and v, kyy in the y direc-
tion. Gravitational acceleration can be included into the
piezometric head (Φ = p−ρgz) so that the treatment is the
same as that without gravity. It is neglected here for con-
venience. Substituting Eq. (2) without gravity to Eq. (1), we
can obtain:

−∇ ·
(︂
k
µ∇p

)︂
= q (3)

Eq. (3) shows that computational time is primar-
ily used in the computation of pressure, usually requir-
ing long-time iterations for large systems. POD-Galerkin
model is a good choice for greatly reducing the computa-
tional time of Eq. (3). The main procedure to establish the
model will be stated below.

2.2 POD-Galerkin Model

POD method is data dependent so that the first step is
collection of samples through computation of governing
equations (Eq. (2) and Eq. (3)). Finite difference method
(FDM) is used here to obtain discrete equations of the gov-
erning equations, which are solved via the Gauss-Seidel it-
eration method combined with the successive over relax-
ation method. The samples can be expressed as follows:

S1 =

⎡⎢⎢⎢⎢⎣
p11
p21
...
pL1

⎤⎥⎥⎥⎥⎦ , S2 =

⎡⎢⎢⎢⎢⎣
p12
p22
...
pL2

⎤⎥⎥⎥⎥⎦ , S3 =

⎡⎢⎢⎢⎢⎣
p13
p23
...
pL3

⎤⎥⎥⎥⎥⎦ , (4)

. . . , SN =

⎡⎢⎢⎢⎢⎣
p1N
p2N
...
pLN

⎤⎥⎥⎥⎥⎦
where S1, S2, S3, · · · , SN represent the serials of samples,
N is the number of samples, L is the number of grid points
(including boundary). All the samples compose an L × N
sample matrix:

S= [S1, S2, S3, · · · , SN ] (5)

The number of grid points is usually much larger than
the number of samples, i.e. L>>N. Thus, the snapshot
POD [19, 20] should be used to obtain POD modes:

ϕn =
1
σn

SVn (6)

where ϕn are referred to the PODmodes (n = 1~ N), σn and
Vn are the singular values and eigenvectors obtained from
singular value decomposition (SVD) of matrix STS.

With the known singular values, we can define:

en = σn/
M∑︁
i=1

σi × 100%, En =
n∑︁
j=1

σj/
M∑︁
i=1

σi × 100% (7)

where en is the energy contribution of the nth POD mode
to the whole energy spectrum of POD, En is the cumulative
energy contribution of the first n POD modes (ϕ1 ~ ϕn) to
the whole energy spectrum. The higher energy contribu-
tions indicate more features of samples captured by POD
modes so as tomore importance of thesemodes. This prop-
erty will be used to determine the selection of POD modes
in Section 3.

With the known modes ϕn, pressure can be recon-
structed by the linear combination:

p =
M∑︁
n=1

cnϕn (8)

where M (≤ N) is the number of used POD modes, cn are
unknown coefficients, independent of space, to be calcu-
lated from the PODmodel. To derive thismodel, we substi-
tute Eq. (8) to Eq. (3) and obtain:

−
M∑︁
n=1

cn
[︂
∂
∂x

(︂
kxx
µ
∂ϕn
∂x

)︂
+ ∂
∂y

(︂
kyy
µ
∂ϕn
∂y

)︂]︂
= q (9)

Project Eq. (9) onto the POD mode ϕm (m = 1~M):

−
M∑︁
n=1

cn

ly∫︁
0

lx∫︁
0

[︂
∂
∂x

(︂
kxx
µ
∂ϕn
∂x

)︂
(10)

+ ∂∂y

(︂
kyy
µ
∂ϕn
∂y

)︂]︂
ϕmdxdy

=
ly∫︁
0

lx∫︁
0

qϕmdxdy

Simplify Eq. (10) via the integration by part:

−

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∆y
ny∑︀
j=1

[︂(︁
ϕm kxx

µ
∂p
∂x

)︁
nx+1,j

−
(︁
ϕm kxx

µ
∂p
∂x

)︁
0,j

]︂
+∆x

nx∑︀
i=1

[︂(︁
ϕm kyy

µ
∂p
∂y

)︁
i,ny+1

−
(︁
ϕm kyy

µ
∂p
∂y

)︁
i,0

]︂
−∆x∆y

M∑︀
n=1
cn

ny∑︀
j=1

nx∑︀
i=1

(︁
kxx
µ
∂ϕn
∂x

∂ϕm
∂x + kyy

µ
∂ϕn
∂y

∂ϕm
∂y

)︁
i,j

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(11)

= ∆x∆y
ny∑︁
j=1

nx∑︁
i=1

(qϕm)i,j

The undefined symbols in Eqs. (10) and (11) are illus-
trated in Fig. 1. Uniform mesh and staggered grid method
are utilizedwith grid number of 100 × 100 and domain size
of 100 m × 100 m in this paper.
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Figure 1: Domain and staggered grid

For a Dirichlet boundary condition (known boundary
pressure), any one of the following equations could be
used:

(︂
∂p
∂x

)︂
0,j

=

M∑︀
n=1
cn(ϕn)1,j − p0,j

∆x/2 , (12)

(︂
∂p
∂x

)︂
nx+1,j

=
pnx+1,j −

M∑︀
n=1
cn(ϕn)nx,j

∆x/2 ,

(︂
∂p
∂y

)︂
i,0

=

M∑︀
n=1
cn(ϕn)i,1 − pi,0

∆y/2 ,

(︂
∂p
∂y

)︂
i,ny+1

=
pi,ny+1 −

M∑︀
n=1
cn(ϕn)i,ny

∆y/2

For a Neumann boundary condition (known bound-
ary velocity), any one of the following equations could be
used:

−
(︂
kxx
µ
∂p
∂x

)︂
0,j

= u0,j , −
(︂
kxx
µ
∂p
∂x

)︂
nx+1,j

= unx,j , (13)

−
(︂
kyy
µ
∂p
∂y

)︂
i,0

= vi,0, −
(︂
kyy
µ
∂p
∂y

)︂
i,ny+1

= vi,ny

Combining the Dirichlet and Neumann boundary con-
ditions in Eq. (11), the final expression for POD-Galerkin
model is:

M∑︁
n=1

Am,ncn = bm (14)

where

Am,n =
ny∑︁
j=1

nx∑︁
i=1

(︂
kxx
µ
∂ϕn
∂x

∂ϕm
∂x + kyyµ

∂ϕn
∂y

∂ϕm
∂y

)︂
i,j

+ 2
(∆x)2

ny∑︁
j=1

[︃
Dirixnx+1,j(ϕn)nx,j

(︂
ϕm

kxx
µ

)︂
nx+1,j

+Dirix0,j(ϕn)1,j
(︂
ϕm

kxx
µ

)︂
0,j

]︃

+ 2
(∆y)2

nx∑︁
i=1

[︃
Diriyi,ny+1(ϕn)i,ny

(︂
ϕm

kyy
µ

)︂
i,ny+1

+Diriyi,0(ϕn)i,1
(︂
ϕm

kyy
µ

)︂
i,0

]︃

bm =
ny∑︁
j=1

nx∑︁
i=1

(qϕm)i,j

+ 2
(∆x)2

ny∑︁
j=1

[︃
Dirixnx+1,j

(︂
ϕm

kxx
µ

)︂
nx+1,j

pnx+1,j

+Dirix0,j
(︂
ϕm

kxx
µ

)︂
0,j
p0,j

]︃

+ 2
(∆y)2

nx∑︁
i=1

[︃
Diriyi,ny+1

(︂
ϕm

kyy
µ

)︂
i,ny+1

pi,ny+1

+Diriyi,0
(︂
ϕm

kyy
µ

)︂
i,0
pi,0

]︃

− 1
∆x

ny∑︁
j=1

[︀(︀
1 − Dirixnx+1,j

)︀
·(ϕm)nx+1,junx,j −

(︀
1 − Dirix0,j

)︀
(ϕm)0,ju0,j

]︁
− 1
∆y

nx∑︁
i=1

[︁(︀
1 − Diriyi,ny+1

)︀
(ϕm)i,ny+1vi,ny

− (1 − Diriyi,0) (ϕm)i,0vi,0
]︀

Dirix and Diriy are 1 for Dirichlet boundaries and 0 for
Neumann boundaries.

For a prediction case that is different from samples,
the coefficients can be calculated from Eq. (14) so that the
pressure under the prediction condition can be calculated
directly from Eq. (14) instead of Eq. (3). From the above
derivation, we know the dimension of Eq. (14) is much
smaller than that of Eq. (3), i.e. M ≤ N ≪ L. Thus, com-
putational time can be reduced largely via POD-Galerkin
model.
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3 Results and Discussion
In this section, the POD-Galerkin model obtained in Sec-
tion 2 is applied to incompressible single-phase flow in dif-
ferent types of porous media to examine the precision and
acceleration abilities of the model. Precision is measured
by the relative deviation:

ε = ||pPOD − pFDM|| / ||pFDM|| × 100% (15)

Acceleration is measured by the ratio:

r = tFDM/tPOD (16)

where pFDM and pPOD are the pressure fields calculated
from Eq. (3) via FDM and Eq. (14) & (8) via POD. tFDM and
tPOD are corresponding CPU time. ||·|| represents the L1-
norm.

Figure 2: A homogeneous isotropic porous medium

Table 1: Relative deviation of sample reconstruction

M S1 S2 S3 S4
1 6.75% 6.13% 10.11% 2.82%
2 2 × 10−4% 0% 2 × 10−4% 1 × 10−4%
3 84.35% 70.00% 88.09% 73.69%
4 84.36% 70.04% 88.09% 73.72%

Table 2: Energy contribution of the POD modes

n 1 2 3 4
en 99.35% 0.65% 0% 0%
En 99.35% 100% 100% 100%

3.1 A Homogeneous Isotropic Porous
Medium

Firstly, a homogeneous isotropic porous medium is con-
sidered. Permeability components are the same over the
whole domain with the value of 100 md (1 md = 9.869233
× 10−16 m2). The parameters and boundary conditions are
shown in Fig. 2. Each boundary pressure takes two differ-
ent values: p1 = {50, 60} mH2O, p2 = {20, 40} mH2O
(1 mH2O = 9800 Pa). Thus, the number of the samples is 2
× 2 = 4.

According to Section 2, the maximum number of POD
modes is equivalent to the number of samples, i.e. four
in this case. The selection of the mode number depends
on the actual precision of sample reconstruction. The pre-
cisions using different number of POD modes are shown
in Table 1. It is obvious that the optimal number of POD
modes is two with the relative deviation as low as 0%~ 2
× 10−4%. The inclusion of ϕ3 and ϕ4 generates very large
deviations. The reason is analyzed in Fig. 3 and Table 2. In
Fig. 3, the smooth distributions ofmodes ϕ1 and ϕ2 reflect
the sample distribution correctly (Fig. 3(a) & 3(b)) while
the fluctuated distributions of modes ϕ3 and ϕ4 indicate
the unphysical numerical errors because flows in porous
media are low-speed laminar flow without fluctuations.
This is further verified in Table 2 that ϕ3 and ϕ4 do not
contain any energy indicating that they do not contain any
information about the samples. These two modes are only
numerical errors produced by the SVD. The sole inclusion
of ϕ1 could not generate accurate enough reconstructed
results (ϵ = 2.82% ~ 10.11% in Table 1) although its energy
contribution is very high (en = 99.35%). The inclusion of
ϕ2 supplements a small energy contribution (en = 0.65%)
tomake the PODmodel capture thewhole important infor-
mation (En = 100%) and promote model precision largely
(ϵ = 0% ~ 2 × 10−4% in Table 1). Thus, ϕ2 cannot be ne-
glected even if its energy contribution is quite lower than
ϕ1. The same situations also occur in Sections 3.2 ~ 3.5 ac-
cording to the computational results so that the discussion
on the selection of POD modes will not be repeated in the
following sections and ϕ1 and ϕ2 will be used directly.

To validate the precision of POD model for pre-
dicting cases different from the samples, predic-
tion conditions are designed as p1 = {10, 20,
30, 40, 50, 60, 70, 80, 90, 100} mH2O, p2 = {5,
15, 25, 35, 45, 55, 65, 75, 85, 95} mH2O so that the
number of prediction cases is 10 × 10 = 100. The rela-
tive deviations of 100 cases are shown in Fig. 4 with the
maximum value of 4.0 × 10−4% and the minimum value
of 0%, indicating good performance of solutions globally.
Three typical cases (a, b, c) are selected to show the local
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(1) ϕ1 (2) ϕ2

(3) ϕ3 (4) ϕ4

Figure 3: Distribution of POD modes

Figure 4: Relative deviation of the prediction cases for a homoge-
neous isotropic porous medium

Table 3: Computational time comparison for a homogeneous
isotropic porous medium

Training Sampling Time (4 cases) 27s One-time
Stage Decomposition Time 3.6s cost

Prediction FDM (100 cases) 678s r = 678/
Stage POD (100 cases) 0.2s 0.2 = 3390

solutions of the flow field. The comparisons are shown in
Fig. 5. Local solutions of p, u, v using POD coincide very
well with those using FDM, no matter whether the bound-
ary conditions fall within (a) or out of (b, c) the sample
scope. Even if the boundary condition of case c (p1 < p2)
is opposite to that of samples (p1 > p2), the deviation is
also small enough. Therefore, the POD model is proved
to be very accurate for the homogeneous isotropic porous
medium.
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(a) p1 = 60 mH2O, p2 = 25 mH2O, ε = 2.0 × 10−4%

(b) p1 = 100 mH2O, p2 = 5 mH2O, ε = 4.0 × 10−4%

(c) p1 = 20 mH2O, p2 = 65 mH2O, ε = 1.0 × 10−4%

Figure 5: Comparison of flow fields for 3 typical prediction cases for a homogeneous isotropic porous medium: from left to right are p, u, v
respectively; black solid line-FDM, red dotted line-POD

To validate the computational speed of the POD
model, computational time is compared in Table 3. The
computational time of the training stage (both the 4 sam-
ple cases and the SVD) only costs once for the PODmodel.
Once the training stage is completed, we can use the POD
model to predict any number of caseswithout further sam-
pling and decomposition. Thus, the one-time cost of train-
ing time should not be considered into the acceleration ra-
tio of PODmodel, even if it is small. For the 100 prediction
cases, the computational times of FDM and POD are 678 s

and 0.2 s respectively. The acceleration ratio is high (3390),
indicating excellent acceleration ability of POD model.

3.2 A Homogeneous Anisotropic Porous
Medium

In this section, a homogeneous anisotropic porous
medium is considered as shown in Fig. 6. The permeabil-
ity tensor is unique all over the domain, but the compo-
nent kxx is 100 times larger than component kyy. Different
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Figure 6: A homogeneous anisotropic porous medium

Figure 7: Relative deviation of the prediction cases for a homoge-
neous anisotropic porous medium

boundary conditions are adopted to avoid particularity.
Four sample cases are takenwith the same boundary pres-
sures of Section 3.1. The 100 prediction cases are designed
with the boundary pressures:
p1 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}mH2O,
p2 = {15, 25, 35, 45, 55, 65, 75, 85, 95, 105}mH2O.

Fig. 7 shows the high precision of POD model for 100
cases. The relative deviations are low (1.0 × 10−4% ~ 5.2 ×
10−3%). The precision is further examined using two cases
(a, b) with the maximum and minimum deviations. For
these cases, POD results agree very well with FDM results
(as shown in Fig. 8). Thus, POD model is very accurate for
homogeneous anisotropic porous medium.

Table 4: Computational time comparison for a homogeneous
anisotropic porous medium

Training Sampling Time (4 cases) 26s One-time
Stage Decomposition Time 0.2s cost

Prediction FDM (100 cases) 621s r = 621/
Stage POD (100 cases) 0.27s 0.27 = 2300

Table 5: Computational time comparison for an inhomogeneous
isotropic porous medium

Training Sampling Time (4 cases) 12s One-time
Stage Decomposition Time 3.2s cost

Prediction FDM (91 cases) 264s r = 264/
Stage POD (91 cases) 0.3s 0.3 = 880

For the 100 prediction cases, the computational times
are compared in Table 4 for FDM and POD. The accelera-
tion ratio is still very high (r = 2300), showing the good
acceleration ability of the POD model.

3.3 An Inhomogeneous Isotropic Porous
Medium

In this section, an inhomogeneous isotropic porous
medium is designed as shown in Fig. 9. The distribution
of permeability is not uniform with a small value in the
“H”-shape zone and a large value in other zone, but the
two components kxx and kyy are always equal to each
other. Sample cases are designed as p1 = {50, 55}mH2O,
p2 = {60, 65} mH2O. Prediction cases are designed as
p1 = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90} mH2O, p2 =
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}mH2O. It should
be noticed that there are no flows for the 9 cases when
p1 = p2 so those are not discussed here. Therefore, the
total effective prediction cases must be 10 × 10 − 9 = 91.

With the 2 POD modes extracted from the 4 samples,
predictions for 91 cases are made. The relative deviations
are very low (7.0 × 10−4%~ 1.4 × 10−2%) as shown in Fig. 10.
Pressure and velocity coincide very well with each other
for both POD and FDM in the two cases with the maxi-
mum and minimum deviations (Fig. 11). Thus, PODmodel
is again proven to be very accurate for inhomogeneous
isotropic porous medium.

Table 5 shows the acceleration ratio of the PODmodel
decreases to 880. The decrease is due to the shorter com-
putational time for FDM caused by different permeability
field and boundary conditions. Nevertheless, the acceler-
ation ratio is still attractive.
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(a) p1 = 10 mH2O, p2 = 105 mH2O, εmax = 5.2 × 10−3%

(b) p1 = 100 mH2O, p2 = 105 mH2O, εmin = 1.0 × 10−4%

Figure 8: Comparison of flow fields for 2 typical prediction cases for a homogeneous anisotropic porous medium: from left to right are p, u,
v respectively; black solid line-FDM, red dotted line-POD

Figure 9: An inhomogeneous isotropic porous medium

Figure 10: Relative deviation of the prediction cases for an inhomo-
geneous isotropic porous medium

3.4 An Inhomogeneous Anisotropic Porous
Medium

To examine the POD model in a more complex case, we
let kxx > kyy in the “H”-shape zone and kxx < kyy in the
other zone so that an inhomogeneous anisotropic porous
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(a) p1 = 0 mH2O, p2 = 100 mH2O, εmax = 1.4 × 10−2%

(b) p1 = 90 mH2O, p2 = 100 mH2O, εmin = 7.0 × 10−4%

Figure 11: Comparison of flow fields for 2 typical prediction cases for an inhomogeneous isotropic porous medium: from left to right are p,
u, v respectively; black solid line-FDM, red dotted line-POD

Figure 12: An inhomogeneous anisotropic porous medium

medium is designed as shown inFig. 12. All other sampling
and prediction conditions are the same as Section 3.3.

Figure 13: Relative deviation of the prediction cases for an inhomo-
geneous anisotropic porous medium

The relative deviations of the prediction cases are ap-
parently larger than the previous situations, indicating
that the precision of POD model may decrease along with
the increasing complexity of the problems. However, the
precision is still high (ϵ = 1.2 × 10−2% ~ 2.2 × 10−1%) in
Fig. 13. The flow fields still coincide with each other very
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(a) p1 = 0 mH2O, p2 = 100 mH2O, εmax = 2.2 × 10−1%

(b) p1 = 90 mH2O, p2 = 100 mH2O, εmin = 1.2 × 10−2%

Figure 14: Comparison of flow fields for 2 typical prediction cases for an inhomogeneous anisotropic porous medium: from left to right are
p, u, v respectively; black solid line-FDM, red dotted line-POD

Figure 15: A random porous medium

well for both POD and FDM results, in the two cases with
maximum and minimum deviations (Fig. 14). Thus, the

Table 6: Computational time comparison for an inhomogeneous
anisotropic porous medium

Training Sampling Time (4 cases) 543s One-time
Stage Decomposition Time 0.14s cost

Prediction FDM (91 cases) 12799s r = 12799/
Stage POD (91 cases) 0.13s 0.13 = 98454

POD model has also proven to be very accurate for inho-
mogeneous isotropic porous medium.

Table 6 shows the acceleration ratio of the prediction
cases. It is 98454, which exceeds all other cases in the
above sections. The extremely high acceleration ratio is
due to longer computational time for FDM due to much
higher complexity of the problem.

3.5 A Random Porous Medium

From the comparisons in Sections 3.1 ~ 3.4, we confirmed
that PODmodel has high fidelity in precision and large ac-
celeration in computational time for either homogeneous
or inhomogeneous and either isotropic or anisotropic
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Table 7: Computational time comparison for a random porous
medium

Training Sampling Time (4 cases) 109s One-time
Stage Decomposition Time 0.2s cost

Prediction FDM (107 cases) 3266s r = 3266/
Stage POD (107 cases) 0.23s 0.23 = 14200

(a) kxx = 1 md~10 md

(b) kyy = 10 md ~100 md

Figure 16: Random distribution of the inhomogeneous-anisotropic
permeability field

porous media. However, the computational settings are
basically ideal, e.g. the “H”-shaped permeability distribu-
tion. Permeability fields in real engineering are more com-
plex than these structures. In order to achieve stronger
conclusions, we use randomly distributed, inhomoge-
neous and anisotropic permeability field and recall other

Figure 17: Relative deviation of the prediction cases for a random
porous medium

settings in the case in Section 3.1. The domain and param-
eters are shown in Fig. 15 while the permeability fields are
shown inFig. 16. Two components of permeability are even
in different ranges: kxx for 1 md ~ 10 md and kyy for 10 md
~ 100 md. The sampling conditions are: p1 = {30, 60}
mH2O, p2 = {20, 80} mH2O. The prediction conditions
are:
p1 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110}
mH2O,
p2 = (0, 15, 30, 45, 60, 75, 90, 105, 120, 135) mH2O.

As shown in Fig. 17, the relative deviations are 4.5 ×
10−3% ~ 2.3 × 10−1% even if 107 prediction cases are pre-
dicted by only 2 POD modes for the random permeability
field. This overall precision is high enough to be accepted
in engineering. To identify local precision, 4 typical cases
(a, b, c, d) among these 107 cases are selected to compare
the pressure field and the velocity field obtained by POD
andFDM. If the same style of the previous comparison (e.g.
style inFig. 5, Fig. 8, Fig. 11, Fig. 14) is adopted, the local de-
tails cannot be recognized clearly. Therefore, we change to
a new comparison style in Fig. 18, where the figures on the
first row represent results by FDM while the figures on the
second row represent the results by POD. The comparison
shows that POD results agree very well with the FDM re-
sults, even though the prediction conditions of the 4 cases
are quite different from the sampling conditions. Acceler-
ation ratio on the computational time is also surprisingly
high (r = 14200).
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(a) p1 = 20 mH2O, p2 = 0 mH2O, ε = 2.3 × 10−1%

(b) p1 = 30 mH2O, p2 = 105 mH2O, ε = 9.8 × 10−2%

Figure 18: to be continued
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(c) p1 = 70 mH2O, p2 = 45 mH2O, ε = 4.3 × 10−2%

(d) p1 = 110 mH2O, p2 = 135 mH2O, ε = 1.9 × 10−2%

Figure 18: Comparison of flow fields for 4 typical prediction cases for a random porous medium: from left to right are p, u, v respectively;
first row-FDM, second row-POD



POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media | 601

4 Conclusion
POD-Galerkin modeling method is successfully applied to
incompressible single-phase flow in porous media. Preci-
sion and acceleration of the model are discussed under
different permeability and boundary settings. Our primary
conclusions are as follows:

1. The acceleration ratio is very large with very high
precision for fluid flows in different types of porous
media (r = 880~ 98454 and ϵ = 1.0 × 10−4% ~ 2.3 ×
10−1%).

2. The computational time of FDM is very sensitive to
complexity of problems suchas configuration of per-
meability, the number of prediction cases, boundary
conditions, etc. It is usually higher for more com-
plex porous media (264 s ~ 12799 s). However, the
computational time of POD is quite insensitive to the
complexity of problems. It is only in a very narrow
range (0.13 s ~ 0.3 s) for cases with configuration
of permeability, the number of prediction cases and
boundary condition quite different from each other.
The reason for this phenomenon is that complexity
strongly affects the iteration process of large equa-
tion systems in FDM (Eq. (3)) but the effects of com-
plexity on much smaller equation systems in POD
(Eq. (14)) is very weak.

3. According to (1) and (2), the POD-Galerkin model
has potential to satisfy the demands of fast predic-
tion in engineering where complex porous media
are usually encountered.
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