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Abstract:We present a complete energy and wavefunction
analysis of a Harmonic oscillator with simultaneous non-
hermitian transformations of co-ordinate (x → (x+iλp)√

(1+βλ)
)

and momentum (p → (p+iβx)√
(1+βλ)

) using perturbation the-
ory under iso-spectral conditions.We observe that two dif-
ferent frequencies of oscillation (w1, w2)correspond to the
same energy eigenvalue, - which can also be verified using
a Lie algebraic approach.
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1 Introduction
In physics the generation of a new Hamiltonian typically
relates to a transformation of co-ordinate

x̄ = x̄(x, p) (1)

or momentum
p̄ = p̄(x, p) (2)

or both. Here x, p are related to the original
Hamiltonian:H(x, p) and x̄, p̄ are related to the newHamil-
tonianH(x̄, p̄. This type of transformation iswell known in
classical physics (canonical transformation) [1]. However
in quantum physics one has to be careful about the com-
mutation relation: as the commutation relation invariance
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results in iso-spectral behaviour of the Hamiltonian [2].
Mathematically

[x, p] = [x̄, p̄] = i h2π = ih̄ (3)

where h is Plank’s constant. Of interest in this commuta-
tion relation is that one can have simultaneous transfor-
mations of co-ordinate and momentum. First the Hamil-
tonian must be written either in the momentum dimen-
sionor co-ordinate dimension. Somomentumhas to bede-
fined in such a way that from the dimension point of view
both co-ordinate and momentum are equally acceptable.
In order to give an example of this we consider an exactly
solvable model. The widely used exactly solvable model is
the Harmonic Oscillator(HO) [1, 2], abd this plays a major
role in understanding the limitations of various approxi-
mation methods such as the variational method, W.K.B.
method, perturbation method, etc. Hence, for simplicity,
we address the above commutation relation using HO as
an example [2]. The Hamiltonian in old co-ordinate and
momentum is written as

H = p2
2m + w2

0mx2
2 (4)

Here,m is mass and w0 stands for the frequency of oscilla-
tion. The above expression can be written as amomentum
base relation as

mH = p2
2 + w2

0m2x2
2 (5)

This implies that the dimension of p remains the same
as that of mw0x. Here one can introduce new momentum
as [3]

p̄ → p + iβmw0x (6)

where β is a simple numerical constant which can be var-
ied arbitrarily in order to generate a large number of sys-
tems. Similarly one can write the Hamiltonian of the Har-
monic Oscillator in co-ordinate base as

H
mw2

0
= p2
2m2w2

0
+ x

2

2 (7)
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In this case one can introduce a new co-ordinate x̄ as

x̄ → x + iλ p
mw0

(8)

It is seen that the commutation relation is not invariant .
However in the later part of the study we will consider its
appropriate form [4–6]. Above, λ is a dimensionss param-
eter like β, which allows a large class of Hamiltonians to
be generated using different numerical values. It is clear
from the above two transformations that λ, β are dimen-
sionless numbers. Further introducing" i " (complex fac-
tor ) in the above transformation allows us to study the HO
in complex space [4–6]. This is relevant due to the recent
experiment in parity (P) - time (T) meta material [7]. Math-
ematically, the complex nature of transformation means
that it must satisfy the following PT condition [8]

PTx̄(PT)−1 = −x̄ (9)

PTp̄(PT)−1 = −p̄ (10)

So that the product x̄p̄ appearing in above commutation
relation becomes PT invariant. Here P stands for parity
transformation i.e under P ; x → −x; p → −p. Similarly
under time reversal T ; x → x; p → −p ; i → −i. In
other words one is likely to study the new Hamiltonian
under complex transformation i.e under the PT transfor-
mations. We also note that when the co-ordinate and mo-
mentumsimultaneously under gonon-Hermitian transfor-
mations [4–6], its energy eigenvalue can be iso-spectral to
the original Harmonic oscillator. Under iso-spectral con-
ditions, the wavefunction of the transformed Hamiltonian
differs drastically from that of the originalHamiltonian [4–
6]. However, a complete picture on wavefunction is still
in need of further study. Further, no such explicit calcu-
lations on wavefunctions are available at present [4–6].
Hence the aimof this paper is to present a complete picture
of wavefunction and energy under iso-spectral conditions
using perturbation theory under the PT transformation as
discussed above.

2 Energy levels and Wavefunction
of Simple Harmonic Oscillator
(SHO)

We consider the case m = w0 = h̄ = 1 and write the Hamil-
tonian of SHO [1, 2] as

HHO = p
2

2 + x
2

2 (11)

whose exact energy eigenvalues is [2]

En =
(︂
n + 1

2

)︂
(12)

and corresponding wavefunction is [2]

ψn =
√︂

1√
π2nn!

Hn(x)e−
x2
2 (13)

where Hn(x) is the Hermite polynomial.

3 SHO under non-Hermitian
transformation of co-ordinate (x)
and momentum (p)

Consider the non-Hermitian transformations of x and p
as [4–6]

x̄ = x → x + iλp√︀
(1 + βλ)

(14)

and
p̄ = p → p + iβx√︀

(1 + βλ)
(15)

In this transformation we note that the transformed
co-ordinate andmomentum preserve the commutation re-
lation [4–6] i.e.

[x, p] = [x̄, p̄] = i (16)

Now the new Hamiltonian with transformed x and p
becomes non-Hermitian in nature and is

H = (p + iβx)2
2(1 + λβ) +

(x + iλp)2
2(1 + λβ) (17)

4 Second Quantization and
Hamiltonian

In order to solve the aboveHamiltonian,we use the second
quantization formalism as [2]

x = (a + a+)√
2ω

(18)

and
p = i

√︂
ω
2 (a

+ − a) (19)

where the creation operator, a+ and annhilation operator
a satisfy the commutation relation

[a, a+] = 1 (20)
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and ω is an unknown parameter. The Hamiltonian can be
written as

H = HD + HN (21)

where

HD =
[︂
(1 − λ2)ω + (1 − β2)

ω

]︂
(2a+a + 1)
4(1 + λβ) (22)

and
HN = U a2

4(1 + λβ) + V
(a+)2

4(1 + λβ) (23)

V =
[︂
−ω(1 − λ2) + (1 − β2)

ω − 2(λ + β)
]︂

(24)

U =
[︂
−ω(1 − λ2) + (1 − β2)

ω + 2(λ + β)
]︂

(25)

4.1 Zero Energy Correction Method (Case
Study for U=0)

Now we solve the the eigenvalue relation:

HΨn(x) = ϵnΨn(x) (26)

using perturbation theory as follows. Here we express

ϵn = ϵ(0)n +
k∑︁

m=1
ϵ(m)n (27)

The zeroth order energy ϵ(0)n satisfies the the following
eigenvalue relation

HD|ψn⟩ = HD|n⟩ = ϵ(0)n |n⟩ (28)

whereψ(0)
n is the zeroth order wave function and ϵ(m)n is the

mth order perturbation correction.

ϵ(0)n = (2n + 1)
4(1 + λβ)

[︂
(1 − λ2)ω + (1 − β2)

ω

]︂
(29)

and
k∑︁

m=1
ϵ(m)n = ϵ(1)n + ϵ(2)n + ϵ(3)n + . . . (30)

The energy correction termswill give zero contribution
if the parameter is determined from non-diagonal terms of
HN [4]

Let the coefficient of a2 be zero [4] i.e.

U = [−ω(1 − λ2) + (1 − β2)
ω + 2(λ + β)] = 0 (31)

which leads to( considering positive sign)

ω = ω1 =
(1 + β)
(1 − λ) (32)

In this case,

ϵ(0)n =
(︂
n + 1

2

)︂
(33)

Now the perturbation correction term is

HN = V (a+)2
4(1 + λβ) = −

(λ + β)
1 + λβ (a

+)2 (34)

In this case one will notice that

⟨n|HN |n − 2⟩ = V
√︀
n(n − 1)

4(1 + λβ) (35)

⟨n − 2|HN |n⟩ = 0 (36)

Hence it follows that all orders of energy corrections
will be zero. Let us consider explicitly corrections up to
third order using a standard perturbation series given in
literature [2, 4, 9–14], which can be written as

ϵ(1)n = ⟨ψn|HN |ψn⟩ = 0 (37)

ϵ(2)n =
∑︁
k≠n

⟨ψn|HN |ψk⟩⟨ψk|HN |ψn⟩
(ϵ(0)n − ϵ(0)k )

= ⟨ψn|HN |ψn+2⟩⟨ψn+2|HN |ψn⟩
(ϵ(0)n − ϵ(0)n+2)

= 0 (38)

ϵ(3)n =
∑︁
p,q

⟨ψn|HN |ψp⟩⟨ψp|HN |ψq⟩⟨ψq|HN |ψn⟩
(ϵ(0)n − ϵ(0)p )(ϵ(0)n − ϵ(0)q )

= 0 (39)

or

ϵ(3)n = ⟨ψn|HN |ψn+2⟩⟨ψn+2|HN |ψn+4⟩⟨ψn+4|HN |ψn⟩
(ϵ(0)n − ϵ(0)n+2)(ϵ

(0)
n − ϵ(0)n+4)

= 0

(40)
Here second order correction is zero due to

⟨ψn|HN |ψn+2⟩ = δn,n+4 and third order correction is zero
due to ⟨ψn+4|HN |ψn⟩ = δn+4,n+2. Similarly we note that all
correction terms ϵ(m)n will be zero. Hence

ϵn = ϵ(0)n = E(0)n =
(︂
n + 1

2

)︂
(41)

|ψn⟩ =
(︂ √ω1√

π2nn!

)︂ 1
2

Hn(
√ω1x)e−ω1

x2
2 (42)

with
⟨ψn|ψn⟩ = 1 (43)

Form the above, analysis it is seen that the total en-
ergy of the Harmonic oscillator and the Harmonic oscilla-
tor with non-hermitian transformation remains the same.



Energy and Wave function Analysis on Harmonic Oscillator | 495

4.2 Corresponding Wavefunction using
Perturbation Theory

Here we find the wavefunction as

Ψ (k)
n =|ψn⟩ + fλ,β

√︀
(n + 2)!
2
√
n!

|ψn+2⟩

+ (fλ,β)2
√︀
(n + 4)!
8
√
n!

|ψn+4⟩

+ (fλ,β)3
√︀
(n + 6)!
48

√
n!

|ψn+6⟩ + . . . (44)

where fλ,β = (λ+β)
(1+λβ) . In its compact form one can write,

Ψ (k)
n =

∑︁
k=0

[︂
(λ + β)
(1 + λβ)

]︂k√︂ (n + 2k)!
n! |ψn+2k⟩ω1 (45)

The normalization condition here can be written as
[9–12]

⟨ψn|Ψ (k)
n ⟩ = 1 (46)

and so also the eigenvalue relation

⟨ψn|H|Ψ (k)
n ⟩ = En =

(︂
n + 1

2

)︂
(47)

4.3 Zero Energy Correction Method (Case
Study for V=0)

Let the coefficient of (a+)2 be zero [4] i.e.

V = [−ω(1 − λ2) + (1 − β2)
ω − 2(λ + β)] = 0 (48)

which leads to
ω = ω2 =

(1 − β)
(1 + λ) (49)

In this case, ω is calculated using similarity transforma-
tion [6] and remains the same as ω2. Now the perturbation
term becomes

HN = U a2
4(1 + λβ) =

(λ + β)
1 + λβ a

2 (50)

In this case we note that

⟨ϕn|HN |ϕn+2⟩ = U
√︀
[(n + 1)(n + 2)]
4(1 + λβ) (51)

⟨ϕn+2|HN |ϕn⟩ = 0 (52)

Hence [9–14]

ϵ(1)n = ⟨ϕn|HN |ϕn⟩ = 0 (53)

ϵ(2)n =
∑︁
k≠n

⟨ϕn|HN |ϕk⟩⟨ϕk|HN |ϕn⟩
(ϵ(0)n − ϵ(0)k )

= ⟨ϕn|HN |ϕn−2⟩⟨ϕn−2|HN |ϕn⟩
(ϵ(0)n − ϵ(0)n−2)

= 0 (54)

ϵ(3)n =
∑︁
p,q

⟨ϕn|HN |ϕp⟩⟨ϕp|HN |ϕq⟩⟨ϕq|HN |ϕn⟩
(ϵ(0)n − ϵ(0)p )(ϵ(0)n − ϵ(0)q )

= 0 (55)

or

ϵ(3)n = ⟨ϕn|HN |ϕn−2⟩⟨ϕn−2|HN |ϕn−4⟩⟨ϕn−4|HN |ϕn⟩
(ϵ(0)n − ϵ(0)n−2)(ϵ

(0)
n − ϵ(0)n−4)

= 0

(56)
Here second order correction is zero due to

⟨ϕn|HN |ϕn−2⟩ = δn,n−2 and third order correction is zero
due to ⟨ϕn−4|HN |ϕn⟩ = δn−2,n−4. Similarly one can notice
all correction terms ϵ(m)n will be zero. Hence

ϵn = ϵ(0)n = E(0)n =
(︂
n + 1

2

)︂
(57)

which is the same as the energy level of harmonic oscilla-
tor as given in Eq. (2) and

|ϕn⟩ = (
√ω2√
π2nn!

)
1
2Hn(

√ω2x)e−ω2
x2
2 (58)

4.4 Corresponding Wavefunction using
Perturbation Theory

Here we consider the wavefunction as

Φ(k)
n =|ϕn⟩ + fλ,β

√
n!

2
√︀
(n − 2)!

|ϕn−2⟩

+ (fλ,β)2
√
n!

8
√︀
(n − 4)!

|ϕn−4⟩

+ (fλ,β)3
√
n!

48
√︀
(n − 6)!

|ϕn−6⟩ + . . . (59)

In its compact form

Φ(k)
n =

∑︁
k=0

( (λ + β)(1 + λβ) )
k

√
n!√︀

(n − 2k)!2kk!
|ϕn−2k⟩ω2 (60)

Here we note that for x →∞ i.e.

ϕn(x →∞) → 0 (61)

and
Φ(k)
n (x →∞) → 0 (62)

In this case, the normalization condition can be written
as [9–12]

⟨ϕn|Φ(k)
n ⟩ = 1 (63)

and so also the eigenvalue relation

⟨ϕn|H|Φ(k)
n ⟩ = En =

(︂
n + 1

2

)︂
(64)
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5 Comparision with Similarity
Transformation using
Lie-algebra [5]

In the above we note that two different frequencies(
w1, w2)corresponds to the same energy eigenvalue. Now
we compare our results with that of Zhang et al. [5] us-
ing Lie-algebra as follows.Previous authors consider the
Hamiltonian

H = s0
(︂
a+a + 1

2

)︂
+ s1(a+)2 + s2a2 + s3a+ + s4a (65)

having energy eigenvalue

ϵn =
√︁
s20 − 4s1s2

(︂
n + 1

2

)︂
+ s2s

2
3 + s1s24 − s0s3s4
s20 − 4s0s1s2

(66)

Case-I w = w1 = 1+β
1−λ .

In this case we have the Hamiltonian

H =
(︂
a+a + 1

2

)︂
− (λ + β)
2(1 + λβ) (a

+)2 (67)

Now comparing we get

s0 = 1 (68)

s1 = −
(λ + β)

2(1 + λβ) (69)

s2 = 0 (70)

s3 = 0 (71)

s4 = 0 (72)

Hence the
ϵn =

(︂
n + 1

2

)︂
(73)

which is the same result as given earlier usingperturbation
theory.
Case-II w = w2 = 1−β

1+λ .
In this case we have the Hamiltonian

H = (a+a + 1
2) +

(λ + β)
2(1 + λβ)a

2 (74)

Now comparing we get

s0 = 1 (75)

s2 =
(λ + β)

2(1 + λβ) (76)

s1 = 0 (77)

s3 = 0 (78)

s4 = 0 (79)

Hence the
ϵn =

(︂
n + 1

2

)︂
(80)

which, once again the same as given earlier using pertur-
bation theory. We see that the results of Lie-algebra match
those of perturbation theory for energy level calculation.

6 Comparision with Similarity
Transformation [6]

It is worth mentioning that Fernandez [6] has calculated
a groundstate wave function of this oscillator using simi-
larity transformation.The explict expression for the wave
function [6] is

|ϕ0⟩ =
(︁ω2
π

)︁ 1
4 e−ω2

x2
2 (81)

It is easy to check that our result for n = 0 remains the
same as that of Fernandez [6]. However, we do not have
literature for further comparison.

7 Conclusion
In this paper, we suggest a simpler procedure for calculat-
ing energy levels and wave function of the non-Hermitian
harmonic oscillator under simultaneous transfromation
of co-ordinate and momentum using perturbation the-
ory. Further more the energy eigenvalue calculated us-
ing perturbation theory matches that of the Lie algebric
method [5]. At this point it is necessary tomention that the
ground state wave function calculated by Fernandez [6]
refers to the zeroth order wave function as reflected in
VI(b).However we present a complete picture on wave
function. In all cases, we show that the energy levels re-
main the same as for the simple Harmonic oscillator. If the
parameter ω is determined using variational principle [13]
i.e. dϵ

(0)
n

dω = 0, then one has to calculate all orders of pertur-
bation corrections i.e.

∑︀k
m=2 ϵ

(m)
n because ⟨n|HN |n +2⟩ ≠ 0

so also ⟨n + 2|HN |n⟩ ≠ 0 and it will be a cumbersome pro-
cess. However, if the parameter is determined either using
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⟨n|HN |n+2⟩or ⟨n+2|HN |n⟩asper the aboveprocedure then
the energy levels andwave functionare obtainedmore eas-
ily. Further we note that

⟨ϕn|HD|ϕn⟩ =⟨ψn|HD|ψn⟩ = ⟨ϕn|H|Φ(k)
n ⟩

=⟨ψn|H|Ψ (k)
n ⟩ =

(︂
n + 1

2

)︂
(82)

This is directly due to non-commuting operators i.e.
[H, HD] ≠ 0 corresponding to different wave functions.
Further,one can use nonlinear perturbation series [12] and
conclude that if the parameter ω is determined using the
condition ⟨n|HN |n + 2⟩ or ⟨n + 2|HN |n⟩, the calculations
radily give the desired result. The final question is to con-
sider is the possibility of realising this complex space PT
invariant analysis on HO which generates a large class of
isospectral system.We judge the answer to this question to
be yes; provided an experiment is carried out using "uni-
directional parity-time metamaterial " at optical frequen-
cies [7] and observing spectra like the one in "Raman ef-
fect".
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