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Abstract: We present a complete energy and wavefunction
analysis of a Harmonic oscillator with simultaneous non-
hermitian transformations of co-ordinate (x — M)

VD
%) using perturbation the-
ory under iso-spectral conditions. We observe that two dif-
ferent frequencies of oscillation (w1, w,)correspond to the
same energy eigenvalue, - which can also be verified using
a Lie algebraic approach.

and momentum (p —
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1 Introduction

In physics the generation of a new Hamiltonian typically
relates to a transformation of co-ordinate

X =x(x,p) @

or momentum
p=px,p) (@)

or both. Here x,p are related to the original
Hamiltonian:H(x, p) and x, p are related to the new Hamil-
tonian H(X, p. This type of transformation is well known in
classical physics (canonical transformation) [1]. However
in quantum physics one has to be careful about the com-
mutation relation: as the commutation relation invariance
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results in iso-spectral behaviour of the Hamiltonian [2].
Mathematically

[x, pl =[5, pl = i = ifh ©

where h is Plank’s constant. Of interest in this commuta-
tion relation is that one can have simultaneous transfor-
mations of co-ordinate and momentum. First the Hamil-
tonian must be written either in the momentum dimen-
sion or co-ordinate dimension. So momentum has to be de-
fined in such a way that from the dimension point of view
both co-ordinate and momentum are equally acceptable.
In order to give an example of this we consider an exactly
solvable model. The widely used exactly solvable model is
the Harmonic Oscillator(HO) [1, 2], abd this plays a major
role in understanding the limitations of various approxi-
mation methods such as the variational method, W.K.B.
method, perturbation method, etc. Hence, for simplicity,
we address the above commutation relation using HO as
an example [2]. The Hamiltonian in old co-ordinate and
momentum is written as

2 2.2
“mt 2 @
Here, m is mass and wy stands for the frequency of oscilla-
tion. The above expression can be written as a momentum
base relation as

H

2 222
_p?, wom’x
mH St (5)

This implies that the dimension of p remains the same
as that of mwgx. Here one can introduce new momentum
as [3]

D — p +ifmwox (6)

where f3 is a simple numerical constant which can be var-
ied arbitrarily in order to generate a large number of sys-
tems. Similarly one can write the Hamiltonian of the Har-
monic Oscillator in co-ordinate base as

H  p? x? @)
mw?  2m2w} "7
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In this case one can introduce a new co-ordinate X as

% x+il—P_ (8)
mwo
It is seen that the commutation relation is not invariant .
However in the later part of the study we will consider its
appropriate form [4-6]. Above, A is a dimensionss param-
eter like B, which allows a large class of Hamiltonians to
be generated using different numerical values. It is clear
from the above two transformations that A, B are dimen-
sionless numbers. Further introducing" i " (complex fac-
tor ) in the above transformation allows us to study the HO
in complex space [4-6]. This is relevant due to the recent
experiment in parity (P) - time (T) meta material [7]. Math-
ematically, the complex nature of transformation means
that it must satisfy the following PT condition [8]

PTx(PT)! = -x 9)

PTp(PT) ' =-p (10)

So that the product xp appearing in above commutation
relation becomes PT invariant. Here P stands for parity
transformation i.e under P ; x — -x;p — —p. Similarly
under time reversal T ; x — x;p — -p;i — -i.In
other words one is likely to study the new Hamiltonian
under complex transformation i.e under the PT transfor-
mations. We also note that when the co-ordinate and mo-
mentum simultaneously under go non-Hermitian transfor-
mations [4—6], its energy eigenvalue can be iso-spectral to
the original Harmonic oscillator. Under iso-spectral con-
ditions, the wavefunction of the transformed Hamiltonian
differs drastically from that of the original Hamiltonian [4—
6]. However, a complete picture on wavefunction is still
in need of further study. Further, no such explicit calcu-
lations on wavefunctions are available at present [4-6].
Hence the aim of this paper is to present a complete picture
of wavefunction and energy under iso-spectral conditions
using perturbation theory under the PT transformation as
discussed above.

2 Energy levels and Wavefunction
of Simple Harmonic Oscillator
(SHO)

We consider the case m = wg = h = 1 and write the Hamil-
tonian of SHO [1, 2] as

2

(11)

2
_p X
HHo—2

i3
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whose exact energy eigenvalues is [2]

E,= (n + %) (12)
and corresponding wavefunction is [2]
/ 1 _<2
Yn = mHn(X)e 2 (13)

where Hy(x) is the Hermite polynomial.

3 SHO under non-Hermitian
transformation of co-ordinate (x)
and momentum (p)

Consider the non-Hermitian transformations of x and p

as [4-6] "
_ X +ilp

X=x— W) ) (14)
and .
pop BB (15)

V(@+BA)

In this transformation we note that the transformed
co-ordinate and momentum preserve the commutation re-
lation [4-6] i.e.

[x,pl =[x,pl =1 (16)

Now the new Hamiltonian with transformed x and p
becomes non-Hermitian in nature and is

H- (p +iBx)? . (x + iAp)?

=20 +4p) T 20+ a7

4 Second Quantization and
Hamiltonian

In order to solve the above Hamiltonian, we use the second
quantization formalism as [2]

_(a+a)
S Ve u8)
and
p= i\/g(a+ -a) (19)

where the creation operator, a* and annhilation operator
a satisfy the commutation relation

[a,a’]=1 (20)
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and w is an unknown parameter. The Hamiltonian can be
written as

H=Hp+Hy 1)
where
[ 2 1-p9)] ata+1)
Hy - [(1 P+ L2 ] o @
and 2 ( +)2
a a
Hy = U4(1 +AB) * V4(1 +AB) (23)
V= {—w(l -+ (1;,7[;2) -2+ ﬂ)} (24)
U= [—w(l -+ a :UBZ) +2(A + ﬁ)] (25)

4.1 Zero Energy Correction Method (Case
Study for U=0)
Now we solve the the eigenvalue relation:
HYn(X) = €n¥Pn(x) (26)

using perturbation theory as follows. Here we express

k
en=€9+ Z elm (27)
m=1

The zeroth order energy e;‘))

eigenvalue relation

satisfies the the following

Hp|n) = Hp|n) = |n) (28)

where 1/)5,0) is the zeroth order wave function and ef{") isthe
mth order perturbation correction.

©_ @n+D) [ oy (1-5%)
A TeRT) 1-w+ 7 (29)
and
k
S W@ (o)
m=1

The energy correction terms will give zero contribution
if the parameter is determined from non-diagonal terms of
Hy [4]

Let the coefficient of a® be zero [4] i.e.

U=[-wl-2A%)+ (1;)7/32) +2A+p)=0 (31

which leads to( considering positive sign)

w _(1+p)

A (32)

w =
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In this case,

e = (n + 1) (33)
2
Now the perturbation correction term is
_y @) AP, i
Hv=Viaeap ~ 1489 (34)
In this case one will notice that
_v/n(n-1)
(n|Hy|n-2) = VW (35)
(n-2[Hy|n) =0 (36)

Hence it follows that all orders of energy corrections
will be zero. Let us consider explicitly corrections up to
third order using a standard perturbation series given in
literature [2, 4, 9-14], which can be written as

e = (thn|Hy|thn) = 0 37)
@ _ N\ (WnlHN[Yr) (i Hy[Pn)
6"2 _g Izegogc_eé)))lv
n H n+ n+ H n
_(§n] N(l/;glo)zztl;q(l);' NP _ (38)

e® _ > (Yn|Hn[Yp) (p | Hn[Pq) (YqlHn[Yn) _ (39)

e (e ~ e )er” - ")

or

é.£l3) - (Wn|Hy|Yn2) (Ynea|HN [ Wnea) (YneaHy|¥n) -0

(e - e )(e? - €

(40)

Here second order correction is zero due to

(Yn|Hy|Yn+2) = On,n+q and third order correction is zero

due to (Yn+4|Hy|Pn) = On+4,n+2. Similarly we note that all
correction terms e;'") will be zero. Hence

€n = eﬁ,o) = Eﬁ,o) = (n + %) (41)
VT ) 0l
O o )
with
<‘pn|§bn> =1 (43)

Form the above, analysis it is seen that the total en-
ergy of the Harmonic oscillator and the Harmonic oscilla-
tor with non-hermitian transformation remains the same.
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4.2 Corresponding Wavefunction using
Perturbation Theory

Here we find the wavefunction as

w0 ) + 1 S )
G )
6
+ (g’ Vlfg}) Yee) + ()
where fj g = ((1’1:/{2). In its compact form one can write,
W a+p 1" /(n+2k)'
'Fn = ; |:(1 +Aﬁ)] |lpn+2k> (45)

The normalization condition here can be written as
[9-12]

(PR =1 (46)
and so also the eigenvalue relation
(Yu|HWHY = E, = (n + %) (47)

4.3 Zero Energy Correction Method (Case
Study for V=0)

Let the coefficient of (a*)? be zero [4] i.e.

V=[-wl-A%)+ a ;}ﬁz) -20+p)]=0  (48)
which leads to 1-p)
w=w2=(1+/1) (49)

In this case, w is calculated using similarity transforma-
tion [6] and remains the same as w;. Now the perturbation
term becomes

at A+ 2
Av=Uyaap ~1+48 (50)
In this case we note that
B [((n+1D)(n+2)]
(Pn|Hy|Pni2) = UW (51)
<¢n+2|HN‘¢"> =0 (52)
Hence [9-14]
e = (@nl|Hy|n) = (53)
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@ _ N\~ (@nlHn| D) (Pi|Hn|n)
6,12 _% Izegl();(_e;(z)))N

_ {Pn|HN|Pn-2)(Pn-2|HN|Pn) _

(0) (0)
(en” — €25

0 _ 3 (¢n|Hn|pp)(Pp HN|Pq){(PgHn|Pn)
n (e(nO) (0))(6(0) (0))

(54)

=0 (55)
p.q
or

_ (@Pn|HN|Pn-2){(Pn—2|HN|Pn-4)(Pn-4|Hn|Pn) _
( o) _ (0) )(6(0) (0)

(56)

Here second order correction is zero due to

(Ppn|HN|Pn-2) = 8n,n-2 and third order correction is zero

due to (¢n-4|Hy|Pn) = 6n-2,n-4. Similarly one can notice
all correction terms e(’" will be zero. Hence

_ ©) _ 1
€n e =E, (n+2>

which is the same as the energy level of harmonic oscilla-
tor as given in Eq. (2) and

_( Vw2
|¢n>_(\/>2n ]

(57)

CUZZ

)? Ha(\/@2x)e (58)

4.4 Corresponding Wavefunction using
Perturbation Theory

Here we consider the wavefunction as

OP =|¢n) |Pn-2)

N e
i
27

+(fap) 8ﬁ|¢n 4)

Vn!

3
0 s e

|Pn-6) + (59)

In its compact form

W _ A+B) vn!
Pn Z((1+/\ﬁ) (n = 2k)12kk!

Here we note that for x — oo i.e.

‘(pn 2k> (60)

¢n(x — o0) = 0 (61)

and

W (x = 00) 50 (62)
In this case, the normalization condition can be written
as [9-12]

(pn| @V =1

and so also the eigenvalue relation

(63)

@0f) = En = (n+3) (64)
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5 Comparision with Similarity
Transformation using
Lie-algebra [5]
In the above we note that two different frequencies(
w1, wp)corresponds to the same energy eigenvalue. Now
we compare our results with that of Zhang et al. [5] us-

ing Lie-algebra as follows.Previous authors consider the
Hamiltonian

H=sp <a*a + %) +s1(ah)? +s,a® +s3a" +s4a  (65)

having energy eigenvalue

1 5253 + 5152 — 505354
_ 2 _ 1 3 4
€n = /S5~ 4515, (n + 2> + 450515 (66)
Case-Iw =w; = }—fﬁ
In this case we have the Hamiltonian
_ 1)\ A+B) 42
H—<a a+2) 72(1”1/3)(61) (67)
Now comparing we get
So = 1 (68)
___(A+B)
12750+ A8) (69)
Sy = 0 (70)
s3=0 (71)
Sy = 0 (72)
Hence the
€n = (n + %) (73)

which is the same result as given earlier using perturbation

theory.
Case-Ilw=w, = }—’ﬁ
In this case we have the Hamiltonian
—(ata+ Dy AFB) o
H=(a a+2)+2(1+w)a (74)
Now comparing we get
So=1 (75)
_A+p (76)

2751+ A8)
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s1=0 (77)
S3 = 0 (78)
Sy = 0 (79)
Hence the
€n = (n + %) (80)

which, once again the same as given earlier using pertur-
bation theory. We see that the results of Lie-algebra match
those of perturbation theory for energy level calculation.

6 Comparision with Similarity
Transformation [6]

It is worth mentioning that Fernandez [6] has calculated
a groundstate wave function of this oscillator using simi-
larity transformation.The explict expression for the wave
function [6] is

1 2
po) = (22)" e 7 (81
T
It is easy to check that our result for n = O remains the
same as that of Fernandez [6]. However, we do not have
literature for further comparison.

7 Conclusion

In this paper, we suggest a simpler procedure for calculat-
ing energy levels and wave function of the non-Hermitian
harmonic oscillator under simultaneous transfromation
of co-ordinate and momentum using perturbation the-
ory. Further more the energy eigenvalue calculated us-
ing perturbation theory matches that of the Lie algebric
method [5]. At this point it is necessary to mention that the
ground state wave function calculated by Fernandez [6]
refers to the zeroth order wave function as reflected in
VI(b).However we present a complete picture on wave
function. In all cases, we show that the energy levels re-
main the same as for the simple Harmonic oscillator. If the
parameter w is determined using variational principle [13]

0
de®

ie & =0, then one has to calculate all orders of pertur-

bation corrections i.e. anzz eg,m) because (n|Hyjn+2) #0
so also (n + 2|Hy|n) # 0 and it will be a cumbersome pro-
cess. However, if the parameter is determined either using
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(n|Hy|n+2) or (n+2|Hy|n) as per the above procedure then
the energy levels and wave function are obtained more eas-
ily. Further we note that

(nlHp|dn) =(Wn|Hp|Pn) = (¢n|H|OY)

(W0 = (n ; %) (82)
This is directly due to non-commuting operators i.e.
[H,Hp] # O corresponding to different wave functions.
Further,one can use nonlinear perturbation series [12] and
conclude that if the parameter w is determined using the
condition (n|Hy|n + 2) or (n + 2|Hy|n), the calculations
radily give the desired result. The final question is to con-
sider is the possibility of realising this complex space PT
invariant analysis on HO which generates a large class of
isospectral system. We judge the answer to this question to
be yes; provided an experiment is carried out using "uni-
directional parity-time metamaterial " at optical frequen-
cies [7] and observing spectra like the one in "Raman ef-
fect".

Acknowledgement: We thank Prof. A. Khare for suggest-
ing improvements and Prof. M. Znojil for critical reading
of the manuscript.We also thank both the Referees for sug-
gesting improvements to the manuscript.

References

[1] Biswas S.N., Classical Mechanics, Ist ed,Books and Allied (P)
Ltd Calcutta, India, 1998

[2]  Schiff L.I.,, Quantum Mechanics, 3rd ed, McGraw-Hill, Singa-
pore, 1985

[3] AhmedZ.,Pseudo-Hermiticity of Hamiltonians under gauge-like
transformation :real spectrum of non-Hermitian Hamiltonians,
Phys. Lett., 2002, A 294, 287-291

Energy and Wave function Analysis on Harmonic Oscillator

[4]

5]

(6]

(7]

(8]

9
[10]

[11]

[12]

[13]

[14]

— 497

Rath B. and Mallick P., Zero energy correction method for non-
Hermitian Harmonic oscillator with simultaneous transforma-
tion of co-ordinate and momentum. arxiv:1501.06161(quant-ph)
Zhang H.B., Jiang G.Y. and Wang G.C., Unified algebric method
to non-Hermitian systems with Lie algebric linear structure, J.
Math. Phys., 2015, 56, 072103 (This paper also reflects iso-
spectral condition as reported in [4])

Fernandez F.M., Non-Hermitian Hamiltonians and Similarity
transfromation, arxiv:1502.02694[quant-ph];Int. J. Theo. Phys.,
2015,55,843-850 (This paper uses similarity transformation to
reflect iso-spectral condition reported in [4])

FengL., Xu X.L., Fegadolli W.S., Lu M.H/, Oliveira J.E.B., Almeida
V.R., Chen Y.F. and Scherer A., Experimental demonstration of a
unidirectional reflectionless parity time metamaterial at optical
frequencies. Nature Materials, 2013, 12, 108-113

Bender C.M. and Boettcher S., Real Spectra in Non-Hermitian
Hamiltonians Having PJ Symmetry. Phys. Rev. Lett, 1998,
80(24), 5243-5246

Zettili N., Quantum Mechanics:Concepts and applications, 2nd
ed, John Wiley, New York, 2001

Landau L.D. and Lifshtiz E.M., Quantum Mechanics, 3rd ed, El-
sevier, Amsterdam, 2011.

Rath B., A new approach on wave function and energy level cal-
culation through perturbation theory, J. Phys. Soc. Jpn, 1998,
67(9), 3044-3049

Rath B., Case study of the convergency of nonlinear perturba-
tion series: Morse-Feshbach nonlinear series. Int. J. Mod. Phys,
1999, A14(13), 2103-2115

Rath B., Second quantization, variational principle and pertur-
bation theory for the anharmonic oscillator. Eur. ). Phys, 1990,
11, 184-185

Rath B., Energy level calculation through perturbation theory.
Phys. Rev 1990, A 42(5), 2520-2523



	1 Introduction
	2 Energy levels and Wavefunction of Simple Harmonic Oscillator (SHO)
	3 SHO under non-Hermitian transformation of co-ordinate (x) and momentum (p)
	4 Second Quantization and Hamiltonian
	4.1 Zero Energy Correction Method (Case Study for U=0) 
	4.2 Corresponding Wavefunction using Perturbation Theory
	4.3 Zero Energy Correction Method (Case Study for V=0)
	4.4 Corresponding Wavefunction using Perturbation Theory

	5 Comparision with Similarity Transformation using Lie-algebra 5
	6 Comparision with Similarity Transformation 6
	7 Conclusion

