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Abstract:Over the last twenty years, several "different" hy-
perbolic tangent function methods have been proposed
to search solutions for nonlinear partial differential equa-
tions(NPDEs). The most common of these methods were
the tanh-function method, the extended tanh-function
method, the modified extended tanh-function method,
and the complex tanh-function method. Besides the ex-
cellent sides of these methods, weaknesses and deficien-
cies of each method were encountered. The authors re-
alized that they did not actually give "very different and
comprehensive results", and some of them are even un-
necessary. Therefore, these methods were analysed and
significant findings obtained. Firstly, they compared all of
these methods with each other and gave the connections
between them; and secondly, they proposed a more gen-
eral method to obtain many more solutions for NPDEs,
some of which having never been obtained before, and
thus to overcome weaknesses and deficiencies of existing
hyperbolic tangent functionmethods in the literature. This
newmethod, namedas theunifiedmethod, providesmany
more solutions in a straightforward, concise and elegant
manner without reproducing a lot of different forms of the
same solution. Lastly, they demonstrate the effectiveness
of the unifed tanhmethod by seekingmore exact solutions
of the Rabinovich wave equation which were not obtained
before.
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1 Introduction
Over the past two decades, several expansion meth-
ods for finding solutions of nonlinear differential equa-
tions(NPDEs) have been proposed, developed, and ex-
tended owing to the fact that there are a lot of applica-
tions of them describing different processes in many sci-
entific areas. In the recent years, direct searching for ex-
act solutions of NPDEs has become more and more at-
tractive partly due to symbolic computation. One of the
most effective direct methods to construct wave solutions
of NPDEs is the family of the tanh-functionmethods firstly
introduced by Malfliet [7], and developed and used in [8–
20] among many others. The most knownmembers of this
family are the tanh-function method, the extended tanh-
function method, the modified extended tanh-function
method, and the complex tanh-functionmethod. In the lit-
erature, there are a lot of names for these tanh methods.
For instance, one can encounter in somepapers the further
extended tanh method or new extended tanh method in-
stead of themodified extended tanh functionmethod, and
the tanh-coth method instead of the extended tanh func-
tion method.

The tanh method is introduced by Huibin and Ke-
lin to solve a higher-order KdV equation in a straightfor-
ward but not practical manner [1]. After Huibin and Ke-
lin, various extensions of the method have been devel-
oped. Malfliet and Hereman have a systemized version of
the tanh method and used it to solve particular evolution
and wave equations. They have obtained closed-form so-
lutions of KdV-Burgers, MKdV-Burgers, as well as coupled
equations in an elegant and straightfoward way by using
thismethod. To avoid algebraic complexity, they have cus-
tomized this technique by introducing tanh as a new vari-
able, since all derivatives of the tanh function are repre-
sented by itself. Also, Malfliet and Hereman have refined
and systemized this technique through the incorporation
of boundary conditions andgiven apriori determinationof
the velocity of the travellingwave [7–10]. Fanhasproposed
"the extended tanh-function method " and used it to solve
some (1+1)- and (2 +1)- dimensional nonlinear PDEs. Hehas
shown this method to be readily applicable to a large vari-
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ety of nonlinear PDEs [2]. Wazwaz has improved the tanh
method, primarily named as the "tanh method" firstly,
then renamed it as the "tanh-coth method". Wazwaz has
applied the tanh-cothmethod to solvenumerousPDEs [11–
19]. Based on an extended tanh-functionmethod, El-Wakil
et al. have suggested a "modified extended tanh-function
method (METF)" to obtain multiple travelling wave solu-
tions for nonlinear PDEs and obtained some new exact
solutions [3]. Soliman has extended the METF method to
solve four different types of nonlinear differential such as
the Burgers, KdV–Burgers, coupled Burgers, and 2D Burg-
ers’ equations [4]. Lü and Zhang have presented a "further
extended tanh method" and applied it to the (3 +1)- di-
mensional Jumbo–Miwa equation. Some new soliton-like
and periodic-form solutions of the equation have been ob-
tained. Then, they made a little adaption of the method to
obtain rational solutions tononlinear evolution equations.
Next, Lü and Zhang showed that a further extended tanh
method can also be used to construct multi-soliton and
multi-soliton like solutions to nonlinear evolution equa-
tions [5]. Khuri has introduced a "complex tanh-function
method" for constructing exact travelling wave solutions
of nonlinear partial differential equations with complex
phases and solutions. He has obtainedmultiple soliton so-
lutions to the nonlinear cubic Schrödinger equation and
a generalized Schrödinger-like equation [20]. Wang et al.
have proposed a newmethod, which is called the "(G′/G)-
expansion method", to look for travelling wave solutions
of nonlinear evolution equations [6].

The family of the tanh-function methods have some
deficiencies and express the same solution in different
forms as mentioned in papers [21–23] by Kudryashov. He
has pointed out in [21–23], that some authors do not
take arbitrary constants into consideration in the exact
solutions of nonlinear differential equations resulting in
many different forms of the same solution. We have com-
pared themodified extended tanhmethodwith the (G′/G)-
expansion method and proved that all the solutions ob-
tained by the (G′/G)-expansion method can be obtained
by the modified extended tanh method [24]. However,
using hyperbolic and trigonometric identities, it can be
proved that these obtained solutions are merely disguised
versions of previously known results. In fact, eachmethod
is only a developed variant of the former variation, if it pro-
duces the repeated

solutions. In overcoming the deficiencies of other tan-
gent functionmethods, the unifiedmethod providesmany
more solutions in a straightforward, concise, and elegant
way without reproducing a lot of different forms of the
same solution, and generalizes the family of the tanh-
functionmethods. Proposing theunifiedmethod, themain

aim of this paper is to not only give a unification for
the family of the tanh-function methods, but also obtain
many more new solutions for NPDEs without producing
the same solutions in different forms.

To demonstrate the effectiveness of this proposed
method, the Rabinovich wave equation with nonlinear
damping has been solved as an illustrative example by us-
ing the unified method. Rabinovich has considered how
the establishment of self-oscillations takes place for explo-
sion instability [25]. Hehas investigated such amechanism
using the example of medium described by the equation

−βuxxtt − utt +
(︁
−𝛾u + u2 − αu3

)︁
t
+
(︁
V + δu2

)︁
uxx = 0.

(1.1)
This equation describes electric signals in telegraph lines
on the basis of the tunnel diode. In [26], setting β = −1, 𝛾 =
α = δ = 0 and V = 1 in Eq.(1.1) , Korpusov has considered
the equation

uxxtt − utt + ut −
(︁
u2
)︁
t
+ uxx = 0 (1.2)

and named as "Rabinovich wave equation with nonlinear
damping". Also he has obtained sufficient conditions of
the blow-up for the Eq.(1.2).

This paper is organized as follows: In section 2, the au-
thors have presented decriptions of the tanh method (the
standard tanh method), the extended tanh method, the
modified extended tanh method, and the complex tanh-
function method. In section 3, they have proposed a unifi-
cation for all the tanhmethods named the unifiedmethod.
In section 4, they have showed the connections of these
methods and novelty of the unified method. In section 5,
they have implemented the unifiedmethod to solve theRa-
binovichwave equationand toobtainnewsolutionswhich
could not be attained before. Lastly, a brief conclusion has
been given in section 5.

2 Description of the tanh-function
methods

A PDE
P(u, ut , ux , uxt , utt , uxx , ...) = 0 (2.1)

can be converted to an ODE

P(U, U ′, U ′′, U ′′′, ...) = 0 (2.2)

byusingawavevariable u (x, t) = U (ξ ) , ξ = x−ct. Eq.(2.2)
is then integrated as long as all terms contain derivatives
where integration constants are considered zeros.
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2.1 The standard tanh method

The tanh method developed by Malfliet in [7], was used
in [8 − 19] andmany others. In order to seek the travelling
wave solutions of Eq. (2.1), assume that the solution of Eq.
(2.2) can be expressed by a polynomial in Y as follows:

u (ξ ) = S (Y) =
M∑︁
i=0
aiY i , (2.3)

where ai , 0 ≤ i ≤ M are constants to be determined later
and Y(ξ ) satisfies the following Riccati differential equa-
tion

Y ′ = k
(︁
1 − Y2

)︁
, (2.4)

where k is an arbitrary constant and Y = Y (ξ ) , Y ′ = dY
dξ .

The parameter M can be found by balancing the linear
term of the highest order with the nonlinear term of high-
est degree. Inserting (2.3) and (2.4) into the ordinary dif-
ferential equation (2.2) will yield a system of algebraic
equations with respect to ai , k , and c (where 0 ≤ i ≤ M)
because all the coefficients of Y i have to vanish. Solving
the resulting system of coefficients of Y , one can then de-
termine ai , k , and c. Considering the general solution of
the Riccati differential equation in (2.4) as follows:

Y = tanh (k (ξ + ξ0)) , ξ = x − ct, (2.5)

and substituting ai , k , and c into (2.3), the solutions of
Eq. (2.1) can be obtained.

2.2 The extended tanh method

The extended tanh method [18, 19] follows the assump-
tions made in (2.2) and (2.4), and then admits the use of
expansion

u (ξ ) = S (Y) = a0 +
M∑︁
i=1

(︁
aiY i + biY−i

)︁
, (2.6)

where M is a positive integer. Eq.(2.6) is an extension of
Eq.(2.3) and giving for bi = 0, 1 ≤ i ≤ M can convert
the extended tanhmethod to the standard tanhmethod[5].
The parameter M is usually obtained, as stated before, by
balancing the linear term of highest order in the resulting
equation with the nonlinear term of highest degree. If M
is not an integer, then a transformation formula should
be used to overcome this difficulty. Substituting (2.6) and
(2.4) into the ODE (2.2) results in a system of algebraic
equations in powers of Y which will lead to the determi-
nation of the parameters ai ,bi, k, and c.

2.3 The modified extended tanh method

In order to seek the travelling wave solutions of Eq. (2.1),
the following ansatz is introduced

u (ξ ) = S (ϕ) = A0 +
M∑︁
i=1

(︁
Aiϕi + Biϕ−i

)︁
, (2.7)

ϕ′ = b + ϕ2, (2.8)

where A0, Ai , Bi , 1 ≤ i ≤ M are constants to be determined
later, b is a parameter, and ϕ = ϕ (ξ ) , ϕ′ = dϕ

dξ . The pa-
rameter M can be found by balancing the linear term of
the highest order with the nonlinear term of highest de-
gree. Inserting (2.7) and (2.8) into the ordinary differential
equation (2.2) will yield a system of algebraic equations
with respect to A0, Ai , Bi , b , and c (where 1 ≤ i ≤ M) be-
cause all the coefficients of power ϕ have to vanish. Solv-
ing the resulting system of coefficients of power ϕ we can
determineA0, Ai , Bi , b , and c. Using the general solutions
of the Riccati differential equation (2.8) as follows :

(i) If b < 0

ϕ = −
√
−b tanh

(︁√
−b (ξ + ξ0)

)︁
or ϕ

= −
√
−b coth

(︁√
−b (ξ + ξ0)

)︁
, (2.9)

(ii) If b > 0

ϕ =
√
b tan

(︁√
b (ξ + ξ0)

)︁
or ϕ = −

√
b cot

(︁√
b (ξ + ξ0)

)︁
,

(2.10)
(iii) If b = 0

ϕ = − 1
ξ + ξ0

, (2.11)

and substituting A0, Ai , Bi , b , and c into (2.7), we obtain
the solutions of Eq. (2.1) .

2.4 The complex tanh-function method

The complex tanh-functionmethod can be summarized as
follows [20]. Following the assumptionsmade in (2.2) and
(2.4), a solution of the form

u (ξ ) = S (Y) =
M∑︁
n=0
an tanhn (ik (ξ + ξ0)) , (2.12)

is proposed, where ξ = x − ct and i =
√
−1. Also, M is a

positive integer that can be determined by balancing the
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linear term of the highest order with the nonlinear term
of highest degree, and a0, a1, ..., aM are parameters to be
determined as stated before. Substituting ai , k , and c into
(2.12), we obtain the solutions of Eq. (2.1).

3 The unified method
The authors describe the unified method for finding solu-
tions of nonlinear partial differential equations in the fol-
lowing steps. Suppose that a nonlinear partial differential
equation(NPDE), say in two independent variables x and
t, is given by

P(u, ut , ux , uxt , utt , uxx , ...) = 0 (3.1)

where u (x, t) is an unknown function, P is a polynomial
in u = u (x, t) and its various partial derivatives, in which
highest order derivative and nonlinear terms are involved.

The summary of the unified method can be presented
in the following six steps:

Step 1: To find the travelling wave solutions of
Eq.(3.1) , using the wave variable

u (x, t) = U (ξ ) , ξ = x − ct, (3.2)

where the constant c is generally termed the wave veloc-
ity. Substituting Eq.(3.2) into Eq.(3.1), the following ordi-
nary differential equation(ODE) in ξ is obtained (which il-
lustrates a principal advantage of a travelling wave solu-
tion, i.e., a partial differential equation(PDE) is reduced to
an ordinary differential equation(ODE)).

P(U, cU ′, U ′, cU ′′, c2U ′′, U ′′, ...) = 0 (3.3)

Step 2: If necessary, one integrates Eq.(3.3) as many
times as possible and sets the constants of integration to
be zero for simplicity.

Step 3: Suppose the solution of nonlinear partial dif-
ferential equation can be expressed by an ansatz as fol-
lows:

u (ξ ) = a0 +
M∑︁
i=1

[︁
aiϕi + biϕ−i

]︁
(3.4)

where ϕ = ϕ (ξ ) satisfies the Riccati differential equation

ϕ′ (ξ ) = ϕ2 (ξ ) + b, (3.5)

where ϕ′ = dϕ
dξ ,and ai , bi , and b are constants. The gen-

eral solutions of Eq.(3.5) are as follows:

Family 1.When b < 0, the solutions of Eq.(3.5) are

ϕ (ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
−(A2+B2)b−A

√
−b cosh

(︁
2
√
−b(ξ+ξ0)

)︁
A sinh

(︁
2
√
−b(ξ+ξ0)

)︁
+B

−
√
−(A2+B2)b−A

√
−b cosh

(︁
2
√
−b(ξ+ξ0)

)︁
A sinh

(︁
2
√
−b(ξ+ξ0)

)︁
+B

√
−b + −2A

√
−b

A+cosh
(︁
2
√
−b(ξ+ξ0)

)︁
−sinh

(︁
2
√
−b(ξ+ξ0)

)︁
−
√
−b + 2A

√
−b

A+cosh
(︁
2
√
−b(ξ+ξ0)

)︁
+sinh

(︁
2
√
−b(ξ+ξ0)

)︁
(3.6)

where A and B are two real arbitrary constants, and ξ0 an
arbitrary constant.

Family 2.When b > 0, the solutions of Eq.(3.5) are

ϕ (ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
(A2−B2)b−A

√
b cos

(︁
2
√
b(ξ+ξ0)

)︁
A sin

(︁
2
√
b(ξ+ξ0)

)︁
+B

−
√
(A2−B2)b−A

√
b cos

(︁
2
√
b(ξ+ξ0)

)︁
A sin

(︁
2
√
b(ξ+ξ0)

)︁
+B

i
√
b + −2Ai

√
b

A+cos
(︁
2
√
b(ξ+ξ0)

)︁
−i sin

(︁
2
√
b(ξ+ξ0)

)︁
−i
√
b + 2Ai

√
b

A+cos
(︁
2
√
b(ξ+ξ0)

)︁
+i sin

(︁
2
√
b(ξ+ξ0)

)︁

(3.7)

where A and B are two real arbitrary constants, and ξ0 an
arbitrary constant.

Family 3.When b = 0, the solution of Eq.(3.5) is

ϕ (ξ ) = − 1
ξ + ξ0

(3.8)

where ξ0 is an arbitrary constant.
Step 4:The positive integerM can be accomplished by

considering the homogeneous balance between the linear
term of the highest order with the nonlinear term of high-
est degree appearing in Eq.(3.3) as follows:

If it is defined that the degree of u (ξ ) as D [u (ξ )] = M,
then the degree of the other expressions are defined by

D
[︂
dqu
dξ q

]︂
= M + q,

D
[︂
ur
(︂
dqu
dξ q

)︂s]︂
= Mr + s (q +M) .

Thus, the value of M in eq.(2.4) is found.
Step 5:Substituting Eq.(3.4) and (3.5) into Eq.(3.3)

and collecting all terms with the same degrees of ϕ to-
gether, then setting each coefficient of terms with ϕi(−M ≤
i ≤ M) to zero, yield a set of algebraic equations for
ai , bi , c, and b.

Step 6:Substituting ai , bi , c, and b into (3.4) , which
is obtained in step 5, and using the general solutions of
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Eq.(3.5) in (3.6) , (3.7) and (3.8), the explicit solutions of
Eq.(3.1) immediately depending on the value of b, can be
obtained.

4 Comparison of all tanh methods
In this section, after comparing all of the tanh methods
given in section 2, respectively, the advantages of the uni-
fied method are given.

Extension in (2.6) can be reduced to the standard tanh
method (2.3) for bi = 0, 1 ≤ i ≤ M. Because we can
not obtain the solutions for that combination of tanh and
coth functions, the extended tanh method is more power-
ful than the standard tanh method.

For comparision of the extended tanhmethod and the
modified extended tanh function method, a transforma-
tion

Y (ξ ) = −ϕ (ξ )
k , (4.1)

can be used in (2.4) . Thus, this transformation converts
(2.4) and (2.6) to the form, respectively:

ϕ′ = −k2 + ϕ2, (4.2)

u (ξ ) = a0 +
m∑︁
i=1

[︃
ai

(−k)i
ϕ (ξ )i + bi (−k)i ϕ (ξ )−i

]︃
(4.3)

Therefore, the relations of coefficients in (2.6) and (2.7)
are determined from (4.3) as follows:

A0 = a0,
Ai = ai

(−k)i
, (4.4)

Bi = bi (−k)i .

where k2 = −b and 1 ≤ i ≤ M. The deficiency of the ex-
tended tanh method is not to take into account more solu-
tions for the Riccati differential equation. Using the trans-
formation in (4.1) and considering not only hyperbolic
function but also trigonometric and rational solutions for
the Riccati differential equation, it has been indicated that
the solutions given in these two methods are equal.

The complex tanh functionmethoddoesnot giveus all
types of solutions for NPDEs. Taking the expansion (2.7)
in the modified extended tanh function method for Bn =
0, 1 ≤ n ≤ M with the first solution in (2.10) , we obtain

u (ξ ) = A0 +
M∑︁
n=1

Anϕn , whereϕ =
√
b tan

(︁√
b (ξ + ξ0)

)︁
.

(4.5)

Considering the identity tanh (ix) = i tan (x) in (2.12) , the
connection between coefficients of (2.7) and (2.12) can be
found as follows:

A0 = a0,

An =
(︂

i√
b

)︂n
an , (4.6)

Bn = 0.

where k =
√
b and1 ≤ n ≤ M. Thus, the complex tanh func-

tion method gives us only some part of the trigonometric
function solutions for NPDEs. Furthermore, the complex
tanh function method failed to obtain not only the solu-
tions of the combination of the tan-cot function, but also
the hyperbolic and rational solutions.

To summarize, the modified extended tanh function
method is the most powerful tanh method in section 2. As
easily seen, the main differences of these methods are to
extend the solution form and take into account more so-
lutions of the Riccati differential equation. Therefore, con-
sidering these significant findings, the authors have pro-
posed the unified method both to unify all of the tanh
methods, and to obtain many more solutions for NPDEs.

The unified method is compared to the modified ex-
tended tanh method because it gives all the solutions
of the family of the tanh function method in a simple
manner. It was shown that the modified extended tanh
method can give a maximum seven type solutions such
as tanh, coth, tan, cot, tanh− coth, tan− cot , and ratio-
nal functions so far. However, taking ξ0 as an arbitrary
constant and the identities tanh

(︀
x − π

2 i
)︀
= coth (x) and

tan
(︀
x − π

2
)︀
= − cot (x) into account, it can be noticed that

the solutions of tanh, coth and tan, cot are exactly same.
Therefore, the method can give a maximum five type so-
lutions including tanh, tan, tanh− coth, tan− cot , and ra-
tional function, such that they can be obtained by using
the unified method.

After putting B = 0 first in (3.6) and (3.7), tanh and
tan functions can easily be obtained using some hyper-
bolic and trigonometric identities as follows:

A
√
−b − A

√
−b cosh

(︁
2
√
−b (ξ + ξ0)

)︁
A sinh

(︁
2
√
−b (ξ + ξ0)

)︁
=

√
−b
(︁
1 − cosh

(︁
2
√
−b (ξ + ξ0)

)︁)︁
sinh

(︁
2
√
−b (ξ + ξ0)

)︁
= −

√
−b tanh

(︁√
−b (ξ + ξ0)

)︁
,
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A
√
b − A

√
b cos (2 − b (ξ + ξ0))

A sin
(︁
2
√
b (ξ + ξ0)

)︁
=

√
b
(︁
1 − cos

(︁
2
√
b (ξ + ξ0)

)︁)︁
sin
(︁
2
√
b (ξ + ξ0)

)︁
=
√
b tan

(︁√
b (ξ + ξ0)

)︁
.

On the other hand, the unified method gives many
more solutions as it can be seen in (3.6) and (3.7), be-
sides the solutions of themodified extended tanhmethod.
Consequently, the unified method gives many more solu-
tions than the family of the tanh function method. Conse-
quently, the unifed method is the most powerful method
to solve NPDEs if compared others.

5 The Rabinovich wave equation
with nonlinear damping as an
illustrative example

The Rabinovich wave equation with nonlinear damping is
given by

uxxtt − utt + ut −
(︁
u2
)︁
t
+ uxx = 0 (5.1)

which describe electric signals in telegraph lines on the
basis of the tunnel diode [27–29]. Using the wave variable
ξ = x − ct in Eq.(5.1), then integrating this equation and
considering the integration constant to not be zero, we ob-
tain

c2U ′′′ +
(︁
1 − c2

)︁
U ′ − cU + cU2 = 0. (5.2)

BalancingU2 andU ′′′ givesM = 3. Therefore, the solutions
of Eq.(5.2) can be written in the form

U (ξ ) = b3ϕ−3 + b2ϕ−2 + b1ϕ−1 + a0 + a1ϕ + a2ϕ2 + a3ϕ3,
(5.3)

where b3, b2, b1, a0, a1, a2 and a3 are constants which
are unknowns to be determined later.

Substituting Eq.(5.3) and its derivatives into Eq.(5.2)
and equating each coefficients of ϕi (−3 ≤ i ≤ 3) to zero,
we obtain a set of nonlinear algebraic equations for
b3, b2, b1, a0, a1, a2, a3 , and c. Solving this system us-
ing Maple, we obtain

Set 1.

c = ∓ 1√
76b + 1

, b3 = 60cb3, b2 = 0, b1 =
180b2

c (76b + 1)
,

a3 = a2 = a1 = 0, a0 =
1
2;

Set 2.

c = ∓ 11√
121 − 836b

, b3 = 60cb3, b2 = 0, b1 =
−540b2

c (76b − 11)
,

a3 = a2 = a1 = 0, a0 =
1
2;

Set 3.

c = ∓ 1√
76b + 1

, b3 = b2 = b1 = 0, a3 = −60c, a2 = 0,

a1 =
−180b

c (76b + 1)
, a0 =

1
2;

Set 4.

c = ∓ 11√
121 − 836b

, b3 = b2 = b1 = 0, a3 = −60c, a2 = 0,

a1 =
540b

c (76b − 11)
, a0 =

1
2;

Set 5.

c = ∓ 1√
304b + 1

, b3 = 60cb3, b2 = 0, b1 =
540b2

c (304b + 1)
,

a3 = −60c, a2 = 0, a1 =
−540b

c (304b + 1)
, a0 =

1
2;

Set 6.

c = ∓ 11√
121 − 3344b

, b3 = 60cb3, b2 = 0, b1 =
−180b2

c (304b − 11)
,

a3 = −60c, a2 = 0, a1 =
180b

c (304b − 11)
, a0 =

1
2;

Using these values and assuming b ≠ 0, we obtain the
following general solutions respectively:
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u1 (x, t) = 1
2 +

180b2
(︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B
)︁

c (76b + 1)
(︁√︁
−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁)︁ (5.4)

+60cb3

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u2 (x, t) = 1
2 −

180b2
(︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B
)︁

c (76b + 1)
(︁√︁
−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁)︁ (5.5)

−60cb3

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u3 (x, t) = 1
2 + 180b2

c (76b + 1)

(︃
√
−b + −2A

√
−b

A+cosh
(︁
2
√
−b(x−ct+ξ0)

)︁
−sinh

(︁
2
√
−b(x−ct+ξ0)

)︁
)︃ (5.6)

+ 60cb3(︃
√
−b + −2A

√
−b

A+cosh
(︁
2
√
−b(x−ct+ξ0)

)︁
−sinh

(︁
2
√
−b(x−ct+ξ0)

)︁
)︃3 ,

u4 (x, t) = 1
2 + 180b2

c (76b + 1)

(︃
−
√
−b + 2A

√
−b

A+cosh
(︁
2
√
−b(ξ+ξ0)

)︁
+sinh

(︁
2
√
−b(ξ+ξ0)

)︁
)︃ (5.7)

+ 60cb3(︃
−
√
−b + 2A

√
−b

A+cosh
(︁
2
√
−b(ξ+ξ0)

)︁
+sinh

(︁
2
√
−b(ξ+ξ0)

)︁
)︃3 ,

where c = ∓ 1√
76b+1

, b < 0, and A and B are two real constants;

u5 (x, t) = 1
2 +

180b2
(︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B
)︁

c (76b + 1)
(︁√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁)︁ (5.8)

+60cb3

⎛⎜⎝
(︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B
)︁

√︁(︀
A2 − B2

)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u6 (x, t) = 1
2 −

180b2
(︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B
)︁

c (76b + 1)
(︁√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁)︁ (5.9)

−60cb3

⎛⎜⎝
(︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B
)︁

√︁(︀
A2 − B2

)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,



Unification of all hyperbolic tangent function methods | 531

u7 (x, t) = 1
2 + 180b2

c (76b + 1)

(︃
i
√
b + −2Ai

√
b

A+cos
(︁
2
√
b(x−ct+ξ0)

)︁
−i sin

(︁
2
√
b(x−ct+ξ0)

)︁
)︃ (5.10)

+ 60cb3(︃
i
√
b + −2Ai

√
b

A+cos
(︁
2
√
b(x−ct+ξ0)

)︁
−i sin

(︁
2
√
b(x−ct+ξ0)

)︁
)︃3 ,

u8 (x, t) = 1
2 + 180b2

c (76b + 1)

(︃
−i
√
b + 2Ai

√
b

A+cos
(︁
2
√
b(ξ+ξ0)

)︁
+i sin

(︁
2
√
b(ξ+ξ0)

)︁
)︃ (5.11)

+ 60cb3(︃
−i
√
b + 2Ai

√
b

A+cos
(︁
2
√
b(ξ+ξ0)

)︁
+i sin

(︁
2
√
b(ξ+ξ0)

)︁
)︃3 ,

where c = ∓ 1√
76b+1

b > 0, and A and B are two real constants;

u9 (x, t) = 1
2 −

540b2
(︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B
)︁

c (76b − 11)
(︁√︁
−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁)︁ (5.12)

+60cb3

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u10 (x, t) = 1
2 +

540b2
(︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B
)︁

c (76b − 11)
(︁√︁
−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁)︁ (5.13)

−60cb3

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u11 (x, t) = 1
2 −

540b2

c (76b − 11)

(︃
√
−b + −2A

√
−b

A+cosh
(︁
2
√
−b(x−ct+ξ0)

)︁
−sinh

(︁
2
√
−b(x−ct+ξ0)

)︁
)︃ (5.14)

+ 60cb3(︃
√
−b + −2A

√
−b

A+cosh
(︁
2
√
−b(x−ct+ξ0)

)︁
−sinh

(︁
2
√
−b(x−ct+ξ0)

)︁
)︃3 ,

u12 (x, t) = 1
2 −

540b2

c (76b − 11)

(︃
−
√
−b + 2A

√
−b

A+cosh
(︁
2
√
−b(ξ+ξ0)

)︁
+sinh

(︁
2
√
−b(ξ+ξ0)

)︁
)︃ (5.15)

+ 60cb3(︃
−
√
−b + 2A

√
−b

A+cosh
(︁
2
√
−b(ξ+ξ0)

)︁
+sinh

(︁
2
√
−b(ξ+ξ0)

)︁
)︃3 ,
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where c = ∓ 11√
121−836b

, b < 0, and A and B are two real constants;

u13 (x, t) = 1
2 −

540b2
(︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B
)︁

c (76b − 11)
(︁√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁)︁ (5.16)

+60cb3

⎛⎜⎝ A sin
(︁
2
√
b (x − ct + ξ0)

)︁
+ B√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u14 (x, t) = 1
2 +

540b2
(︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B
)︁

c (76b − 11)
(︁√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁)︁ (5.17)

−60cb3

⎛⎜⎝ A sin
(︁
2
√
b (x − ct + ξ0)

)︁
+ B√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u15 (x, t) = 1
2 −

540b2

c (76b − 11)

(︃
i
√
b + −2Ai

√
b

A+cos
(︁
2
√
b(x−ct+ξ0)

)︁
−i sin

(︁
2
√
b(x−ct+ξ0)

)︁
)︃ (5.18)

+ 60cb3(︃
i
√
b + −2Ai

√
b

A+cos
(︁
2
√
b(x−ct+ξ0)

)︁
−i sin

(︁
2
√
b(x−ct+ξ0)

)︁
)︃3 ,

u16 (x, t) = 1
2 −

540b2

c (76b − 11)

(︃
−i
√
b + 2Ai

√
b

A+cos
(︁
2
√
b(ξ+ξ0)

)︁
+i sin

(︁
2
√
b(ξ+ξ0)

)︁
)︃ (5.19)

+ 60cb3(︃
−i
√
b + 2Ai

√
b

A+cos
(︁
2
√
b(ξ+ξ0)

)︁
+i sin

(︁
2
√
b(ξ+ξ0)

)︁
)︃3 ,

where c = ∓ 11√
121−836b

, b > 0, and A and B are two real constants;

u17 (x, t) = 1
2 −

180b
c (76b + 1)

(︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B
)︁

(︁√︁
−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁)︁ (5.20)

−60c

⎛⎜⎝
(︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B
)︁

(︁√︁
−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁)︁
⎞⎟⎠

3

,

u18 (x, t) = 1
2 + 180b

c (76b + 1)

(︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B
)︁

(︁√︁
−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁)︁ (5.21)

+60c

⎛⎜⎝
(︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B
)︁

(︁√︁
−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁)︁
⎞⎟⎠

3

,
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u19 (x, t) = 1
2 −

180b
c (76b + 1)

⎛⎝√
−b + −2A

√
−b

A + cosh
(︁
2
√
−b (x − ct + ξ0)

)︁
− sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎠ (5.22)

−60c

⎛⎝√
−b + −2A

√
−b

A + cosh
(︁
2
√
−b (x − ct + ξ0)

)︁
− sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎠3

,

u20 (x, t) = 1
2 −

180b
c (76b + 1)

⎛⎝−√−b + 2A
√
−b

A + cosh
(︁
2
√
−b (ξ + ξ0)

)︁
+ sinh

(︁
2
√
−b (ξ + ξ0)

)︁
⎞⎠ (5.23)

−60c

⎛⎝−√−b + 2A
√
−b

A + cosh
(︁
2
√
−b (ξ + ξ0)

)︁
+ sinh

(︁
2
√
−b (ξ + ξ0)

)︁
⎞⎠3

,

where c = ∓ 1√
76b+1

, b < 0, and A and B are tworeal constants;

u21 (x, t) = 1
2 −

180b
c (76b + 1)

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
(︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B
)︁

⎞⎟⎠ (5.24)

−60c

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
(︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B
)︁

⎞⎟⎠
3

,

u22 (x, t) = 1
2 + 180b

c (76b + 1)

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
(︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B
)︁

⎞⎟⎠ (5.25)

+60c

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
(︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B
)︁

⎞⎟⎠
3

,

u23 (x, t) = 1
2 −

180b
c (76b + 1)

⎛⎝i√b + −2Ai
√
b

A + cos
(︁
2
√
b (x − ct + ξ0)

)︁
− i sin

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎠ (5.26)

−60c

⎛⎝i√b + −2Ai
√
b

A + cos
(︁
2
√
b (x − ct + ξ0)

)︁
− i sin

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎠3

,

u24 (x, t) = 1
2 −

180b
c (76b + 1)

⎛⎝−i√b + 2Ai
√
b

A + cos
(︁
2
√
b (ξ + ξ0)

)︁
+ i sin

(︁
2
√
b (ξ + ξ0)

)︁
⎞⎠ (5.27)

−60c

⎛⎝−i√b + 2Ai
√
b

A + cos
(︁
2
√
b (ξ + ξ0)

)︁
+ i sin

(︁
2
√
b (ξ + ξ0)

)︁
⎞⎠3

,

where c = ∓ 1√
76b+1

, b > 0, and A and B are two real constants;

u25 (x, t) = 1
2 + 540b

c (76b − 11)

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.28)

−60c

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

,
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u26 (x, t) = 1
2 −

540b
c (76b − 11)

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.29)

+60c

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

,

u27 (x, t) = 1
2 + 540b

c (76b − 11)

⎛⎝√
−b + −2A

√
−b

A + cosh
(︁
2
√
−b (x − ct + ξ0)

)︁
− sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎠ (5.30)

−60c

⎛⎝√
−b + −2A

√
−b

A + cosh
(︁
2
√
−b (x − ct + ξ0)

)︁
− sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎠3

,

u28 (x, t) = 1
2 + 540b

c (76b − 11)

⎛⎝−√−b + 2A
√
−b

A + cosh
(︁
2
√
−b (ξ + ξ0)

)︁
+ sinh

(︁
2
√
−b (ξ + ξ0)

)︁
⎞⎠ (5.31)

−60c

⎛⎝−√−b + 2A
√
−b

A + cosh
(︁
2
√
−b (ξ + ξ0)

)︁
+ sinh

(︁
2
√
−b (ξ + ξ0)

)︁
⎞⎠3

,

where c = ∓ 11√
121−836b

, b < 0, and A and B are two real constants;

u29 (x, t) = 1
2 + 540b

c (76b − 11)

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.32)

−60c

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

,

u30 (x, t) = 1
2 −

540b
c (76b − 11)

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.33)

+60c

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

,

u31 (x, t) = 1
2 + 540b

c (76b − 11)

⎛⎝i√b + −2Ai
√
b

A + cos
(︁
2
√
b (x − ct + ξ0)

)︁
− i sin

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎠ (5.34)

−60c

⎛⎝i√b + −2Ai
√
b

A + cos
(︁
2
√
b (x − ct + ξ0)

)︁
− i sin

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎠3

u32 (x, t) = 1
2 + 540b

c (76b − 11)

⎛⎝−i√b + 2Ai
√
b

A + cos
(︁
2
√
b (ξ + ξ0)

)︁
+ i sin

(︁
2
√
b (ξ + ξ0)

)︁
⎞⎠ (5.35)

−60c

⎛⎝−i√b + 2Ai
√
b

A + cos
(︁
2
√
b (ξ + ξ0)

)︁
+ i sin

(︁
2
√
b (ξ + ξ0)

)︁
⎞⎠3

,
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where c = ∓ 11√
121−836b

, b > 0, and A and B are two real constant;

u33 (x, t) = 1
2 −

540b
c (304b + 1)

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.36)

−60c

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

+ 540b2
c (304b + 1)

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

+60cb3

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u34 (x, t) = 1
2 + 540b

c (304b + 1)

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.37)

+60c

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

− 540b2
c (304b + 1)

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

−60cb3

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u35 (x, t) = 1
2 −

540b
c (304b + 1)

⎛⎝√
−b + −2A

√
−b

A + cosh
(︁
2
√
−b (x − ct + ξ0)

)︁
− sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎠ (5.38)

−60c

⎛⎝√
−b + −2A

√
−b

A + cosh
(︁
2
√
−b (x − ct + ξ0)

)︁
− sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎠3

+ 540b2

c (304b + 1)

(︃
√
−b + −2A

√
−b

A+cosh
(︁
2
√
−b(x−ct+ξ0)

)︁
−sinh

(︁
2
√
−b(x−ct+ξ0)

)︁
)︃

+ 60cb3(︃
√
−b + −2A

√
−b

A+cosh
(︁
2
√
−b(x−ct+ξ0)

)︁
−sinh

(︁
2
√
−b(x−ct+ξ0)

)︁
)︃3 ,
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u36 (x, t) = 1
2 −

540b
c (304b + 1)

⎛⎝−√−b + 2A
√
−b

A + cosh
(︁
2
√
−b (ξ + ξ0)

)︁
+ sinh

(︁
2
√
−b (ξ + ξ0)

)︁
⎞⎠ (5.39)

−60c

⎛⎝−√−b + 2A
√
−b

A + cosh
(︁
2
√
−b (ξ + ξ0)

)︁
+ sinh

(︁
2
√
−b (ξ + ξ0)

)︁
⎞⎠3

+ 540b2

c (304b + 1)

(︃
−
√
−b + 2A

√
−b

A+cosh
(︁
2
√
−b(ξ+ξ0)

)︁
+sinh

(︁
2
√
−b(ξ+ξ0)

)︁
)︃

+ 60cb3(︃
−
√
−b + 2A

√
−b

A+cosh
(︁
2
√
−b(ξ+ξ0)

)︁
+sinh

(︁
2
√
−b(ξ+ξ0)

)︁
)︃3 ,

where c = ∓ 1√
304b+1

, b < 0, and A and B are two real constants;

u37 (x, t) = 1
2 −

540b
c (304b + 1)

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.40)

−60c

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

+ 540b2
c (304b + 1)

⎛⎜⎝ A sin
(︁
2
√
b (x − ct + ξ0)

)︁
+ B√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

+60cb3

⎛⎜⎝ A sin
(︁
2
√
b (x − ct + ξ0)

)︁
+ B√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u38 (x, t) = 1
2 + 540b

c (304b + 1)

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.41)

+60c

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

− 540b2
c (304b + 1)

⎛⎜⎝ A sin
(︁
2
√
b (x − ct + ξ0)

)︁
+ B√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

−60cb3

⎛⎜⎝ A sin
(︁
2
√
b (x − ct + ξ0)

)︁
+ B√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,
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u39 (x, t) = 1
2 −

540b
c (304b + 1)

⎛⎝i√b + −2Ai
√
b

A + cos
(︁
2
√
b (x − ct + ξ0)

)︁
− i sin

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎠ (5.42)

−60c

⎛⎝i√b + −2Ai
√
b

A + cos
(︁
2
√
b (x − ct + ξ0)

)︁
− i sin

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎠3

+ 540b2

c (304b + 1)

(︃
i
√
b + −2Ai

√
b

A+cos
(︁
2
√
b(x−ct+ξ0)

)︁
−i sin

(︁
2
√
b(x−ct+ξ0)

)︁
)︃

+60cb3
⎛⎝i√b + −2Ai

√
b

A + cos
(︁
2
√
b (x − ct + ξ0)

)︁
− i sin

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎠3

,

u40 (x, t) = 1
2 −

540b
c (304b + 1)

⎛⎝−i√b + 2Ai
√
b

A + cos
(︁
2
√
b (ξ + ξ0)

)︁
+ i sin

(︁
2
√
b (ξ + ξ0)

)︁
⎞⎠

−60c

⎛⎝−i√b + 2Ai
√
b

A + cos
(︁
2
√
b (ξ + ξ0)

)︁
+ i sin

(︁
2
√
b (ξ + ξ0)

)︁
⎞⎠3

+ 540b2
c (304b + 1)

⎛⎝−i√b + 2Ai
√
b

A + cos
(︁
2
√
b (ξ + ξ0)

)︁
+ i sin

(︁
2
√
b (ξ + ξ0)

)︁
⎞⎠ (5.43)

+60cb3
⎛⎝−i√b + 2Ai

√
b

A + cos
(︁
2
√
b (ξ + ξ0)

)︁
+ i sin

(︁
2
√
b (ξ + ξ0)

)︁
⎞⎠3

,

where c = ∓ 1√
304b+1

b > 0, and A and B are two real constants;

u41 (x, t) = 1
2 + 180b

c (304b − 11)

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.44)

−60c

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

− 180b2
c (304b − 11)

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

+60cb3

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b − A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,
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u42 (x, t) = 1
2 −

180b
c (304b − 11)

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.45)

+60c

⎛⎜⎝
√︁
−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
A sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

+ 180b2
c (304b − 11)

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

−60cb3

⎛⎜⎝ A sinh
(︁
2
√
−b (x − ct + ξ0)

)︁
+ B√︁

−
(︀
A2 + B2

)︀
b + A

√
−b cosh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u43 (x, t) = 1
2 + 180b

c (304b − 11)

⎛⎝√
−b + −2A

√
−b

A + cosh
(︁
2
√
−b (x − ct + ξ0)

)︁
− sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎠ (5.46)

−60c

⎛⎝√
−b + −2A

√
−b

A + cosh
(︁
2
√
−b (x − ct + ξ0)

)︁
− sinh

(︁
2
√
−b (x − ct + ξ0)

)︁
⎞⎠3

− 180b2

c (304b − 11)

(︃
√
−b + −2A

√
−b

A+cosh
(︁
2
√
−b(x−ct+ξ0)

)︁
−sinh

(︁
2
√
−b(x−ct+ξ0)

)︁
)︃

+ 60cb3(︃
√
−b + −2A

√
−b

A+cosh
(︁
2
√
−b(x−ct+ξ0)

)︁
−sinh

(︁
2
√
−b(x−ct+ξ0)

)︁
)︃3 ,

u44 (x, t) = 1
2 + 180b

c (304b − 11)

⎛⎝−√−b + 2A
√
−b

A + cosh
(︁
2
√
−b (ξ + ξ0)

)︁
+ sinh

(︁
2
√
−b (ξ + ξ0)

)︁
⎞⎠ (5.47)

−60c

⎛⎝−√−b + 2A
√
−b

A + cosh
(︁
2
√
−b (ξ + ξ0)

)︁
+ sinh

(︁
2
√
−b (ξ + ξ0)

)︁
⎞⎠3

− 180b2

c (304b − 11)

(︃
−
√
−b + 2A

√
−b

A+cosh
(︁
2
√
−b(ξ+ξ0)

)︁
+sinh

(︁
2
√
−b(ξ+ξ0)

)︁
)︃

+ 60cb3(︃
−
√
−b + 2A

√
−b

A+cosh
(︁
2
√
−b(ξ+ξ0)

)︁
+sinh

(︁
2
√
−b(ξ+ξ0)

)︁
)︃3 ,
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where c = ∓ 11√
121−3344b

b < 0, and A and B are two real constants;

u45 (x, t) = 1
2 + 180b

c (304b − 11)

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.48)

−60c

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

− 180b2
c (304b − 11)

⎛⎜⎝ A sin
(︁
2
√
b (x − ct + ξ0)

)︁
+ B√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

+60cb3

⎛⎜⎝ A sin
(︁
2
√
b (x − ct + ξ0)

)︁
+ B√︁(︀

A2 − B2
)︀
b − A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u46 (x, t) = 1
2 −

180b
c (304b − 11)

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠ (5.49)

+60c

⎛⎜⎝
√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
A sin

(︁
2
√
b (x − ct + ξ0)

)︁
+ B

⎞⎟⎠
3

+ 180b2
c (304b − 11)

⎛⎜⎝ A sin
(︁
2
√
b (x − ct + ξ0)

)︁
+ B√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

−60cb3

⎛⎜⎝ A sin
(︁
2
√
b (x − ct + ξ0)

)︁
+ B√︁(︀

A2 − B2
)︀
b + A

√
b cos

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎟⎠

3

,

u47 (x, t) = 1
2 + 180b

c (304b − 11)

⎛⎝i√b + −2Ai
√
b

A + cos
(︁
2
√
b (x − ct + ξ0)

)︁
− i sin

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎠ (5.50)

−60c

⎛⎝i√b + −2Ai
√
b

A + cos
(︁
2
√
b (x − ct + ξ0)

)︁
− i sin

(︁
2
√
b (x − ct + ξ0)

)︁
⎞⎠3

− 180b2

c (304b − 11)

(︃
i
√
b + −2Ai

√
b

A+cos
(︁
2
√
b(x−ct+ξ0)

)︁
−i sin

(︁
2
√
b(x−ct+ξ0)

)︁
)︃

+ 60cb3(︃
i
√
b + −2Ai

√
b

A+cos
(︁
2
√
b(x−ct+ξ0)

)︁
−i sin

(︁
2
√
b(x−ct+ξ0)

)︁
)︃3 ,
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u48 (x, t) = 1
2 + 180b

c (304b − 11)

⎛⎝−i√b + 2Ai
√
b

A + cos
(︁
2
√
b (ξ + ξ0)

)︁
+ i sin

(︁
2
√
b (ξ + ξ0)

)︁
⎞⎠ (5.51)

−60c

⎛⎝−i√b + 2Ai
√
b

A + cos
(︁
2
√
b (ξ + ξ0)

)︁
+ i sin

(︁
2
√
b (ξ + ξ0)

)︁
⎞⎠3

− 180b2

c (304b − 11)

(︃
−i
√
b + 2Ai

√
b

A+cos
(︁
2
√
b(ξ+ξ0)

)︁
+i sin

(︁
2
√
b(ξ+ξ0)

)︁
)︃

+ 60cb3(︃
−i
√
b + 2Ai

√
b

A+cos
(︁
2
√
b(ξ+ξ0)

)︁
+i sin

(︁
2
√
b(ξ+ξ0)

)︁
)︃3 ,

where c = ∓ 11√
121−3344b

, b > 0, and A and B are two real constants;

u49 (x, t) =
1
2 ∓ 60

(x ± t + ξ0)3
(5.52)

where b = 0.
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6 Conclusion
In this paper, firstly have been presented and compared
the family of the tanh-function methods. Afterwards, tak-
ing into account more solutions of the Riccati differential
equation, it has been proposed that a new method called
the unified method be used to solve for nonlinear partial
differential equations(NPDEs). More precisely, as it can be
seen in (3.6) and (3.7), the unified method defines the so-
lution sets generally and extends them forNPDEs. Namely,
the solutions of the family of the tanh-function methods
can be obtained simply as in 4.7, while the first and sec-
ond parts in (3.6) and (3.7) indicate a more general form.
On the other hand, the third and fourth parts in (3.6) and
(3.7) are new solution forms for PDEs when compared to
the family of the tanh-function methods.

To sum up, the main contribution of the unified
method is to givemanymore new solutionswhichwere not
obtained before in a straightforward, concise, and elegant
manner without reproducing a lot of different forms of the
same solutions.
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