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Abstract: In this work, we propose a new operational
method based on a Genocchi wavelet-like basis to obtain
the numerical solutions of non-linear fractional order dif-
ferential equations (NFDEs). To the best of our knowl-
edge this is the first time a Genocchi wavelet-like basis
is presented. The Genocchi wavelet-like operational ma-
trix of a fractional derivative is derived through wavelet-
polynomial transformation. These operational matrices
are used together with the collocation method to turn the
NFDEs into a system of non-linear algebraic equations. Er-
ror estimates are shown and some illustrative examples
are given in order to demonstrate the accuracy and sim-
plicity of the proposed technique.
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1 Introduction
Fractional differential equations (FDEs) are generaliza-
tions of ordinary differential equations to a non integer
order equations. FDEs have attracted considerable inter-
est consequential of their ability to formulate complex
phenomena in the fields of physics, chemistry, engineer-
ing, aerodynamics, electrodynamics of complex medium,
polymer rheology etc,[1–3]. Due to their extensive appli-
cations much work has been dedicated to developing nu-
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merical schemes for their solution. Therefore this method
is becoming a very attractive research area and as such,
several methods are established. The Adomian decompo-
sition method [4], variational iteration method [5], ho-
motopy perturbation method [6] and predictor-corrector
method [7] are some of the more famous methods. In par-
ticular, systems of FDEs are considered in [8] where the
Adomian decompositionmethodwas employed for the so-
lutions of system of nonlinear fractional differential equa-
tions. In [9] the homotopy analysis method (HAM) was
used for the solutions of a system of nonlinear fractional
partial differential equations, while in [10], a modifica-
tion of Adomian decomposition method was introduced
and used for solving a system of nonlinear equations,
which produce a series solution with accelerated conver-
gence. Recently, the idea of approximating the solution of
FDEs by a family of basis functions has been widely used.
The most commonly used functions are sine-cosine func-
tions and block pulse functions. Legendre polynomials,
Chebyshev polynomials, Bernoulli polynomials and La-
guerre polynomials are also regularly used. For instance,
more recently, the operational matrix of Bernstein Poly-
nomials (BPs) is used to solve the Bratu equation in [11].
Also in [12], operational matrices of integration, differen-
tiation, dual and product based on Bernstein polynomials
are introduced andutilized to solve fractional optimal con-
trol problems. On the other hand, wavelets are localized
functions, which form the basis for L2(R), so that local-
ized pulse problems can easily be approached and anal-
ysed [13]. They are successfully applied in system analy-
sis, optimal control, signal analysis and many more areas
see [14]. However, wavelets are just another basis set that
offers considerable advantages over alternative basis sets
and allow us to tackle problems not accessible with con-
ventional numerical methods. These main advantages are
discussed in [15]. Legendre wavelets[14, 16, 17], Chebyshev
wavelets [18] and Bernoulli wavelets [19] are some of the
wavelet methods applied for solving FDEs.

In this paper, we present a wavelet-like basis based on
an importantmember of Appell polynomials calledGenoc-
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chi polynomial, though the polynomials are not besed
on orthogonal functions, they share some advantageous
properties with the polynomials in the Appell family, such
as Bernoulli polynomials, over other classical orthogonal
polynomials when approximating an arbitrary function.
These advantages are stated in [20].

Motivated by these advantages, in this paper we con-
sider NFDEs

Dαn yn(x) = fn(x, y1, y2. · · · , yn), (1)

where, Dαn is the derivative of order αn in the sense of
Caputo subject to initial conditions yi(0) = di , i =
1, 2, · · · , n.
We introduce a new operational matrix of fractional or-
der derivative base on Genocchi Wavelet-like basis, which
we obtained through wavelet-polynomial transformation.
This matrix is then utilized together with collocation
method to reduce the NFDEs (1) to a system of algebraic
equations. We compare our results with some existing
standard results to clearly demonstrate the simplicity, ap-
plicability and accuracy of our method.
The rest of the paper is organized as follows: In Section
2, we introduce some mathematical preliminaries of frac-
tional calculus and properties of Genocchi polynomials.
Section 3 is devoted to the basic formulation of the Genoc-
chi wavelet-like basis and function approximation. In Sec-
tion 4, we derive the Genocchi wavelet-like operational
matrix of fractional derivative. Section 5 is devoted to the
numerical method for solving NFDEs, While in section 6
the proposed method is applied to some numerical exam-
ples. Finally, a conclusion is given in section 7.

2 Preliminaries
In this section, we recall some basic definitions and prop-
erties of fractional calculus which will be used in this
work.

Definition 2.1. [1, 2] The Riemann-Liouville integral I of
fractional order α of a function f (t) is given by

Iα f (t) =
{︃

1
Γ(α)
∫︀ t
0 (t − τ)

α−1f (τ)dτ, α > 0
f (t), α = 0

(2)

Some of the properties of Iα are

Iα Iβ f (t) = Iα+β f (t), α > 0, β > 0 (3)

Iα tβ = Γ(β + 1)
Γ(β + α + 1) t

β+α . (4)

The Riemann-Liouville fractional derivative of order α > 0
is also defined by

(Dαl f )(t) =
(︂
d
dt

)︂m
(Im−α f )(t),

(α > 0, m − 1 < α ≤ m)

Some properties of Dαl are as follows [2]:

Dαl (D
−β
l f (t)) = D

α−β
l f (t), α, β ∈ R+andα > β. (5)

Dαl t
β = Γ(β + 1)

Γ(β − α + 1) t
β−α (6)

Definition 2.2. [1, 2] The Caputo fractional derivative Dα

of a function f (t) is defined as:

Dα f (t) = 1
Γ(n − α)

t∫︁
0

f (n)(τ)
(t − τ)α−n+1 dτ, (7)

n − 1 < α ≤ n, n ∈ N.

It has the following properties

DαC = 0, (C is constant) (8)

Dα tβ =

⎧⎪⎪⎨⎪⎪⎩
0, β ∈ N ∪ {0} and β < ⌈α⌉
Γ(β+1)
Γ(β+1−α) t

β−α , β ∈ N ∪ {0} and β ≥ ⌈α⌉
or β ∉ N and β > ⌊α⌋,

(9)

where ⌈α⌉denote the smallest integer greater thanor equal
to α and ⌊α⌋ denotes the largest integer less than or equal
to α.
Similar to the integer order differentiation, theCaputo frac-
tional differential operator is a linear operator, since,

Dα(λf (t) + µg(t)) = λDα f (t) + µDαg(t) (10)

where λ and µ are constants.

2.1 Genocchi polynomials

Genocchi numbers andpolynomials have been extensively
studied in many different context in branches of mathe-
matics. Both Genocchi number Gn and polynomials Gn(x)
are respectively defined by means of the exponential gen-
erating functions [21–23].

2t
et + 1 =

∞∑︁
n=0

Gn
tn
n! , (|t| < π) (11)
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2text
et + 1 =

∞∑︁
n=0

Gn(x)
tn
n! , (|t| < π) (12)

where Gn(x) is the Genocchi polynomial of degree n and is
given by

Gn(x) =
n∑︁
k=0

(︃
n
k

)︃
Gn−kxk (13)

Gn−k here is the Genocchi number. The first few Genocchi
polynomials are;
G0(x) = 0
G1(x) = 1
G2(x) = 2x − 1
G3(x) = 3x2 − 3x
G4(x) = 4x3 − 6x2 + 1
G5(x) = 5x4 − 10x3 + 5x.
We list some of the properties of Genocchi polynomials be-
low

1∫︁
0

Gn(x)Gm(x)dx =
2(−1)nn!m!
(m + n)! Gm+n n,m ≥ 1 (14)

dGn(x)
dx = nGn−1(x), n ≥ 1 (15)

Gn(1) + Gn(0) = 0, n > 1 (16)

3 Genocchi Wavelet-like Basis
Genocchi wavelet-like basis ψn,m(t) = ψ(k, n,m, t) have
four arguments: k can assume any positive integer, m is
the order for Genocchi polynomials and t is the normalized
time. They are defined on the interval [0, 1] by

ψn,m(t) =

⎧⎪⎪⎨⎪⎪⎩
2 k−1

2

√︁
1

R(m)Gm(2
k−1t − n + 1),

n−1
2k−1 ≤ t <

n
2k−1

0, otherwise.

(17)

where,

R(m) = 2(−1)m(m!)2
(2m)! G2m (18)

m = 1, · · · ,M, n = 1, · · · , 2k−1, G2m is the Genocchi Num-
ber and Gm(t) is the Genocchi polynomial. The coefficient√︁

1
R(m) is for the normality.
Since we assume that k is a positive integer only,

hence, this Genocchi wavelet-like basis is not wavelets in
the framework of wavelet analysis. However, this family
of Genocchi polynomials in the interval of [0, 1] (what we

called Genocchi wavelet-like basis) still inherit the advan-
tages of using wavelets in solving fractional differential
equations numerically.

Most of the advantages that motivated us to use this
Genocchi wavelet-like basis are inherited from Genocchi
polynomials. For example, this Genocchi wavelet-like ba-
sis has fewer of terms than Legendre wavelets and thus
when approximating arbitrary functions, we need less
CPU time. There are less computational errors when using
this Genocchi wavelet-like basis, since the coefficients of
individual terms of this basis are smaller when compared
to that of Legendre wavelets, whichwe know are related to
the computational errors in the product. The operational
matrix of derivative based on these functions has fewer of
non zero elements. Apart from that, using a collocation
method together with other wavelets basis, for instance,
Legendre and Chebyshev wavelets, requires the use of the
zeros of Chebyshev polynomials as the suitable colloca-
tion points [24, 25]. Thus, another important advantage of
using this Genocchi wavelet-like basis is that one can use
suitably equally spaced collocation points.

3.1 Function approximations

Suppose that {ψ1,1, · · · ,ψ1,M,ψ2,1, · · · ,ψ2,M, · · · ,ψ(2k−1),1,
· · · ,ψ(2k−1),M} ⊂ L2[0, 1] is the set of Genocchi wavelet-like
basis. We pause here and claim that this is the set of lin-
early independent elements of L2[0, 1]. To prove this claim
it is enough to show that

Gram(ψ1,1(t), · · ·ψ2k−1 ,M(t)) ≠ 0

where, Gram(ψ1,1(t), · · ·ψ2k−1 ,M(t)) is the Gram determi-
nant defined in [26] as

Gram(ψ1,1(t), · · ·ψ2k−1 ,M(t)) = (19)⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
⟨ψ1,1(t), ψ1,1(t)⟩ . . . ⟨ψ1,1(t), ψ1,M(t)⟩ . . .
⟨ψ1,2(t), ψ1,1(t)⟩ . . . ⟨ψ1,2(t), ψ1,M(t)⟩ . . .

... . . .
... . . .

⟨ψ2k−1 ,M(t), ψ1,1(t)⟩ . . . ⟨ψ2k−1 ,M(t), ψ1,M(t)⟩ . . .

⟨ψ1,1(t), ψ2k−1 ,M(t)⟩
⟨ψ1,2(t), ψ2k−1 ,M(t)⟩

...
⟨ψ2k−1 ,M(t), ψ2k−1 ,M(t)⟩

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

To show this determinant is not equal to zero, we first re-
duce the matrix to an upper triangular by Gaussian elimi-
nation and it is not difficult to see that the elements of the
diagonal of the reduced matrix are given by

Diag(k,M) = 1
R(m)a(m − 1), m = 1, 2, · · · ,M
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where,

a(n) = (n!(n + 1)!)2
(2n!)(2n + 1)!

and R(m) is given in (18).
Clearly, one can see that Diag(k,M) is not equal to zero for
all m. Hence the determinant given by

M∏︁
m=1

1
R(m)a(m − 1)

is not zero. Therefore, the set
{ψ1,1, · · · , ψ1,M , · · · , ψ(2k−1),1, · · · , ψ(2k−1),M} ⊂ L2[0, 1]
is the set of linearly independent elements. Our claim is
established.
Now, suppose that
Y = Span{ψ1,1, · · · , ψ1,M , · · · , ψ(2k−1),1, · · · , ψ(2k−1),M}
Let f (t) be an arbitrary element of L2[0, 1] since Y is finite
dimensional subspace (it is closed), then f (t) has a unique
best approximation out of Y, say f *(t) i.e
∀y(t) ∈ Y ‖f (t) − f *(t)‖ ≤ ‖f (t) − y(t)‖
Thus, since f * ∈ Y there exist unique coefficients
c1,1, · · · , c1,M , c2,1, · · · , c2,M , · · · , c(2k−1),1, · · · , c(2k−1),M
such that

f (t) ≈ f *(t) =
2k−1∑︁
n=1

M∑︁
m=1

cn,mψn,m (20)

This implies that ⟨f (t) − f *(t), f *(t)⟩ = 0.

In particular ⟨ψi,j(t), f (t) −
2k−1∑︀
n=1

M∑︀
m=1

cn,mψn,m⟩ = 0

i.e.

⟨ψi,j(t), f (t)⟩ − c1,1⟨ψi,j(t), ψ1,1(t)⟩ − · · · −
c1,M⟨ψi,j(t), ψ1,M(t)⟩ − · · · −
c2k−1 ,1⟨ψi,j(t), ψ2k−1 ,1(t)⟩ − · · ·
− c2k−1 ,M⟨ψi,j(t), ψ2k−1 ,M(t)⟩ = 0

i = 1, · · · , 2k−1, j = 1, · · · ,M.
This is a non-homogeneous system of (2k−1M) lin-
ear equations. The determinant of the coefficients is
given by Gram determinant (19) Since f *(t) exist and is
unique, the system (21) has a unique solution, hence
Gram(ψ1,1(t), · · ·ψ2k−1 ,M(t)) must be non zero. Therefore
Cramer’s rule now yields

ci,j =
Grami,j(ψ1,1(t), · · ·ψ2k−1 ,M(t))
Gram(ψ1,1(t), · · ·ψ2k−1 ,M(t))

(21)

where Gram(ψ1,1(t), · · ·ψ2k−1 ,M(t)) is given in (19)
and Grami,j(ψ1,1(t), · · ·ψ2k−1 ,M(t)) is obtained from
Gram(ψ1,1(t), · · ·ψ2k−1 ,M(t)) when we replace the (i, j)th

column of Gram((ψ1,1(t), · · ·ψ2k−1 ,M(t))) by the column
with elements ⟨ψ1,1(t), f (t)⟩, · · · , ⟨ψ1,2(t), f (t)⟩, · · · ,
⟨ψ2k−1 ,M(t), f (t)⟩

3.2 Error Estimates

It is interesting to note that the error estimate can also be
expressed in terms of Gramdeterminant as given in the fol-
lowing theorem [26]:

Theorem 3.1. Suppose that H = L2[0, 1] be the Hilbert
space, and let Y be a closed subspace of H such that Y =
Span{ψ1,1, · · · , ψ1,M , · · · , ψ(2k−1),1, · · · , ψ(2k−1),M}.
Let f (t) be an arbitrary element of H and f *(t) be the unique
best approximation of f (t) out of Y, then

‖f (t) − f *(t)‖2 =
Gram(f (t), ψ1,1(t), · · ·ψ2k−1 ,M(t))
Gram(ψ1,1(t), · · ·ψ2k−1 ,M(t))

where,

Gram(f (t), ψ1,1(t), · · ·ψ2k−1 ,M(t)) =⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

⟨f (t), f (t)⟩ ⟨f (t), ψ1,1(t)⟩ . . .
⟨ψ1,1(t), f (t)⟩ ⟨ψ1,1(t), ψ1,1(t)⟩ . . .
⟨ψ1,2(t), f (t)⟩ ⟨ψ1,2(t), ψ1,1(t)⟩ . . .

...
... . . .

⟨ψ2k−1 ,M(t), f (t)⟩ ⟨ψ2k−1 ,M(t), ψ1,1(t)⟩ . . .

⟨f (t), ψ2k−1 ,M(t)⟩
⟨ψ1,1(t), ψ2k−1 ,M(t)⟩
⟨ψ1,2(t), ψ2k−1 ,M(t)⟩

...
⟨ψ2k−1 ,M(t), ψ2k−1 ,M(t)⟩

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

Proof. For the proof of this theorem see [26]

4 Genocchi Wavelet-like
Operational Matrix of Fractional
Order Derivative

In this section, we derive the Genocchi wavelet-like opera-
tionalmatrix of the fractional derivative by first transform-
ing the wavelets to Genocchi polynomials. We then make
use of the Genocchi operational matrix of the fractional
derivative to derive the Genocchi wavelet-like operational
matrix of the fractional derivative.
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4.1 Transformation matrix of the Genocchi
wavelet-like to Genocchi polynomials

An arbitrary function y(t) ∈ L2[0, 1] can be expanded into
Genocchi polynomials as

y(x) =
M∑︁
m=1

rmGm(x) = RTΨ ′(x)

where the Genocchi coefficient vector R and the Genocchi
vector Ψ ′(x) are given by

R = [r0, r1, · · · , rM]T (22)

Ψ ′(x) = [G1(x), G2(x), · · · , GM(x)]T (23)

Similar to (21) we have

ci =
Grami(G1(t), · · ·GM(t))
Gram(G1(t), · · ·GM(t))

(24)

where:

Gram(G1(t), · · ·GM(t)) = (25)⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
⟨G1(t), G1(t)⟩ ⟨G1(t), G2(t)⟩ · · · ⟨G1(t), GM(t)⟩
⟨G2(t), G1(t)⟩ ⟨G2(t), G2(t)⟩ · · · ⟨G2(t), GM(t)⟩

...
... · · ·

...
⟨GM(t), G1(t)⟩ ⟨GM(t), G2(t)⟩ · · · ⟨GM(t), GM(t)⟩

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

and Grami(G1(t), · · ·GM(t)) is obtained from
Gram(G1(t), · · ·GM(t)) when we replace the ith column
of Gram(G1(t), · · ·GM(t)) by the column with elements
⟨G1(t), y(t)⟩, ⟨G2(t), y(t)⟩ · · · , ⟨GM(t), y(t)⟩.
The Genocchi wavelet-like basis may be expanded in to
(M)-terms Genocchi polynomials as

ψ2k−1(M)×1(t) = Φ2k−1(M)×(M)Ψ
′
(M)×1, (26)

where Φ is the transformation matrix of the Genocchi
wavelet-like basis to Genocchi polynomial.
The following lemma is also of great importance.

Lemma 4.1. Let Gi(t) be the Genocchi polynomial then,
DαGi(t) = 0, for i = 1, ..., ⌈α⌉ − 1, α > 0.

Theproof of this Lemma is obvious, one canuse (8),(9) and
(10) on (13).

4.2 Genocchi operational matrix of
fractional derivative

In the following theorem we derive the operational matrix
of fractional order derivative for the Genocchi polynomi-
als.

Theorem 4.2. Consider Ψ ′(x) the Genocchi vector given in
(23) and let α > 0. Then,

DαΨ ′(x)T = PαΨ ′(x)T , (27)

where Pα is M × M operational matrix of fractional
derivative of order α in Caputo sense and is defined as fol-
lows:

P(α) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
⌈α⌉∑︀
k=⌈α⌉

ρ⌈α⌉,k,1
⌈α⌉∑︀
k=⌈α⌉

ρ⌈α⌉,k,2 · · ·
⌈α⌉∑︀
k=⌈α⌉

ρ⌈α⌉,k,M

...
... · · ·

...
i∑︀

k=⌈α⌉
ρi,k,1

i∑︀
k=⌈α⌉

ρi,k,2 · · ·
i∑︀

k=⌈α⌉
ρi,k,M

...
... · · ·

...
M∑︀

k=⌈α⌉
ρM,k,1

M∑︀
k=⌈α⌉

ρM,k,2 · · ·
M∑︀

k=⌈α⌉
ρM,k,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ρi,k,j is given by:

ρi,k,j =
i!Gi−k

(i − k)!Γ(k + 1 − α) cj . (28)

Gi−k is theGenocchi number and cj canbeobtain from (24).

Proof. From (13) we have

DαGi(x) =
i∑︁
k=1

i!Gi−k
(i − k)!k!D

αxk (29)

=
i∑︁

k=⌈α⌉

i!Gi−k
(i − k)!Γ(k + 1 − α) x

k−α

Let f (x) = xk−α, then if we approximate f (x) by the

truncated Genocchi series, we have f (x) =
M∑︀
j=1
cjGj(x).

Therefore, substituting this in (29) we have:

DαGi(x) =
M∑︁
j=1

⎛⎝ i∑︁
k=⌈α⌉

i!Gi−k
(i − k)!Γ(k + 1 − α) cj

⎞⎠Gj(x) (30)

=
M∑︁
j=1

⎛⎝ i∑︁
k=⌈α⌉

ρi,k,j

⎞⎠Gj(x),

where ρi,k,l is as given in (28). Rewriting (30) in vector
form, we have:

DαGi(x) = (31)⎡⎣ i∑︁
k=⌈α⌉

ρ⌈α⌉,k,1
i∑︁

k=⌈α⌉

ρ⌈α⌉,k,2 · · ·
i∑︁

k=⌈α⌉

ρ⌈α⌉,k,M

⎤⎦G(x)
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i = ⌈α⌉ · · ·M.

Also according to Lemma 1, we can write

DαGi(x) = [0, 0, · · · 0]G(x) i = 1, · · · , ⌈α⌉ − 1 (32)

Thus, combining (31) and (32) leads to the desired result.

4.3 Genocchi wavelet-like operational
matrix of fractional order derivative

Now, we derive Genocchi wavelet-like operational matrix
of fractional order derivative.
Let

Dαψ(x) = H(α)ψ(x) (33)

where H(α) is the Genocchi wavelet-like operational ma-
trix of fractional derivative and ψ is the Genocchi wavelet-
like vector. Following the samemethod as in [17] we obtain
the Genocchi wavelet-like operational matrix of fractional
derivative H(α) to be given by;

H(α) = ΦP(α)Φ−1 (34)

Before we see the application of this operational matrix in
solving NFDEs, we refer to the work [27, 28] for the exis-
tence and uniqueness of the solution for systems of FDEs.

5 Collocation Method based on
Genocchi Wavelet-like
Operational Matrix of Fractional
Derivative

In this section, we use the collocation method based
on Genocchi wavelet-like operational matrix of fractional
derivatives to numerically solve the NFDEs (1). To do this,
we first approximate yj(t) for j = 1, 2, · · · , n, by Genocchi
wavelet-like basis as follows:

yj(t) =
2k−1∑︁
n=1

M∑︁
m=1

cn,mψn,m = CTj ψ(t)T j = 1, 2, · · · , n. (35)

Where,
Cj = [cj1,1, · · · , c

j
1,M , · · · , c

j
(2k−1),1, · · · , c

j
(2k−1),M]

T is un-
known vector and
ψ(t) = [ψ1,1, · · · , ψ1,M , · · · , ψ(2k−1),1, · · · , ψ(2k−1),M]T is the
wavelet-like vector.
Now employing (33) on (35), we have

Dαyj(t) ≃ CjH(α)ψ(t)T , j = 1, 2, · · · , n. (36)

Therefore, substituting (35) and (36) in (1), we have

CjH(α)ψ(t)T = fj
(︁
t, C1ψ(t)T C2ψ(t)T , (37)

· · · , Cnψ(t)T
)︁

j = 1, 2, · · · , n.

From the initial conditions we have

Cjψ(0)T = dj j = 1, 2, · · · , n. (38)

To find the solution of (1), we collocate (37) at the colloca-
tion points ti = i

N−1 , i = 1, 2, · · · , N − 1 to obtain

CjH(α)ψ(ti)T = fj
(︁
ti , C1ψ(ti)T C2ψ(ti)T , (39)

· · · , Cnψ(ti)T
)︁

i = 1, 2, · · · , N − 1,

j = 1, 2, · · · , n.

Thus, (39) are n(N − 1) algebraic equations. These equa-
tions together with (38) make n(N) algebraic equations
which canbe solvedusingNewton’s iterativemethod. Con-
sequently yj(t) given in (35) can be calculated.

6 Numerical Examples
In this section, some numerical examples are given to il-
lustrate the applicability and accuracy of the proposed
method. All the numerical computations are carried out
using Maple 18.

Figure 1: Exact and numerical results obtained when α =
1, 0.95, 0.9 and 0.85 for example 2.
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Table 1: Comparison of the L2 and L∞ errors obtained by the present method and that in [29] for numerical solution y(t) for Example 1.

L2Error L∞ Error
B-spline[29] present method k = 1 B-spline[29] present method k = 1

4.0E−4 (J = 3) 3.6E−5 (M = 3) 1.0E−3 (J = 3) 5.3E−3 (M = 3)
9.5E−5 (J = 4) 2.8E−6 (M = 4) 2.6E−4 (J = 4) 1.2E−5 (M = 4)
2.3E−5 (J = 5) 6.2E−6 (M = 5) 7.1E−5 (J = 5) 2.7E−5 (M = 5)
5.8E-6 (J = 6) 1.3E−7 (M = 6) 1.5E−5 (J = 6) 1.6E−6 (M = 6)
1.5E-6 (J = 7) 1.9E−7 (M = 7) 4.2E−6 (J = 7) 1.8E−7 (M = 7)

Table 2: Comparison of the numerical results obtained by the present method with different values of α and that obtaines using second
kind chebyshev wavelet (SKCW) in [30] for Example 2.

α = 0.5 α = 0.75 α = 1

t SKCW [30] Present
Method SKCW [30] Present

Method SKCW [30] Present
Method

exact
solution

0.2 0.436737 0.4204949 0.309886 0.2945296 0.197358 0.1973753 0.1973753
0.4 0.553802 0.5442814 0.481638 0.4708147 0.379946 0.3799490 0.3799490
0.6 0.621026 0.6150123 0.597790 0.5906088 0.537048 0.5370496 0.5370496
0.8 0.666016 0.6630723 0.678835 0.6742144 0.664009 0.6640368 0.6640368

Table 3: Comparison of the numerical solution y1(t) and y2(t), exact solutions and absolute errors obtained by present method for example
3.

t Exact y1(t) Exact y2(t) Approx. y1(t) Approx. y2(t) Abs. Err y1(t) Abs. Err y2(t)

0.1 1.0512711 0.1105171 1.0512711 0.1105171 3.74E−14 5.37E−10
0.2 1.1051709 0.2442806 1.1051709 0.2442806 3.83E−14 5.78E−10
0.3 1.1618342 0.4049576 1.1618342 0.4049576 4.05E−14 6.42E−10
0.4 1.2214028 0.5967299 1.2214028 0.5967298 4.25E−14 7.09E−10
0.5 1.2840254 0.8243606 1.2840254 0.8243606 4.47E−14 7.84E−10
0.6 1.3498588 1.0932713 1.3498588 1.0932713 4.69E−14 8.65E−10
0.7 1.4190675 1.4096269 1.4190675 1.4096269 4.94E−14 9.57E−10
0.8 1.4918247 1.7804327 1.4918247 1.7804327 5.18E−14 1.06E−09
0.9 1.5683122 2.2136428 1.5683122 2.2136428 5.54E−14 1.18E−09
1.0 1.6487213 2.7182818 1.6487213 2.7182818 2.18E−14 7.92E−10

Example 1. We first consider the following FDE solved us-
ing B-spline operational matrix in [29]

4(t + 1)D
5
2 y(t) + 4D

3
2 y(t) + 1√

t + 1
y(t) =

√
t +

√
π (40)

subject to, y(0) =
√
π, y′(0) =

√
π
2 , y(1) =

√
2π

This example is solved using B-spline operational matrix
in [29], its exact solution is known to be y(t) =

√︀
π(t + 1).

Weconsider this problemwhenM = 3, 4, 5, 6, 7 and k = 1.
The L2 and L∞ errors of the results obtained are compared
with that obtained using B-spline operational method [29]
as shown in Table 1. From this table one can observe that,

we are able to obtain a more accurate result than that ob-
tained using the B spline operational method in [29].

Example 2. We consider the following Riccati equation
solved in [30–32]

Dαy(t) = −y2(t) + 1, α ∈ (0, 1], t > 0 (41)

subject to, y(0) = 0

The exact solution when α = 1 is known to be y(t) = e2t−1
e2t+1 .

Our numerical solution is in very good agreement with the
exact solution when α = 1. We solve this problem when
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Figure 2: Comparison of our solution y1(t) , when α = 0.8, 0.9 and 1
for Example 3.

Figure 3: Comparison of our solution y2(t), when α = 0.8, 0.9 and 1
for Example 3.

α = 0.95, 0.9, 0.85, our results (shown in figure 1) show
a similar result obtained in [31].

We also solve the example when α = 0.5 and 0.75, the
numerical results are compared with that given in [30] as
shown in Table 2.

Figure 4: Comparison of our solution y1(t), when α = 1.2, 1.4, 1.6.
1.8, 2.0 and β = 2.2, 2.4, 2.6, 2.8, 3.0 for example 4.

Figure 5: Comparison of our solution y2(t), when α = 1.2,
1.4,1.6.1.8,2.0 and β = 2.2, 2.4, 2.6, 2.8, 3.0 for example 4.

Example 3. Here, we consider the following system of
NFDE [33, 34].

Dαy1(t) =
y1(t)
2 (42)

Dαy2(t) = (y1(t))2 + y2(t)

subject to, y1(0) = 1, y2(0) = 0
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Table 4: Errors for different values of M when k = 1, α = 2, β = 3 obtained by present method for example 4.

t y1(t) (|l1,9 − l1,10|) y2(t) (|l1,9 − l1,10|) y1(t) (|l1,10 − l1,11|) y2(t) (|l1,10 − l1,11|)

0.1 2.15835E−05 2.20000E−07 3.54090E−06 3.10000E−08
0.2 5.24145E−05 1.19300E−06 8.32190E−06 1.61000E−07
0.3 8.29739E−05 2.92700E−06 1.31082E−05 3.89000E−07
0.4 1.14481E−04 5.35600E−06 1.80340E−05 7.05000E−07
0.5 1.46896E−04 8.40700E−06 2.31086E−05 1.09600E−06
0.6 1.80494E−04 1.19810E−05 2.83838E−05 1.54600E−06
0.7 2.15461E−04 1.59670E−05 3.38690E−05 2.03200E−06
0.8 2.51648E−04 2.02270E−05 3.96210E−05 2.54400E−06
0.9 2.90102E−04 2.47820E−05 4.55490E−05 3.03800E−06
1.0 3.19375E−04 3.14880E−05 5.31230E−05 3.24200E−06

The exact solution of this system when α = 1 is known to
be y1(t) = e

t
2 and y2(t) = tet. The example is solved by our

method withM = 10 and k = 1. The numerical results and
absolute errors for y1(t) and y2(t) are, respectively, shown
in Table 3 .

We consider this example when α = 0.8, 0.9 and the
results are compared with the exact solution when α = 1
as shown in figures 2 and 3, the figures affirm that when α
approaches 1, our results approach the exact solution

Example 4. Consider the following NSFDE [35].

Dαy1(t) = y1(t) + y22(t) 1 < α ≤ 2
Dβy2(t) = y1(t) + 5y2(t) 2 < β ≤ 3

(43)

subject to, y1(0) = 0, y′1(0) = 1, y2(0) = 1, y′2(0) =
1, y′′2 (0) = 1

The exact solutions of this system are unknown. We solve
this example by our method with α = 2 and β = 3 at the
levels M = 9, k = 1, M = 10, k = 1 and M = 11, k = 1
(l1,9 , l1,10 and l1,11). The error estimation here is reffered
to the lth level estimate given by |lk,M − lk,M+1|. For this
example the error estimates are displayed on Table 4 .
In figure 4 and 5, we show the behavior of the solutions
of this system at different values of α and β i.e when α =
1.2, 1.4, 1.6. 1.8, 2.0 and β = 2.2, 2.4, 2.6, 2.8, 3.0

7 Conclusion
In this paper, a new operational matrix based on the
Genocchi wavelet-like basis is derived and applied to-
gether with the collocation method to numerically solve
the NSFDEs. The comparison of the results shows that the

presentmethod is a simple and effectivemathematical tool
for finding the numerical solutions of NSFDEs. The advan-
tage of this operationalmatrix over others is that it has less
computational complexity because every operational ma-
trix of differentiation involves more numbers of zeros and
thus, reduces the run time and provide the solution at high
accuracy.
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