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Abstract: The paper deals with the biomechanical investi-
gation on the human lumbar intervertebral disc under the
static load. The disc is regarded as a two - phased ambi-
ent consisting of a fibrous outer part called annulus fibro-
sis and a liquid inner part nucleus pulposus. Due to the
fibrous structure, the annulus fibrosis canbe treated byus-
ing a special case of anisotropy - transversal isotropy.
In the paper the corresponding tensor of material con-
stants is derived. The tensor consequently incomes to the
constitutive equations determining the stress - strain rela-
tion in the material. In order to study the mechanical be-
haviour the disc is observed within the motion segment,
the basic unit for motion tracing. The motion segment in-
volves two neighbouring vertebrae and the intervertebral
disc between them that connect them both.
When constitutive equations are accomplished, they can
be incorporated in the finite element analysis. The illus-
trative example of the intervertebral disc L2/L3, the disc
between the second and the third lumbar vertebrae the
lumbar part of spine, with its computer implementation is
performed. Finally the comparison of the results of using
anisotropic and homogenized approach is provided. The
comparison illustrates the eligibility of such a kind of ap-
proach.
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1 Introduction
Nowadays, the lower back pain has become the civilisa-
tion disease. The causes of such a problem are diverse -
the long-lasting sitting at work, overloading of the back by
persisting repeating load, predisposition caused by previ-
ous diseases, bad nourishment, stress, insufficiency or ab-
sence of sport activities, injury etc. Themost people suffer-
ing of the low back pain are treated by non-invasive meth-
ods as the physiotherapy, rehabilitation, bymedicaments,
byusingorthopaedic supportingmechanism, etc. Inworse
cases when the progress of the disease is irreversible, the
invasive methods, the surgery intervention is inevitable.
Hence, the previous theoretical investigations, analyses,
predeterminations foregoing the operation are welcome.
The artificial replacements’ mechanical behaviour are ob-
served, computed and tested within the biomechanics. Of
course, the biocompatibility has to be regarded. The bio-
compatibility of materials with human tissue, the stimula-
tion of tissue growth by therapeutic cells seeding into the
degenerative disc, scaffoldsmethods, this is the task of the
new interdisciplinary branch of research called tissue en-
gineering, see e.g. [1]. The predicting or tracing of the tis-
sue growth can be carried out by using the fractal analysis
as well, see e.g. [7].
The expansion of the mathematical and computational
modelling in recent decades facilitated the biomechani-
cal research inter alia, enabled to simulate, observe and
predict some processes of living organisms. A term "vir-
tual human reality" is recently used, that involves thewide
spectrum of biomechanical investigation of the systems
and processes within the human body, [3].
In 1974 Belytschko et al. [2], created the first one-
dimensional axisymmetric mechanical model of the inter-
vertebral disc (ID) loaded uniformly. Afterwards, in 1976,
Kulak et al. [9], incorporated the non linear material prop-
erties of the annulus fibrosis (AF) into the existing model.
Since the vertebrae shape and dimensions varies fromper-
son to person, there was a need to generalize themorphol-
ogy of the particular vertebrae alongside the spine. Spilker
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did so in 1982 in [15] and this paper provides the general
dimensions of particular vertebrae. At the same time he
points out to the dimensions which are decisive in me-
chanical responses tracing.
The generalized dimensions are obviously taken as an in-
put of the investigation. In our paper that deals with phys-
ical equations for annulus fibrosis - the collagen external
part of the ID, we also took the dimensions from [15].

2 Motivation
The anatomical observing of a human intervertebral disc
reveals that the outer part of a human intervertebral disc -
the annulus fibrosis consists of 10-12 lamellae formed from
an inherent amorphousmatter, each of them being encap-
sulated by the spiral system of parallel fibres. The slope of
ascending of the spiral system is tg(±α), the sign switch-
ing from lamella to lamella. Alternating sign in front of α
means the neighbouring lamellae have always the fibres
ascendancy in reverse direction. The angle of crossing the
neighbouring lamellae fibres varies from 48∘ up to 74∘.
The thickness of the fibre is 1 − 5µm. The distance be-
tween fibres is almost the same as the distance between
the lamellae. In radial direction the number of the fibres is
variable, the density is evenly ordered along the circumfer-
ence. The collagen fibres are not interconnected with the
body of the vertebra. More details concerning interverte-
bral disc anatomy can be found e.g in [13]. For the sake
of further biological and numerical handling of the stress
vs. strain (σ ∼ ε) relation within the anisotropic model
of intervertebral disc it is required to switch between the
local coordinate system (LCS) and global coordinate sys-
tem (GCS). Herein LCS arises naturally from the configura-
tion of the fibres with-inside the annulus fibrosis and the
GCS following the accordance with the entire spine geom-
etry. Herein, the local coordinate system utilizes the quasi
cyclic symmetry due to sheeted topology of the curved col-
lagen fibres systems. Both forward and backward switch-
over between LCS and GCS is realized by the transforma-
tionmatrices. All mathematical points, covering geometry
andphysical properties, tidedwith switching between LCS
and GCS are treated in this paper. Such a treatment far-
ther enables us to deal with anisotropy conveniently. This
mathematical investigation is themain contribution of the
paper.

Figure 1: Right: Spinal motion unit section; left: collagen fibres
arrangement structure within the intervertebral disc annulus

3 Mathematical modelling
For the proper mathematical investigation we impose
some basic biological, mathematical and physical as-
sumptions.

3.1 Assumptions

– the analysed body (intervertebral disc) is supposed
to be a continuum

– investigations are done within the linear elasticity
theory

– the fibres of annulus fibrosis are of the homoge-
neousmaterial; its physical properties are subjected
to the generalized Hook law; the nucleus of the ID is
a viscous medium

– inner initial stresses and thermal influences are neg-
ligible

– quasi static external load is assumed
– deterministic phenomenological mathematical

model is concerned

3.2 Lagrange variational principle
application

It is well known fact that Lagrange variational principle
comes from virtual displacement principle, see e.g. [17].
This can be written as∫︁
V

(σijδεij − X̂iδui)dV −
∫︁
SP

p̂iδuidS = 0; (i, j = x, y, z)

(3.1)
with σij being stress Cauchy tensor components, εij small
deformationGreen tensor components, δui point displace-
ment vector variation components, p̂i , X̂i prescribed sur-
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face and volume forces vectors, V volume of the domain
Ω (intervertebral disc), SP boundary of the domain Ω - the
surface where the surface forces are prescribed. Here and
further the given values - known ones - are these oneswith
the hat above. The deformation potential energy density
W(εij) reads

σij =
∂W
∂εij

(3.2)

in each component. Substituting (3.2) to (3.1) then yields∫︁
V

∂W
∂εij

δεijdV −
∫︁
V

X̂iδuidV −
∫︁
SP

p̂iδuidS = 0 (3.3)

The first term in (3.3) represents the first variation of the
deformationpotential energy, δU. Having thefixed volume
and surface forces X̂i and p̂i, the last two integrals in (3.3)
can be merged in the variation of external forces potential
energy δL. Accordingly, the virtual displacement principle
is given by the known relation

δU + δL = δ(U + L) = δΠ = 0 (3.4)

Thequadratic functional (3.4) acquires itsminimumon the
set of admissible variations of the real displacements, e.g.
[11].

3.3 Constitutive equations of the
intervertebral disc

Due to layered lamellae structure of ID known from the
anatomy, due to the physical properties of the collagen fi-
bres and due to their spiral configuration, the interverte-
bral disc is modelled as a transversally isotropic compos-
ite ambient.
Let us define a local Cartesian coordinate system, an or-
dered triple (x1, x2, x3) = (1, 2, 3) where the axis x1 ≡ 1 is
parallel to the fibres direction, the axis x2 ≡ 2 is perpen-
dicular to the fibres direction, lying on the tangent plane
to the lamella and the axis x3 ≡ 3 is perpendicular to the
(x1, x2) plane. Let us suppose the global coordinate system
(r, t, z) = (1̄, 2̄, 3̄) which is rotated from the local coordi-
nate systemby the angle α, with x3 = 3being the axis of ro-
tation, see Fig. 2. While forming the constitutive, i.e. phys-
ical equations for the transversally isotropic material we
start from the generalized Hook law for anisotropic body.
The Cauchy stress tensor σij is of the form

σij = cijklεkl (3.5)

with cijkl being the elastic coefficients united in the elastic
tensor operator with 81 coefficients and εkl the Green de-
formation tensor components. By using the symmetry of

Figure 2: Intervertebral disc lamella fragment with the "old" local
(x1 , x2 , x3) = (1, 2, 3) and "new" (r, t, z) coordinate system with α
being the slope of the fibre ascending

the stress tensor σij = σji , (i, j = 1, 2, 3) and the symmetry
of the strain tensor εkl = εlk , (k, l = 1, 2, 3) the number
of coefficients decreases to 36. Moreover, subject to ther-
modynamic laws, it is possible to prove, the validity of the
relation, [5]

cijkl = cklij (3.6)

sijkl = sklij (3.7)

(3.6) performs the double symmetry of the compliance and
(3.7)matrix coefficients. In themost general case the terms
(3.6) decrease the number of the coefficients to 21. Due to
the 2nd law of thermodynamics it can be shown that the
tensor operators cijkl = (sijkl)−1 is a positive definite oper-
ator [11]. Relation (3.5) can be then rewritten in the reverse
form

εij = sijklσkl , (i, j = 1, 2, 3) (3.8)

Note 1:
a) If an elastic theory problem is elaborated on the atomic
level, by using some other assumptions, the number of the
coefficient can be even more decreased. This depends on
the crystal character and composition of the material [5].
b) Since we have restricted our investigation to the Carte-
sian coordinate system, we need not to distinguish be-
tween covariant and contra-variant tensors. Moreover, as
wewould like tomake the notationmore simple, we estab-
lish the restriction of the indexes number of stress σij and



Stress - Strain Response of the Human Spine Intervertebral Disc | 429

strain εij in the following way:

11 → 1, 22 → 2, 33 → 3, 12 → 4, 23 → 5, 31 → 6 (3.9)

σij =
{︃
σ11, σ22, σ33; σ12, σ23, σ31
σ1, σ2, σ3; σ4, σ5, σ6

(3.10)

εij =
{︃
ε11, ε22, ε33; 2ε12, 2ε23, 2ε31
ε1, ε2, ε3; ε4, ε5, ε6

(3.11)

This restriction of the indexes decreases the order of the
tensor twice. In the such away e.g. amatrix will be aligned
to a vector, a tensor of the 4th orderwill acquire the formof
matrix.Hence,wewill reduce thenumber of indexes twice.
In the following text we will use σ5 instead of σ23, ε3 in-
stead of ε33, ε4 instead of 2ε31. Moreover using the index
restriction (3.9) also for tensors cijkl and sijkl, we will write
c11 instead of c1111, s36 instead of s3331, c15 = c51 instead
of c1123 = c2311, s26 = s62 instead of s2231 = s3122, etc.
Hereinafter we utilize the differentiability of the elastic de-
formation energy density functionW. Its differential when
using the Einstein summation convention and considering
the Note 1 can be expressed in the form

dW = σidεi = cijεjdεi (3.12)

i.e., for entire body of the volume V

W =
∫︁
V

dW(εi) =
∫︁
V

cijεjdεi (3.13)

I accordance with Assumptions in Chapter III.A, the do-
main Ω , i.e. intervertebral disc is considered as fully elas-
tic, which ensures the linearity herein and integral in (3.13)
does not depend on the integration path. Here, the neces-
sary and sufficient condition is dW being the total differ-
ential of functionW(εi), i.e.

dW = ∂W∂εi
dεi (3.14)

By comparing the equations (3.12) and (3.14) we get

∂W
∂εi

= cijεj (3.15)

Exploitating the fact that W = W(εi) is a differentiable
function we can write

∂2W
∂εi∂εj

= cij (3.16)

respectively
∂2W
∂εj∂εi

= cji (3.17)

The fact, that the order which the derivatives are per-
formed is not dependent on the structure of the material,

the symmetry of the elastic coefficients (mathematically)
implies

cij = cji (3.18)

That iswhy thematrix of elastic constants has 21 elements.
Hence, the equation (3.13) in the unit volume can be rewrit-
ten as

W = 1
2 cijεiεj , (i, j = 1, ..., 6) (3.19)

Similarly, the validity of the relationship

W = 1
2 sijσiσj , (i, j = 1, ..., 6) (3.20)

can be proved, e.g. [10], whereas sij are the elastic moduli
components that read

sij = [cij]−1, (i, j = 1, ..., 6) (3.21)

Let us suppose in each point of Ω there exists a plane of
symmetry, e.g. (1,2) - tangent plane to the lamella of the
intervertebral disc, see Fig. 2). Then

cij = 0, (i = 1, 2, 3 ∧ j = 5, 6) (3.22)

In this way the number of coefficients decreases to 13.
In each point of the domain Ω there exist three planes
of symmetry, planes (1,2), (2,3), (3,1), perpendicular each
other. That implies Ω is an orthotropic body that in addi-
tion reads

cij = 0, (i = 1, 2, 3, 5 ∧ j = 4, 6) (3.23)

Due to the elastic symmetry cij = cji the number of elastic
coefficient decreases to 9. Finally, the corresponding com-
pliance matrix, i.e the matrix involving the elastic moduli
coefficients, is

S = [sij] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1 − ν21E2 − ν31E3 0 0 0
− ν12E1

1
E2 − ν32E3 0 0 0

− ν13E1 − ν23E2
1
E3 0 0 0

0 0 0 1
G12

0 0
0 0 0 0 1

G23
0

0 0 0 0 0 1
G31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.24)

with νij
Ei =

νji
Ej , (i, j = 1, 2, 3). In matrix (3.24) the material

constants E1, E2, E3 are the directional elastic moduli in
the 1,2 and 3 axes direction, see Fig. 2; νij arePoisson coeffi-
cients of the transversal deformation with νij = −εj/εi and
G12, G23, G31 are the shear moduli corresponding to the
planes (1,2), (2,3), (3,1). Thus, the orthotropic body reads

σ1 = c11ε1 + c12ε2 + c13ε3
σ2 = c21ε1 + c22ε2 + c23ε3
σ3 = c31ε1 + c32ε2 + c33ε3

σ4 = c44ε4; σ5 = c55ε5; σ6 = c66ε6

(3.25)
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The deformation energy density (3.19) can be rewritten in
detailsW = 1

2 c11ε
2
1+c12ε1ε2+c13ε1ε3+ 1

2 c22ε
2
2+c23ε2ε3+

1
2 c33ε

2
3 + 1

2 c44ε
2
4 + 1

2 c55ε
2
5 + 1

2 c66ε
2
6. In our case, regarding

to the structure of the intervertebral disc annulus its lay-
ered configuration of lamellae and twisted collagen fibres,
we will suppose that the plane (2,3) is the isotropy plane,
which means the constants cij will read

c12 = c13, c22 = c33, c44 = c66 (3.26)

So, it remains 9 - 3 = 6 different material constants
c11, c12, c22, c23, c44, c55, whereas by using the small de-
formation tensor invariant it can be proven, see e.g. [10]

c55 =
1
2(c22 − c23) (3.27)

Afterwards, taking

σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and ε =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
the relationship "stress - strain" representing the matrix
formof constitutive equations for the annulus fibrosiswith
respect to the local coordinate system (LCS) will be of the
form

σ = Cε (3.28)

where C[6x6] is the compliance matrix

C = [cij] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c12 0 0 0
c12 c22 c23 0 0 0
c12 c23 c22 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c44

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.29)

with the 6 different coefficients: c11 = E1(1 − ν223), c12 =
E2(ν12 + ν23ν12), c22 = E2(1 − ν212), c23 = E2(ν23 + ν212),
c44 = G12D, c55 = G23D, D = 1 − 2ν212ν23 − 2ν212 − ν223,
whereas the inverse "strain - stress" relation will read

ε = Sσ (3.30)

The equation (3.28) expresses the Cauchy stress tensor
components σj dependence on the deformations εi , (i =
1, 2, ...6). In terms of previous assumptions imposed in
Chapter III.A while solving our problem, we start from the
small deformations theory that provides, e.g. [17]

εij =
1
2(ui,j + uj,i), (i, j = 1, 2, 3) (3.31)

Table 1: Angles between the coordinates in the "old" and "new"
coordinate system and corresponding directional cosines defined in
the lamella domain

1 2 3
+α α + π

2
π
2

1̄ cosα −sinα 0
π
2 − α +α π

2
2̄ sinα cosα 0

π
2

π
2 0

3̄ 0 0 1

Table 2: Directional cosines notation between the "old" and "new"
coordinate system defined in the lamella domain

1 2 3
1̄ l11̄ l21̄ l31̄
2̄ l12̄ l22̄ l32̄
3̄ l13̄ l23̄ l33̄

where ui are the displacement vector u(X) components,
X ∈ Ω and u•,i means the derivation of the item u• with
respect to xi. The resulting matrix of elastic moduli, the
compliance matrix s̄ij = [s̄ij] with regarding to the GCS of
the annulus fibrosis can be obtained from the relationship

s̄ = 1
2[(s̄ij(+α) + s̄ij(−α))], (i, j = 1, 2, ..., 6) (3.32)

i.e the averaging of the elasticmoduli due to annulus fibro-
sis being layered and to the orientation within the partic-
ular lamellae. By using the same procedure, the relation-
ship for the elastic coefficients can be derived, where

c̄ = 1
2[(c̄ij(+α) + c̄ij(−α))], (i, j = 1, 2, ..., 6) (3.33)

3.4 Transformation of the elastic parameters
when the system of coordinates is
rotated

Let us consider a case where a "new" system (1̄, 2̄, 3̄) orig-
inates from the "old" one (1, 2, 3) by its rotation about 3
axis by the angle α, see Fig. 2. Tab. 1 provides the relation-
ships between the "old" and "new" coordinate system and
corresponding directional cosines. The stress tensor com-
ponents transformation from LCS to GCS reads, see e.g [14]

σ̄ = LσLT (3.34)
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where

L =

⎡⎢⎣l11̄ l21̄ l31̄
l12̄ l22̄ l32̄
l13̄ l23̄ l33̄

⎤⎥⎦ , σ̄ = [σ̄ij], (i, j = 1, 2, 3) (3.35)

is the transformation matrix. Moreover, the backward
transformation (from GCS to LCS) reads

σ = LT σ̄L (3.36)

Both (3.34) and (3.36) canbe rewritten in tensor inscription

σ̄kl = σij lki llj , (i, j = 1, 2, 3), (k, l = 1, 2, 3) (3.37)

and

σij = σ̄kl lki llj , (i, j = 1, 2, 3), (k, l = 1, 2, 3) (3.38)

In the process of the elastic constants transformation re-
lations deriving we start from elastic potential expression
with regard to the GCS and to the LCS, that are equal from
the physical point of view. We know that

W(εij) = W(ε̄ij), (i = 1, 2..., 6) (3.39)
W(σij) = W(σ̄ij), (i = 1, 2..., 6) (3.40)

In the following, the deriving of (3.40) is shown. When
writing this equation in detail we get
1
2 c11ε

2
1 + c12ε1ε2 + ... +

1
2 c66ε

2
6 =

1
2 c̄11 ε̄

2
1 + c̄12 ε̄1 ε̄2 + ...

+ 1
2 c̄66 ε̄

2
6 (3.41)

Substituting εi as functions of parameters (ε̄1, ...ε̄6) for
(i = 1, 2, ..., 6) and applying for the deformation tensor
components, (3.5), and comparing the coefficients next to
the deformation components εi squared and products ε̄i ε̄j
we obtain the relationship between elastic coefficients cij
and c̄ij. The coefficients c̄ij stand as linear functions of cij,
being homogeneous functions of the 4-th degree with re-
gard to lij̄. The complicated expressions that arise can be
shortened by establishing the additional parameters qij,
see Tab. 3 and Tab. 4, where e.g. q11 = l211̄, q43 = 2l23̄l33̄,
etc. by using the parameters qwe can express the transfor-
mation relations in the form

s̄ij = smnqimqjn (3.42)
c̄ij = cmnqimqjn (3.43)

Another method of elastic coefficients and elastic moduli
transformation while switching between two different co-
ordinate systems is performed by [5].

c̄ijkl = lim ljn lko llpcmnop s̄ijkl = lim ljn lko llpsmnop
(3.44)

that represents two systems of 81 equations with 81 un-
knowns. Due to symmetry, that number can be decreased
to 21.

4 Numerical analysis and
computation

After discretization and approximation due to finite analy-
sis analysis, the total potential energy functional involved
in Lagrange variational principle, see (3.4), can be ex-
pressed as follows:

Π = 1
2u

TKu − uTf (4.1)

where K = BTCB is the stiffness matrix B being physical
and C geometrical matrix of the discretized system and
f = fb + ft is the nodal force vector, the sum of volume body
force and force due to the traction.
Let us recall that the resulting system of linear equations
Ku = f involves the axisymmetry in case of anisotropy.

Finally, the following the boundary conditions accom-
plish the mathematical model:

uz(r, t, z) = 0 for z = 0 (4.2)
ur(r, t, z) = 0 for r = 0 (4.3)

p = P
A for z = H (4.4)

withH being the height of the disc, see Fig. 1, P the traction
andA the areamagnitudeof upper endplate; endplates are
the tissue plate covering the entire disc one at its top and
its bottom. It is the thin tissue member that attaches the
disc and the vertebra. Within the software based on the fi-
nite element method, the elements LINK8 (spar 2nodes 3D
element) and SOLID185 (brick 8 node 3D element)with lin-
ear approximating function were used.

4.1 Example of biomechanical computation

Numerical treatment and computation is based on the fi-
nite element method. The derived relations and acquired
knowledge together with the finite element tool are uti-
lized for the stress and strain analysis of the treated two-
phased ambient. The object of our investigation is the in-
tervertebral disc ID 2/3, the one between the second and
the third human lumbar vertebrae and its annulus fibro-
sis. The anatomy of the disc can be seen e.g. in [13]. We
compute themechanical response of the domain due to ex-
ternal axial load.

– Intervertebral disc geometry
We take the dimensions of the intervertebral disc
from [12]. The disc height is H = 1.2 cm, upper and
lower endplate area 22 cm2, or equivalent outer cir-
cular radius rO = 2.64 cm. The measurement of [12]
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Table 3: Additional parameters qij

H
HHH

HHi
j 1 2 3 4 5 6

1 l211̄ l212̄ l213̄ l12̄l13̄ l13̄l11̄ l12̄l11̄
2 l221̄ l222̄ l223̄ l22̄l23̄ l23̄l21̄ l22̄l21̄
3 l231̄ l232̄ l233̄ l32̄l33̄ l33̄l31̄ l32̄l31̄
4 2l31̄l21̄ 2l32̄l22̄ 2l33̄l23̄ l33̄l22̄ + l32̄l23̄ l33̄l21̄ + l31̄l23̄ l31̄l22̄ + l32̄l21̄
5 2l31̄l11̄ 2l32̄l12̄ 2l33̄l13̄ l33̄l12̄ + l32̄l13̄ l33̄l11̄ + l31̄l13̄ l31̄l22̄ + l32̄l11̄
6 2l21̄l11̄ 2l12̄l22̄ 2l13̄l23̄ l13̄l22̄ + l12̄l23̄ l13̄l21̄ + l11̄l23̄ l11̄l22̄ + l12̄l21̄

Table 4: Goniometrical transcription of the parameters qij with c =:
cosα and s =: sinα

H
HHH

HHi
j 1 2 3 4 5 6

1 c2 s2 0 0 0 cs
2 s2 c2 0 0 0 -cs
3 0 0 1 0 0 0
4 0 0 0 c -s 0
5 0 0 0 s c 0
6 -2cs 2cs 0 0 0 c2 − s2

reveals that nucleus pulposus occupies 20 −50% of
the disc axial cross section area, accordinglywe take
the inner radius rI = 0, 707rO.

Figure 3: Fibres configuration in the amorphic base substance
within the annulus fibrosis finite element model

– Physical characteristics of the materials
- Annulus fibrosis is modelled as a transversally
isotropic body, i.e. a system of thin concentric cylin-
dric shells of constant thickness. The fibres mate-
rial characteristics are taken as acquired fromexper-
imental measurements [4]: E1 = 334 MPa, E2 = 9.5
MPa, ν12 = 0.5, ν23 = 0.05, G12 = 1.9 MPa, G23 =
4.523 MPa. These properties was incorporated in C
matrix in (3.30) and used afterwards in the compu-
tation within the FEM software.

Figure 4: Anatomical (left) and simplified (right) representation of a
human intervertebral disc - axial section. Applied distributed load is
represented by uniform arrows above.

- Cartilaginous endplate region is regarded as an iso-
topic homogeneous material of the thickness 0.06
cmwith amodulus 24.3MPa and Poisson ratio 0.45
[18].
- Nucleus pulposus (NP) is modelled as an incom-
pressible liquid. It is enclosed by the annulus fibro-
sis from the side and endplates from the top and
bottom. Water content in NP decreases with the age
from the natal value of 88% to 69% at the age of 79
[16]. For our computing the values of 0.49 for the
Poisson ratio and 0.013MPa for Young elastic mod-
ulus were taken.

– Load
We carried out the computation on the human inter-
vertebral disc with the load P = 450 N which acts at
the endplate of the disc L2/L3, i.e. the corresponding
uniformly distributed load p[Pa], is taken p = P/A
with A = πr2O [8].

– Results
Fig. 5 and Fig. 6 provide the graphical information
about the disc deformation under the load.
The graphs in Fig. 8–10 interpret the comparison
of the two approaches. The comparison of displace-
ment, strain and stress values are performed on the
outside meridian line. Herein, the "Path", i.e. the
bottom-to-up oriented vertical meridian line stands
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Figure 5: The ID mechanical behaviour with anisotropy homogenization approach used; displacement isolines (upper), strain isolines
(lower)

Figure 6: The results - displacement (upper picture), strain values (lower picture) obtained on the intervertebral disc model with complex
geometry approach where particular fibres geometry were developed within the software

Figure 7: AF with Path highlighted that stands as an abscissa in
the comparison graphs. Along Path the results are observed an the
comparison is carried out.

the abscissa of these three graphs, see Fig. 7. Corre-
sponding numerical value can be seen in Table 5.

4.2 Discussion

As the disc is exposed to the vertical pressure acting on
the upper surface, as a whole it is stretched laterally and
squeezed vertically. At the same time the soft annulus fi-
brosis deforms aside enabling incompressible nucleus to
keep its volume unchanged. It is apparent from the Fig.5
and Fig.6 that the strain is greater in nucleus pulposus
than in annulus fibrosis. As the endplate is significantly
stiffer, its strain remains very small.

As the comparison of both approaches was done on
the intervertebral disc with upper and without bottom
endplate, see e.g. Fig. 7, the tissue is soft from the very
bottom up to the endplate altitude. That is why the mag-
nitude of the von Mises stress is very small along this part
of the "Path". When proceeding upward along the soft tis-
sue (still on the Path), the stress still remains of a small
magnitude until approaching to the stiffer endplate, when
the magnitude of the stress increase rapidly, see Fig. 10.
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Table 5: Displacement, strain and von Mises stress values along the Path

Displacement Von Mises Strain Von Mises stress
Z coor anizo fibres anizo fibres anizo fibres
0 0 0 3,16E-02 2,41E-02 -6,91E-02 4,88E+05

7,30E-04 9,09E-05 8,27E-05 3,00E-02 2,43E-02 0,20281 4,87E+05
1,46E-03 1,82E-04 1,65E-04 2,84E-02 2,51E-02 0,62332 4,96E+05
2,19E-03 2,73E-04 2,45E-04 2,69E-02 2,63E-02 1,0624 5,08E+05
2,92E-03 3,57E-04 2,83E-04 2,49E-02 2,04E-02 1,3615 4,47E+05
3,65E-03 4,04E-04 3,21E-04 2,02E-02 1,60E-02 0,92354 3,92E+05
4,38E-03 4,52E-04 3,57E-04 1,60E-02 1,66E-02 0,53526 3,49E+05
5,11E-03 4,99E-04 3,81E-04 1,26E-02 1,71E-02 0,75871 3,38E+05
5,84E-03 5,37E-04 4,06E-04 1,01E-02 1,77E-02 0,93663 3,31E+05
6,57E-03 5,55E-04 4,28E-04 8,39E-03 1,81E-02 0,93425 3,29E+05
7,30E-03 5,73E-04 4,41E-04 8,21E-03 1,75E-02 0,93305 3,37E+05
8,03E-03 5,91E-04 4,55E-04 9,55E-03 1,70E-02 0,93317 3,49E+05
8,76E-03 6,01E-04 4,68E-04 1,19E-02 1,65E-02 0,80453 3,74E+05
9,49E-03 6,04E-04 4,83E-04 1,51E-02 1,89E-02 0,87604 4,32E+05
1,02E-02 6,07E-04 4,98E-04 1,92E-02 2,49E-02 1,2568 4,98E+05
1,10E-02 6,10E-04 5,14E-04 2,39E-02 2,77E-02 1,6414 6,30E+05
1,17E-02 6,23E-04 5,35E-04 2,39E-02 2,18E-02 1,71E+05 9,61E+05
1,24E-02 6,41E-04 5,55E-04 2,13E-02 1,64E-02 4,32E+05 1,32E+06
1,31E-02 6,58E-04 5,69E-04 1,88E-02 1,12E-02 6,92E+05 1,32E+06
1,39E-02 6,76E-04 5,69E-04 1,63E-02 5,56E-03 9,53E+05 1,20E+06
1,46E-02 6,79E-04 5,69E-04 1,88E-04 9,63E-05 2,34E+06 1,91E+06

Figure 8: Displacement values comparison along the Path yielded
by the two approaches; "aniso" - our approach developed in the
paper, "fibres" - the approach with the complex geometry

5 Conclusion
The main contribution of the investigation described in
the paper is the derivation of the anisotropic material ten-
sor within the approach named "aniso". It represents the
complex geometry and involves the material properties of
all components, as well. The number of 21 material char-

Figure 9: Stress values comparison along the Path yielded by the
two approaches; "aniso" - our approach developed in the paper,
"fibres" - the approach with the complex geometry

acteristics needed in the complex geometry model called
"fibres" decreased to 6 in "aniso". The anisotropic tensor
built up incomes afterwards to the finite element model
that computes the mechanical response of the interver-
tebral disc to the mechanical load. The presented results
reveal the feasibility of the approach developed. Within
the computation both approaches are compared: "Aniso"
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Figure 10: Strain values comparison along the Path yielded by the
two approaches; "aniso" - our approach developed in the paper,
"fibres" - the approach with the complex geometry

where the developed material tensor of anisotropy is used
(6 physical constants), and "fibres" with the complex ge-
ometry of the annulus fibrosis used, with individual fibres
and 21 their particular material properties given. As the re-
sults of both computations match very well, it is apparent
that our approach is feasible and it facilitates the computa-
tion significantly. The approach is applicable to a uniform
tension load as well (e.g. load during sport or rehabilita-
tion exercises).

The futureworkwill be focused on the combined load,
as an eccentric loading and torsion. Moreover, as the nu-
cleus pulposus physical properties change with the age of
its holder, it will be worth to involve time dependence into
the model.
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