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Abstract: In many circumstances the perfect fluid con-
servation equations can be directly integrated to give
a geometric-thermodynamic equation: typically that the
lapse N is the reciprocal of the enthalphy h, (N = 1/h).
This result is aesthetically appealing as it depends only
on the fluid conservation equations and does not depend
on specific field equations such as Einstein’s. Here the
form of the geometric-thermodynamic equation is derived
subject to spherical symmetry and also for the shift-free
ADM formalism. There at least three applications of the
geometric-thermodynamic equation, the most important
being to the notion of asymptotic flatness and hence to
spacetime exterior to a star. For asymptotic flatness one
wants h → 0 and N → 1 simultaneously, but this is in-
compatible with the geometric-thermodynamic equation.
Observational data and asymptotic flatness are discussed.
It is argued that a version of Mach’s principle does not al-
low asymptotic flatness.
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1 Introduction.

1.1 A Relation Between Fluids and
Geometry.

The perfect fluid stress can be covariantly differentiated
to give the perfect fluid conservation equations. In many
cases these differential equations can be directly inte-
grated to give a geometric-thermodynamic equation, which
typically equates the Eisenhart (1924) [1] Synge (1937)
[2] fluid index w to the reciprocal of the lapse N. The
Eisenhart-Synge index is essentially the fluids zero tem-
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perature enthalpy. In section 2 the index is calculated
for several equations of state. The α−equation of state is
a 2−parameter equation of state which describes poly-
tropes. The β−equation of state is a 1−parameter equation
of state obtained from the α−equation of state by assuming
the second law of thermodynamics for an adiabatic pro-
cess, Tooper (1965) [3], Zeldovich and Novikov (1971) [4]. It
gives the 𝛾−equation of state in all cases except for 𝛾 = 0
where the pressure free (p = 0) case is not recovered; but
rather µ = p ln( pK ). For equations of state see also Eligier
et al (1986) [5], and Ehlers [6]. The index is not defined in
the pressure free case, thus solutions such as the Tolman
(1934) [7]-Bondi (1947) [8] solution are not covered by de-
scription in terms of the fluid index.

1.2 Discussion of the preceddings role in
asymptotics

The main application of the geometric-thermodynamic
equation is to the description of spacetime exterior to a
star. It is shown in many cases that asymptotic flat so-
lutions do not exist. This is taken to imply that the no-
tion of asymptotic flatness as usually understood is physi-
cally simplistic. In the literature diagrams are constructed
which are supposed to represent the causal spacetime of
a collapsing star. These diagrams usually require that the
spacetime is asymptotically flat, but the inclusionof anon-
vacuum stress is often sufficient for this requirement no
longer to hold. An example of how these diagrams can be
qualitatively altered by infinitesimal matter is given by so-
lutions to the scalar-Einstein equations which often have
no event horizons, Roberts (1985) [9]. To the lowest approx-
imation the spacetime exterior to a star has no stress: the
star exists in a vacuum. In order to take account of themat-
ter that surrounds a star it is necessary to find an approx-
imate stress which has contributions from planets, dust
etc. . .There seems to be no systematic way of producing
a stress which approximates such diverse forms of matter.
When relativity is applied tomacroscopicmatter the stress
is usually taken to be a perfect fluid, so that this is taken
to be the form of the first order correction to the vacuum.
Specifically the stress is taken to be a spherically symmet-
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ric perfect fluid with 𝛾−equation of state and the result
generalized where possible. The nature of the surface of
the star is left open as boundary conditions to interior so-
lutions are not discussed. The assumed equations of state
are essentially of one variable so that the pressure p does
not depend on the entropy s, i.e. p = p(µ) not p = p(µ, s)
or in other words they are isentropic. Stars radiate and the
radiation possess entropy whether there are equations of
state that can describe this, and if so whether they are sus-
ceptible to a similar analysis as to that given here is left
open: however itwould beunusual for at the simplest level
there to be asymptotically flat spacetimes, at the next level
of complexity for there to be none, and at the full level of
complexity for asymptotically flat spacetime to reappear.

1.3 Asymptotic Flatness.

It will be shown that many spacetimes with a perfect
fluid stress do not have asymptotically flat solutions.
Throughout it is assumed that the fluid permeates the
whole spacetime and that the spacetime is of infinite ex-
tent. Also throughout it is assumed that a simple limit-
ing process is appropriate: specifically as the luminosity
radial coordinate tends to infinity the spacetime becomes
Minkowskian. This does not always happen, two examples
are: Krasiński’s (1983) [10] analysis of the Stephani uni-
verse where r = ∞ labels a second center of symmetry,
and type B Bekenstein conformal scalar extensions of or-
dinary scalar field solutions, Agnese and LaCamera (1985)
[11], andRoberts (1996) [12],whichhavebizarre asymptotic
properties.More rigorous definitionsof asymptotic flatness
are give in Ludwig (1975) [13] and Reiris (2014) [14]. The re-
sult follows from the conservation equations so that it is
explicitly independent of the gravitational field equations
used. The conservation equations use a Christoffel sym-
bol or a generalization of this. The connection depends
on the metric which in turn can be thought of as a solu-
tion to gravitational field equations. In this implicit sense
the result can be thought of as depending on field equa-
tions. It might not hold if there are other fields coupled to
thefluid. Similarly asymptotically flat solutions are rare for
theories with quadratic Lagrangians, Buchdahl (1973) [15].
The absence of asymptotically flat solutions might have
application to the "missing mass" problem, see Roberts
(1991,2004,2011) [16, 18, 19] and Capazziello and De Lau-
rentis (2012) [17]. InBradley et al (1999) [20] it is shown that
the Wahlquist perfect fluid spacetime cannot be smoothly
joined to an exterior asymptotically flat vacuum region.
Boundary conditions for isolated horizons are described
in Ashtekar et al (1999) [21]. Models of stars in general rela-

tivity have been discussed byHerrera et al (1984) [22], Ster-
gioulas (1998) [23], and Nilsson and Uggla (2000) [24].

1.4 Sectional Contents.

Section 2 introduces the stress, conservation equations,
and the relationship between the enthalpy h and the
Eisenhart-Synge fluid index ω. In section 3 it is shown that
there are no asymptotically flat static fluid spheres unless
the fluid index ω → 1 at infinity, and using Einstein’s
field equations there are no asymptotically flat static fluid
sphereswith 𝛾−equation of state. In the non-static case for
𝛾−equation of state there are no asymptotically flat solu-
tions provided that 𝛾 ≠ 0, 1 and certain conditions hold
on the metric. For both static and non-static cases there
might be asymptotically flat solutions for α−polytropes.
In section 4 it is shown for static spacetimes admitting
non-rotating vector Uα = (N, 0) and having 𝛾−equation
of state that the lapse N is inversely proportional to the
fluid index N = 1/ω. For the non-static case, subject to
Ṅ = 0 and 𝛾(ln(

√︀
g(3))),i = 0, the equation relating the

lapse to the fluid index is ω = N−1g(3)
1
2 (1−𝛾) = µ

𝛾−1
𝛾 . These

results can be used to show that there are no asymptoti-
cally flat fluid filling spacetimes admitting the vector Ua =
(N, 0) with 𝛾−equation of state, again also subject to cer-
tain conditions on the metric. The introduction of the vec-
tor Ua = (N, 0) assumes that the fluid is non-rotating and
that the spacetime admits a global time coordinate, un-
like the vacuum Einstein equations, see for example Can-
tor et al (1976) [25], and Witt (1986) [26]. In section 5 a
case against asymptotic flatness is presented. Outer solar
system observations of orbital irregularities are discussed.
Non-asymptoticness on length scales greater than the so-
lar system, such as galaxies, is mentioned. The time-like
geodesics for an arbitrary Newtonian potential are calcu-
lated. Modeling hypothetical galactic halos of “dark mat-
ter”with spherically symmetric fluid solutions so as to pro-
duce constant galactic rotation curves is attempted. The
the rate of decay of various fields are discussed. It is argued
that most perfect fluid spheres and some conformal scalar
spheres rate of decay is in fact an increase prohibiting
asymptotic flatness. There is the possibility of experimen-
tally testing gravitational theory by measuring the devia-
tion of the Yukawa potential fromwhat would be expected
in the absence of gravitation; how this might be done is
briefly discussed, the possibility of an actual test seems re-
mote. Various onionmodels of spacetime surrounding the
Sun are discussed. It is argued that non-asymptoticness
implies that a system cannot be gravitationally isolated
and that this suggests a new formulation of Mach’s princi-
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ple: there are no flat regions of physical spacetime.
The philosophy of what an “isolated system” entails is
briefly discussed. In section 6 the Tolman-Ehrefest (1930)
[27] relation is derived. Section 7 speculates on the rele-
vance of the geometric-thermodynamic relation to cosmic
censorship.

2 The Enthalpy and the
Eisenhart-Synge fluid Index.

2.1 Perferct Fluids.

The stress of a perfect fluid is given by

Tαβ = (µ + p) UαUβ + p gαβ = nh UαUβ + p gαβ , (1)

UαUα. = −1,

where µ is the fluid density, p is the pressure, n is the par-
ticle number, h is the enthalpy, and p + µ = nh. The unit
timelike vector Ua defines the geometric objects

hαβ = gαβ + UαUβ , U̇α = Uα;βUβ. , (2)

θ = Uα.;α , Kαβ = Uχ;δh χ
α.h δ

β. ,

ωαβ = h χ
α.h δ

β.U[χ;δ], σαβ = U(α;β) + U̇(αUβ) −
1
3 θhαβ ,

called the projection tensor, the acceleration, the expan-
sion, the second fundamental form, the rotation, and the
shear, see for example page 83 of Hawking and Ellis [28].
The projection obeys Uαhα.β = 0 and U̇αhα.β = U̇β, also the
acceleration obeys Uα. U̇α = 0. Formally the second fun-
damental form and its associated hypersurface only exist
when the rotation vanishes. Transvecting the stress con-
servation equation T β

α.;β withU
α
. and hα.𝛾 gives the first con-

servation equation

−Uα. Tβα.;β = µαU
α
. + (µ + p)Uα.;α = µ̇ + (µ + p)θ = 0 (3)

and the second conservation equation

hα.𝛾Tβα.;β = (µ + p)U̇α + h β
α.pβ = 0, (4)

respectively. These equations equate the derivatives of the
vector field to the pressure and density. From a techni-
cal point of view, here we are investigating when these
equations can be integrated. It turns out that assuming a
specific form of vector field - say hypersurface orthogonal
Uα = λϕ,α is not directly of much use, but rather assump-
tions about the form of the metric have to be made. The
first law of thermodynamics can be taken in the infinitesi-
mal form

dp = n dh + nT ds, (5)

where T is the temperature and s is the entropy. The
Eisenhart[1]-Synge[2] fluid index is defined by

ln(ω) ≡
∫︁

dp
(µ + p)

(6)

after setting T = 0 in 5 and integrating it is apparent that
up to a constant factor at zero temperature ω = h. The in-
dex is also discussed on page 84 of Hawking and Ellis [28].

2.2 Polytropes

The α−polytrope has equation of state

p = αµβ (7)

and has
dp = αβµβ−1dµ, (8)

or
∂p
∂α = ∂p∂β = 0, (9)

because of this the pressure is not an explicit function of
two variables α and β, but only one. The index and particle
number corresponding to 7 are

ω = (1 + αµβ−1)
β
β−1 , n = µ(1 + αµβ−1)

1
1−β , (10)

The β−polytrope [4] has equation of state

p = Kn𝛾 , (11)

where K is a constant and V = 1/n is the volume occupied
by one bayron. For an adiabatic process (no exchange of
heat) the second law of thermodynamics is

p = − ∂E∂V , (12)

where E is the total energy density per unit mass E = µ/n.
Then 12 becomes

p = n2 ∂µ/n∂n , (13)

11 and 13 give

pn−2 = Kµ𝛾−2o = ∂µ/n∂n , (14)

which in the case 𝛾 ≠ 1 can be integrated to give

µ = K
𝛾 − 1n

𝛾 , (15)

where the constant of integration is taken to be zero. Using
11, 15 becomes the equation of state of 𝛾−polytrope

p = (𝛾 − 1)µ, 𝛾 ≠ 1, (16)
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which has index and particle number

ω = µ
𝛾−1
𝛾 , n = 𝛾µ

1
𝛾 , 𝛾 ≠ 0, 1, (17)

In the pressure free case (𝛾 = 1 in 16) the index 6 is not de-
fined, anoption is to replace pwith (𝛾−1)µ in thedefinition
6 and then take 𝛾 = 1 to obtain ln(ω) = 0 or ω = 1, then
the condition nω = µ + p gives n = µ. For the 𝛾−equation
of state the first 3 and second 4 conservation laws can be
written in terms of µ, where µ = ω

𝛾
𝛾−1 , and are

µ̇ + 𝛾µθ = 0, (18)

and
𝛾µU̇α + (𝛾 − 1)h β

α.µβ = 0, (19)

respectively. The 𝛾−equation of state has been derived un-
der the assumption that 𝛾 ≠ 1. Perhaps the correct 𝛾 = 1
equation of state for a β−polytrope is found by putting
𝛾 = 1 in 14 and integrating to give

µ = p ln
(︁ p
K

)︁
; (20)

however the speed of sound

vs ≡
∂p
∂µ =

(︁
ln

(︁ p
K

)︁
+ 1

)︁−1
, (21)

is 1 or the speed of light when p/K = 1, it is less than
the speed of light for p/K > 1, and it diverges as p/K →
exp(−1). That the speed of sound can take these values
suggests that this equation of state is essentially non-
relativistic. Somewriters refer to 20 as dust, others call the
pressure free case p = 0 dust. 20 has index and particle
number

ω =
(︁
1 + ln( pK )

)︁ 1
K , n = p

(︁
1 + ln( pK )

)︁ K−1
K . (22)

3 Asymptotically Flat Fluid Spheres

3.1 Spherical Symmetry.

The line element of a spherically symmetric spacetime can
be put in the form

ds2 = −C dt2 + A dr2 + B dΣ2. (23)

Choosing the timelike vector field

Ua = (
√
C, 0, 0, 0), (24)

the rotation vanishes and the projection tensor, accelera-
tion, expansion, shear, and second fundamental form are

h r
r. = h θ

θ. = h
ϕ
ϕ. = 1, (25)

U̇α = (0, C
′

2C , 0, 0),

θ = − 1√
C
( Ȧ2A + ḂB ),

σrr = −
2A
B σθθ = −

2A
Bsin2θ σϕϕ = 1

3
1√
C
(−Ȧ + AB Ḃ),

Krr = −
1
2

1√
C
Ȧ,

Kθθ =
1
sinθ Kϕϕ = −12

1√
C
Ḃ,

where the overdot denotes absolute derivativewith respect
to τ as in U̇α = DUα

dτ , but otherwise the overdot denote par-
tial derivative with respect to time. Noting that dµ/dτ =
dt/dτ µ,t = µ̇/

√
C, the first conservation equation 3 be-

comes
µ̇ − (µ + p)( Ȧ2A + ḂB ) = 0, (26)

and the second conservation equation 4 becomes

p′ + (µ + p) C
′

2C = 0, (27)

only the r component is non-vanishing in the second equa-
tion.

3.2 The Static Case.

In the static case the first conservation equation 26 van-
ishes identically and the second conservation equation 27
integrates to give

ω = 1√
C
, (28)

the constant of integration is taken to be independent of
θ and ϕ and is absorbed into C, for example by redefin-
ing t. For the line element 23 to be asymptotically flat it
is necessary that as r → ∞, the line element 23 becomes
Minkowski spacetime in other words as r increases C → 1,
A → 1 and B → r2. Now from 28, C → 1 implies that
ω → 1. Thus any static spherical fluid sphere with a well
defined index not equal to 0 or 1 cannot be asymptotically
flat. To see this result in particular cases first consider the
𝛾−equation of state. From 17 and 28

µ = C
𝛾

2(1−𝛾) , (29)

and as C → 1, µ tends to a constant and thus the space-
time cannot be asymptotically flat; also the spacetime can-
not be asymptotically DeSitter as this would necessitate µ
tending to a constant time r2. In the pressure free case, the
index is not defined and there are the asymptotically flat
solutions given by Tolman [7] and Bondi [8]. Next consider
the β−equation of state, from 22 and 28

C =
(︁
1 + ln( pK )

)︁− 2
K , (30)
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now asymptotically as C → 1, p → K; however a constant
value of p asymptotically is not consistent with asymp-
totic flatness, therefore there are no asymptotically flat so-
lutions. Finally consider the α−equation of state, from 10
and 28

C = (1 + αµβ−1)
2β
1−β , (31)

in the case µ → 0, C → 1 and there might be asymptot-
ically flat α−polytropic spheres. The same results are ob-
tained using the more general vector

Uα = (a
√
C,

√︀
(a2 − 1)A, 0, 0), (32)

where a is a constant.

3.3 The Non-static Case.

In thenon-static case it is necessary to assumean equation
of state in order to calculate a geometric-thermodynamic
relation. The 𝛾−equation of state is assumed. Then either
from 18 and 19 and 25, or from 16 and 26 and 27 the first
and second conservation laws are

µ̇ − 𝛾µ
(︂
Ȧ
2A + ḂB

)︂
= 0, (33)

and
(𝛾 − 1)µ′ + 𝛾µ C

′

2C = 0, (34)

respectively. The equation

dµ = µ̇dt + µ′dr (35)

= −𝛾µ
(︂
Ȧ
2A + ḂB

)︂
dt + 𝛾µ

𝛾 − 1
C′
2C dr,

can be integrated when

Ċ = 0, (36)

and
(AB2)′ = 0, (37)

to give

µ = ω
𝛾

𝛾−1 = A+ 𝛾
2 B+𝛾C

𝛾
2(1−𝛾) , 𝛾 ≠ 0, 1, (38)

where the constant of integration have been taken to be
independent of θ and ϕ and is absorbed into the line el-
ement. The assumption (AB2)′ = 0 is coordinate depen-
dent and holds rarely as for example (AB2)′ ≈ 4r3 for
Minkowski spacetime in spherical coordinates whereas
(AB2)′ = 0 for Minkowski spacetime in rectilinear space-
time. Taking the limits A, C → 1, B → r2, for 𝛾 > 0,
µ → a constant, and for 𝛾 < 0, µ diverges; thus there are
no asymptotically flat solutions. The α−equation of state
7 cannot be investigated without further information. Dis-
cussion of non-existence of time dependent fluid spheres
can also be found in Mansouri (1977) [30].

4 The Geometric-Thermodynamic
equation in the ADM formalism.

4.1 Vanishing Shift ADM Formalism.

In the ADM (-1,+3) [31] formalism with vanishing shift the
metric is given by

gαβ = (−N2, gij), gαβ = (−N−2, gij), (39)√︁
−g(4) = N

√︁
g(3).

where g(3) is the determinant of the 3−dimensionalmetric.
The reason the shift is taken to vanish will become appar-
ent later. The timelike unit vector field used here

Uα = (N, 0), Uα = (− 1N , 0), (40)

Ui;t = −N,i , Ui;j = −
1
2N g

(3)
ij,t ,

Ut;t = Ut;i = 0,

there are other choices such asUα = (−N, 0), and alsoUα =
(aN, bNi) for which the unit size condition UαUα. = −1 im-
plies gijNiNj = a2−1

b2 . For 40 the rotation vanishes and the
remaining geometric objects 2 are

hij = gij , U̇α = (0, NiN ), θ = − 1N

(︁
ln(g(3))

)︁
,t
, (41)

σij = −g(3)ij,t + g
(3)
ij

(︁
ln(g(3))

)︁
,t
,

Kij = Kji = −gij,t .

The first conservation equation 3 becomes

µ,t − (µ + p)
(︂
ln

√︁
g(3)

)︂
,t
= 0, (42)

and the second conservation equation 4 becomes

pi + (µ + p)
N,i
N = 0, (43)

the t component of the second conservation equation 43
vanishes identically. If the shift is included in the above
vector 40 one finds

2N2U0
.i = 2NN,i + (NkNk),i + N j(2Nj,i − Nkg{ik,j}), (44)

and further calculation proves intractable.

4.2 Static Case.

In the static case the first conservation equation vanishes
identically and the second conservation equation inte-
grates immediately and independently of the equation of
state to give

ω = 1
N , (45)
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where the constant of integration has been absorbed into
N.

4.3 Non-static Case.

In the non-static case assume the 𝛾−equation of state has
to be assumed to accommodate the first conservation law
3. With 𝛾−equation of state 16 the conservation equations
42 and 43 integrate to give

ω = 1
N g

(3) 12 (𝛾−1), 𝛾 ≠ 0, 1, (46)

where in place of 36 and 37

Ṅ = 0, (47)

and
𝛾

(︂
ln

(︂√︁
g(3)

)︂)︂
,i
= 0, (48)

respectively. Constants of integration have been absorbed
into the line element. Substituting the spherically symmet-
ric values of the previous section into 46 gives 38 times
a function of sin θ which has been taken to be asorbable
there. The equations 45 and 46 depend on the choice of
velocity vector 40, for example if a geodesic velocity vec-
tor is chosen then the acceleration vanishes and 45 and
46 do not hold. The conditions 47 and 48 do not appear
to have an invariant formulation. There are three things to
note. The first is that these derivatives do not occur in the
covariant derivatives of the vector field 40 and hence do
not occur in the geometric objects 41. The second is that 36
and 48 are satisfied if

{ttt} = 0, (49)

and
{ijk} = 0, (50)

respectively, as they only occur in these Christoffel sym-
bols. The third is that 47 and 48 might solely be a gauge
condition; but 47 puts on one constraint and 48 puts on
three constraints totaling four, the usual number of differ-
ential gauge constraints. The Plebanski-Ryten (1961) [29]
gauge condition is

[(−g)wgab.. ],b = 0, (51)

for w = 1
2 this is the harmonic gauge condition. For a = t,

51 is
− 1
N2 (ln(g

(3)w)),t +
Ṅ
N3 = 0. (52)

For a = xi, 51 is

−N,i
N + (ln(g(3)w)gij..),j = 0. (53)

For w ≠ 0, 47 and 48 cannot be recovered, except for
Minkowski spacetime in rectilinear coordinates. Thus the
conditions 47 and 48 on the metric appear not to be an
example of Plebanski-Ryten gauge conditions. It can be
asked, is there a non-static geometric-thermodynamic re-
lation which involves familiar gauge conditions instead of
metric constraints such as 47 and 48. Inspection of 18 and
19 with arbitrary vector field instead of 40 does not imme-
diately give a choice of vector field for which application
of the Plebanski-Ryten gauge 51 simplifies matters enough
for the problem to be tractable.

4.4 𝛾-equation of state and the ADM.

For the 𝛾−equation of state 46 becomes

µ = N
𝛾

1−𝛾 , 𝛾 ≠ 0, 1, (54)

for the spacetime to be asymptotically flat the density µ
must vanishasymptotically implying that the lapseNmust
vanish, contradicting the assumption that the spacetime is
asymptotically flat. For the 𝛾−equation of state 16, 45 be-
comes

µ = N
𝛾

1−𝛾 g(3)𝛾/2, 𝛾 ≠ 0, 1, (55)

asymptotically µ → r2 and the spacetime cannot be
asymptotically flat. For α−polytropes the static case 45
gives

N =
(︁
1 + αµβ−1

)︁ β
1−β , (56)

and in this case it is possible for N → 1 and µ → 0 simul-
taneously as r → ∞ Thus for spacetimes where the rota-
tion free vector 40 can be introduced, and subject to the
caveats mentioned above for the non-static case: i)there
are no asymptotically flat 𝛾−polytropes except possibly for
𝛾 = 0 or 1, ii)there are no asymptotically flat fluid space-
times unless the fluid index tends to a finite non-vanishing
constant.

5 Against Asymptotic Flatness.

5.1 Length Scales.

On length scales from the outer solar system to cosmol-
ogy there are observations indicating that asymptotic flat-
ness of the systems under consideration are not correct. It
is known that the dynamics of the outer solar system have
unexplained irregularities. For example from the figures of
Seidelmann et al (1980) [32] it appears that the irregularity
in Pluto’s orbit is that the RA increases by about 2 arcsec
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more than expected in 50 years, similarly the declination
decreases by about 1 arcsec in 50 years. The irregularities
are not neatly expressible by a single quantity, as for ex-
ample the orbit of Mercury was prior to general relativity;
but roughly this means that the orbit is boosted by about 2
arcsec in 50 years. This makes the construction of theories
to explain the irregularities difficult. In Roberts (1987) [33]
the effect of a non-zero cosmological constant was inves-
tigated in order to explain the irregularities of Pluto’s or-
bit and it was found that the cosmological constant would
have to be about 12 orders of magnitude bigger than the
upper bound Zel’dovich (1968) [37] finds from cosmologi-
cal considerations. Axenides et al (2000) [34] also discuss
dynamical effects of the cosmological constant.

Scheffer (2001) [35] and Anderson et al (2001) discuss
dynamical irregularities in the paths of spacecraft. The or-
bit of comets, Marsden (1985) [38], Rickman (1988) [39],
and Sitarski (1994) [40] have unexplained irregularities,
for example at least 6 comets have unexplained forces act-
ing toward the elliptic. Qualitatively this is exactly what
would be expected from Kerr geodesics [41] page 363,

In summary then, the bound and the marginally bound orbits
must necessarily cross the equatorial plane and oscillate about
it.

but qualitatively the effect is many orders of magnitude
out: on solar system length scales the Kerr modification
of Schwarzschild geometry is intrinsically short ranged.
These solar system orbital problems might originate from
the oblateness of the sun, Landgraf (1992) [42]. There are
theories which have gravitational potential with an expo-
nential term and mass scale mp(mH/mP)n, where mH is
a typical hadron mass, mP is the Planck mass, and n =
0, 1, and sometimes 2. Satellite and geophysical data for
n = 2 theories show that they are not viable unless mH >
103GeV, Gibbons and Whiting (1981) [43]. Other searches
for an adjusted potential have been undertaken by Jarvis
(1990) [44].

5.2 The Exterior Schwarzschild Solution as a
Model.

The exterior Schwarzschild solution is a reasonablemodel
of the solar system outside the sun. A fluid solution can
be argued to be a better approximation to the matter dis-
tribution as it takes some account of interplanetary space
not being a vacuum. Any exterior fluid spacetime would
have different geodesics than the vacuum Schwarzschild
solution, consequently the orbits of the planets would be

different from that suggested by the Schwarzschild solu-
tion: how to calculate these geodesics for spherically sym-
metric spacetimes is shown below. The magnitude of the
upper limit of the effective cosmological constant is about
ρΛ = 10−16g. cm.−3, that this is too small to explain Pluto’s
irregular orbitwas shown inRoberts (1987) [33]. Thus to ex-
plain Pluto’s irregular orbit using a fluid the critical den-
sity must be larger than ρΛ. ρΛ is much larger than the
mean density of interplanetary space which is of the order
of 10−29g. cm.−3 (or 10−5 protons cm.−3). The density of in-
terplanetary matter is insignificant compared to the den-
sity contribution from the planets, for example for Jupiter
ρJupiter = 3

4πMJupiterr−3Jupiter ≈ 2.10−4g. cm.−3, where the ra-
dius rJupiter is the semi-major axis of the planets orbit. This
density is above ρΛ and might be above ρC. Taking a fluid
to model the planets is an unusual step, but the alterna-
tive of seeking an n−body solution to the field equations is
not viable because even the 2−body solution is not known.
Looking at constant galactic rotation curves one might try
an approximation. As noted in the last paragraph of sec-
tion 5 of [16]:

For constant circular velocities over a large distance it is neces-
sary to have an approximately logarithmic potential. Thus the
metric will have an approximately logarithmic term. The Rie-
mann tensor is constructed from the second derivatives of the
metric and the square of the first derivatives of the metric. For a
logarithmic potential these will both be of the order r−2 and thus
a linear analysis might not be appropriate.

This suggests that only an approach using an exact so-
lution will work. One can assume that the system under
consideration can bemodelled by a static spherically sym-
metric spacetime with line element 23. Constructing the
geodesics using Chandrasekhar’s (1983) [41] method, the
geodesic Lagrangian is given by

2L = −Cṫ2 + Aṙ2 + Bθ̇2 + B sin2 θϕ̇2. (57)

The momenta are given by

pa =
∂L
∂ẋa

(58)

and are

pt = −Cṫ, pr = Aṙ, pθ = Bθ̇, pϕ = B sin2 θϕ̇. (59)

Euler’s equations are

ṗa = ∂aL (60)

For static spacetimes with ∂tA = ∂tB = ∂tC = 0, giving
∂L
∂t = 0 so that the time component of the Euler equation
60 gives dpt

dτ = 0, integrating

−pt = C
dt
dτ = E a constant along each geodesic. (61)
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Similarly by spherical symmetry one can take ∂ϕA =
∂ϕB = ∂ϕC = 0, giving ∂L

∂ϕ = 0 so that the ϕ component of
the Euler equation 60 gives dpϕ

dτ = 0, integrating

pϕ = B sin2 θ dϕdτ = a constant. (62)

For the θ component

∂L
∂θ = B sin θ cos θ dϕdτ , (63)

the Euler equation 60 is

d
dτ pθ =

d
dτ Bθ̇ =

∂L
∂θ = B sin θ cos θ dϕdτ , (64)

choosing to assign the value π/2 to θ when θ̇ is zero, then
θ̈ will also be zero; and θ will remain constant at the as-
signed value. The geodesic is described in an invariant
plane which can be taken to be θ = π/2. Equation 62 now
gives

pϕ = Bϕ̇ = L a constant along each geodesic (65)

where L is the angularmomentum about an axis normal to
the invariant plane. Substituting into the Lagrangian

−E
2

C + Aṙ2 + L
2

B = 2L = −1 or 0, (66)

where 2L = −1 or 0 depending on whether time-like or
null geodesics are being considered. Rearranging

Aṙ2 = −L
2

B + E
2

C + 2L. (67)

Taking r to be a function of ϕ instead of τ and using 65
gives (︂

dr
dϕ

)︂2
= −BA + B2

AL2

(︂
E2
C + 2L

)︂
, (68)

now letting
u ≡ 1

r (69)

as in the usual Newtonian analysis(︂
du
dϕ

)︂2
= −u

4B
A + u

4B2
AL2

(︂
E2
C + 2L

)︂
, (70)

seeking a thermodynamic interpretation one can substi-
tute the enthalpy h for the lapse C = h2, but A and B are
still arbitrary so that this is not pursued. Inserting the Köt-
tler (Schwarzschild solution with cosmological constant)
values of the metric

B = r2, C = 1
A = 1 − 2m

r + Λ3 R
2, (71)

and taking 2L = −1 for time-like geodesics equation 70
becomes(︂

du
dϕ

)︂2
= −u2 +2mu3 + 2mu

L2 − 1 − E
2

L2 − Λ
3u2L2 −

Λ
3 (72)

which is equation (4) of Reference [33], the last term sug-
gesting the possibility of constant rotation curves. One can
if investigate if there is any adjustment of the Newtonian
potential which will give constant geodesics, as required
for galactic rotation. Taking (c.f. Will (1993)[45] eq.4.6)

gtt ≈ −1 + 2U, (73)

where U is the Newtonian gravitational potential. Now in
assume additionally the particular form for a spherically
symmetric spacetime

B = r2, A = 1
C ≈

1
1 − 2U ≈ 1 + 2U (74)

inserting in 70 and expanding for small U everywhere(︂
du
dϕ

)︂2
= −1 − E

2

L2 − u2(1 + 2U) + 2U
L2 (75)

In particular one might expect that constant rotation is
given by the middle term so that

−u2(1 + 2U) = α a constant, (76)

rearranging for U we find

U = −12 −
α2
2 r

2 (77)

this suggests that the correct addition to U to produce con-
stant curves is a function in r2, this is given by the addi-
tion of a cosmological constant and such a spacetime is
given by Köttler’s solution 71. One might ask what is the
next simplest space-time after onwith a cosmological con-
stant which has an r2 increasing potential and perhaps
this is the interior Schwarzschild solution. This can be
thought of as modelling the halo of a galaxy with the inte-
rior Schwarzschild solution and calculating the geodesics
to see if they give constant motion. Newtonian modelling
has been done by Binney and Tremaine (1987) [46]. For the
interior Schwarzschild solution Adler, Bazin, and Schiffer,
(1975) [48] equation number 14.47 one has

A = 1
1 − r2

R̂2
, B = r2, (78)

C =

⎡⎣3
2

√︃
1 −

r20
R̂2
− 1
2

√︃
1 − r

2

R̂2

⎤⎦2

,

for r ≤ r0, R̂2 = 3c2
8πκρ ,

inserting into 70 one gets(︂
du
dϕ

)︂2
= u2 − 1

R̂2
(79)
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+ 1
L2

⎡⎢⎣−1 + 1
u2R̂2

+

⎛⎝ 2E

3
√︁

u2 R̂2−u2r20
u2 R̂2−1

− 1

⎞⎠2
⎤⎥⎦ .

The 1
R̂2

= 8πκρ
3c2 term can be thought of as giving constant ro-

tation curves proportional to thehalo density vc ∝ ρ.What
one expects from the Tully-Fisher (1977) [47] relationship is
that v4c ∝ L ∝ M.

5.3 Rates of Decay.

In general one can ask what exact solutions to gravita-
tional field equations givewhat rate of decay. This problem
could also be studied numerically or in terms of Weyl and
Ricci scalars Ludwidg (1975) [13]. The rate of decay of scalar
fields has been discussed in the last paragraph of the in-
troduction of [12]. Including other fields one roughly gets
the rates of decay: type B conformal scalars > perfect fluids
> the gravitational field > type O scalars > electromagnetic
fields > typeA conformal scalars > coupled and interacting
fields and fluids. The type B conformal scalars and perfect
fluids are not usually asymptotically flat. Of course, for ex-
ample, one would expect there to be conformal scalar so-
lutions which are neither type A or B and these have un-
predictable rates of decay, so this ordering is not absolute.

5.4 The Spacetime of Elementary Particles.

Rates of decay are not only important on long distance
scales. As pointed out in the second paragraph of the in-
troduction of [12] the exact solution of the spherically sym-
metric spacetime of the Klein-Gordon-Einstein equations
is not known, except in the massless case where the static
spherically symmetric field equations Rab = 2ϕaϕb have
the solution

ds2 = exp
(︂
−2mr

)︂
dt2 (80)

− η
4

r4 exp
(︂
2m
r

)︂
cosech4

(︁η
r

)︁
dr2

− η2 exp
(︂
2m
r

)︂
cosech2

(︁η
r

)︁
d2Σ, ϕ = σ/r

where η2 = m2 + σ2 and m is interpreted as the mass
and σ the scalar charge, see for example, Roberts (1985)
[9]. Only the massless exact solution is known so that the
exact modification of the shape of the Yukawa potential
for the meson is not known: it proves difficult to approx-
imate. The spacetime of mesons has been discussed by
Fisher (1948) [49], Ross (1972) [50], Nagy (1979) [51], and

Ho (1995) [52]. TheYukawapotentialwas invented, Yukawa
(1935) [53], Landau (1990) [54], to account for the π-meson
as the exchange quantum in the force between two nu-
cleons; this is by analogy with electromagnetism where
it is the exchange of a photon that is the origin of the
electric and magnetic forces between electrons. The ex-
act form of the potential is V = −(1/r) exp(−r/mπ) times
a function which involves the relative spin orientations.
The Yukawa potential is only an approximation as Quan-
tumChromodynamics is really the theory of strong interac-
tion; the π-meson or pion successfully describes the resid-
ual force, and is thought to work up to momentum trans-
fer of about 1 GeV/c. In strong interaction there is also ev-
idence of a linear confining potential. The Yukawa poten-
tial for mesons can be measured using form factors, sev-
eral mesons are needed, see for example Gross, Van Or-
den and Holinde (1992) [55]. The hypothetical Higgs parti-
cle also has a Yukawa potential. In order to measure the
Higg’s Yukawa potential one needs to measure the coeffi-
cients of the H3 and H4 terms in

V = MH2/2H2 +
(︀
MH2/2v

)︀
H3 +

(︀
MH2/2v2

)︀
H4, (81)

and verify that the coefficients are as expected. At present
there are no measurements of these terms. To measure
them one would need to observe multi-Higgs production:
this is further discussed in Djouadi et al (1999) [56]. In
the standard model the Higgs coupling enters by a quartic
coupling: however in supersymmetric theories the quar-
tic couplings are connected to gauge couplings which are
known, so that in supersymmetricmodels it is easier to cal-
culate the coefficients.

5.5 What Happens on Long Distance Scales.

If asymptotic flatness is incorrect then what does happen
on long scales? Non-asymptotic flatness introduces the
problem of what happens as the potential goes to infin-
ity - does it increase for ever? What could happen is that
the one body problem becomes inappropriate: one needs
a solution which takes into account two or more bodies.
In particular for the solar system if there is a growing term
in the potential one might take that it has stopped grow-
ing well before the next star. Torbett and Smoluchowski
(1984) [57] argue that there are bodies orbiting the Sun at
105 AU ≈ 5 × 10−3pc., which might be a maximum orbit-
ing distance. Puyoo and Jaffel (1998) [58] study the inter-
face between the heliopause and the interstellar medium,
this is at about 103 AU and they find a high interstellar
hydrogen density of 0.24 ± 0.05 g.cm.−3, a proton den-
sity of 0.043 ± 0.005 g.cm.−3, a helium density of (2.7 ±
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0.5)10−2 g.cm.−3, and so forth. One consequence of these
non-vanishing densities is that in gravitation, as in quan-
tum field theory, it becomes difficult to say what a vac-
uum is and whether it has energy, see Roberts (2000) [59].
One can ask what sort of metric describes spacetime at
various distances from the Sun, and it seems that some
sort of onion model is called for. The standard picture
is that the interior Schwarzschild solution is matched to
the exterior Schwarzschild solution as in Adler et al (1975)
§14.2., and then match the exterior Schwarzschild solu-
tion to a Friedman model with a specific equation of state
as in Stephani (1985) [60] §27.3. Perhaps there should be
more than three regions. The sun has a mean density of
ρSun = 1.409g.cm.−3 Allen (1962) [61]; however its den-
sity varies considerably depending on its distance from the
centre fromAllen (1962) [61] table onpage 163; there is a big
jump at about half its radius, which can be modelled by a
dense core, so perhaps two interior solutions are needed
to describe it. Dziembowski et al (1990) [62] and Basu et
al (2000) [63], use inversion techniques to show that the
sun has many layers with different speeds of sound and
densities. The solar system splits up into three regions: the
inner where the general relativistic corrections to Newto-
nian theory are needed, the middle where Newtonian the-
oryworks, and the outer where a term explaining the irreg-
ularity in Pluto’s orbit is needed. Next one needs a metric
to describe the effect of local stars, then of the galaxy, and
then of groups of galaxies. the Robertson-Walker cosmo-
logical region comes next, and after this perhaps a chaotic
region. One can ask if a particle, say at 1 parsec from the
Sun is not in a flat region what is it that causes the most
deviation from flatness. For simplicity assume that a New-
tonian potential will give correct ratios between the con-
tributions, so that the quantity ϕ/G = M/R is calculated
in units of the Sun’s mass over parsecs. A parsec from the
Sun is about as isolated as a particle in the nearby galaxy
could be expected to be. The deviation from flatness of the
metric is approximately given by equation 73 with U = ϕ.
The quantities in Allen (1962) [61] §132,133,135,136, for the
masses and distances associated with the local star sys-
tem (Gould belt), the galaxy, the local group of galaxies,
theUniverse are used.Working to the nearest order ofmag-
nitude, the local star system has diameter 1, 000 pc. and
mass 1×108 MSun, assuming the Sun is near the edge gives
the potential M/R ≈ 105 MSunpc.−1. The galaxy has diam-
eter 25 kpc. and mass 1.1 × 1011 MSun, but the distance
of the Sun from the centre is 8.2 ± 0.8 kpc., using this dis-
tance M/R ≈ 108 MSunpc.−1. The local group of galaxies
consists of 16 galaxies, suggesting an approximate mass
of 1012 MSun, whose centre is 0.4 Mpc. away givingM/R ≈
107 MSunpc.−1. Van den Berg (1999) [64] finds 35 local

group members and mass MLG = (2.3 ± 0.6) × 1012MSun;
and that the zero surface velocity, which separates the lo-
cal group from the field that is expanding with the Hub-
ble flow, has radius R0 = 1.18 ± 0.15 Mpc.. The Universe
has a characteristic length sale R = c/H ≈ 3, 000 Mpc.
and the mass of the observable Universe is 1054g., again
one can form a ratioM/R, but it has no direct meaning be-
cause of homogeneity, one finds M/R ≈ 1011. To compare
with the potential on the surface of the Earth note that the
Earth’s mean radius REarth ≈ 6 × 103Km. = 2 × 10−12pc.
and has mass MEarth ≈ 6 × 1027g. = 3 × 10−6MSun, giving
M/R ≈ 106 MSunpc.−1 for the contribution from the Earth’s
mass, M/R ≈ 105 MSunpc.−1 for the contribution from the
Sun’s mass. Collecting these results together gives the ra-
tios

106 : 105 : 1 : 105 : 108 : 107 : 1011 (82)

This suggests that either the Newtonian approximation is
not appropriate, that asymptotic flatness is not a physical
notion, or both. For the onion model it suggests that the
metric describing the effect of local stars, the galaxy, and
the local group of galaxies might not be needed because
of the Universe’s higher ratio. Another approach to what
sort of notions are useful in describing stellar systems is
as follows. A priori one would not wish to exclude the pos-
sibility that near the centre of the galaxy there are stellar
systems consisting of several stars, many planets, many
asteroids and comets, lots of dust, and which are close say
only a light year away fromother stellar systems.Dynamics
for such a stellar system perhaps could still be calculated
in some regions, but there are no notions of a one-body
system, vacuum field equations, or asymptotic flatness to
use in an explicit manner. It is possible to produce char-
acteristic length scales for the system under consideration
Roberts (2016) [65].

5.6 Mach’s Principle.

Mach’s principle can be formulated in many ways: Bar-
bour and Pfister (1995) [66] p.530 list 21, Bondi and Samuel
(1997) [67] list 10. Different formulations can lead to con-
tradictory conclusions: for example, Bondi and Samuel’s
(1997) [67]Mach3 andMach10 give rise to diametrically op-
posite predictions when applied to the Lense-Thiring ef-
fect. A Newtonian formulation has equations which can
be used to describe dynamics rather than recourse to dark
matter, Roberts (1985) [68]. Lack of asymptotic flatness
suggests that a system cannot be isolated. This is unlike
thermodynamics where isolated heat baths are ubiqui-
tous, and unlike electrostatics where the charge inside a
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charged cavity can be zero. So why should a Minkowski
cavity in a Robertson-Walker universe be excluded? Field
equations and junction conditions allow this to be done,
it has to be excluded by principle. The answer is that it is
different from electrostatics as gravitation is monopolar in
nature. Anydeparture fromhomogeneity in the exterior re-
gion to a charged cavity would mean a change in charge
which would quickly attract the opposite charge and can-
cel out: however in the gravitational case this does not
happen, a change in homogeneity exterior to a Minkowski
cavity (I think) would quickly change the spacetime from
being flat. The above suggests a new formulation ofMach’s
principle: thereareno flatregionsof physical space-
time.What happens for an initial value formulation of this
is unclear: presumably it means that a well-defined initial
surface does not develop into a surface part of which is
flat. The above statement ofMach’s principle is aparticular
case of the statement of Einstein (1953) [69], Ehlers (1995)
[70], and Bondi and Samuel (1997) [67] Mach9 there are
no absolute elements: a flat metric is an absolute ele-
ment.

5.7 Isolated Systems.

Another way of looking at asymptotic flatness is to note
that it implies that the solar system is isolated. Isolated
systems seem to be an ideal which is appealed to in order
tomake problems soluble. The necessity of addressing sol-
uble problems is discussed in Medewar (1982) [71]. A for-
mal approach to isolated systems is given in Ehlers (1980)
[72]. In practice an isolated system is only an approxima-
tion, there is always some interaction with the external
world and for the assumption of an isolated system towork
this must be negligible. The assumption that systems can
be isolated appears through out science, but there appears
to be no discussion of what this involves in texts in the
philosophy of science. Three examples of isolated systems
are now given. The first is photosynthesis: one can think
of each leaf on a tree as an isolated entity with various
chemical reactions happening independent of the exter-
nal world, but this is only an approximation as the leaf ex-
changes chemicals with the rest of the tree so perhaps the
tree should be thought of as the isolated system, further
one can think of the entire biosphere as an isolated entity
which converts 3×1021 Joules per year into biomass froma
total of 3×1024 Joules per year of solar energy falling on the
Earth, see for example Borisov (1979) §1.2.1 [73]. The sec-
ond is in thermodynamics and statistical mechanics, here
the isolability of systems is taken as a primitive undefined
concept, see for example Rosser (1982) [74] page 38. The

third is of experiments where a single electron is taken to
be isolated, Ekstrom and Wineland (1980) [75]: the single
electron is confined for weeks at a time in a “trap” formed
out of electric and magnetic fields.

6 The Tolman-Ehernfest Relation.

6.1 The Radiation Fluid.

For a radiation fluid 𝛾 = 4
3 , and by 17 the fluid index is

ω = (3p)
1
4 . (83)

The Stefan-Boltzman law is

p = a3T
4, (84)

where T is the temperature and a is the Stefan-Boltzmann
constant. Thus

ω = a
1
4 T . (85)

Assuming the spacetime is static and admits the rotation
free vector 40, equations 45 and 85 give

N = a−
1
4 T−1, (86)

thus showing that the lapse N is inversely proportional
to the temperature T. This is the Tolman-Ehrenfest (1930)
[27] relation. Lapse only spacetimes have been studied by
Roberts (1994) [76] and Schmidt (1996) [77]. For the non-
static case 46 and 85 gives

Ng(3)
1
6 = a−

1
4 T−1. (87)

7 The Geometric-thermodynamic
equation and Cosmic Censorship.

7.1 Scalar Field Solutions.

It is known that spherically symmetric asymptotically flat
solutions to the Einsteinmassless scalar field equations do
not posses event horizons, both in the static case Roberts
(1985) [9] and in the non-static case Roberts (1996) [12].
Massless scalar field solutions are equivalent to perfect
fluid solutions with 𝛾 = 2 and Ua = ϕa(−ϕcϕc. )−

1
2 ; for the

above scalar field solutions the vector field is not necessar-
ily timelike so that the perfect fluid correspondence does
not follow through. It can be argued that an asymptotically
flat fluid would be a more realistic model of a collapsed
object, because a fluid provides a better representation of
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the stress outside the object. In the spherically symmet-
ric case a global coordinate system of the form 23 can be
chosen and a necessary condition for there to be an event
horizon is that, at a finite non-zero value of r, C → ∞.
From 28, 29, 30, and 38 it is apparent that this only oc-
curs from some exceptional equations of state and values
for the fluid density. Relaxing the requirement of spheri-
cal symmetry equations 55 and 56 show that for there to
be a null surface N → 0, or ω → ∞; however the deriva-
tion of both 55 and 56 requires the vector 40 and compo-
nents of this diverge as N → 0, also to show that 55 and
56 hold globally it is necessary to show that the coordinate
system 39 can be set up globally. The above suggests that
it is unlikely that spacetimes with a perfect fluid present
have event horizons except in contrived circumstances.
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