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Abstract: In this paper we have studied the flow and heat
transfer of ahorizontal sheet in a viscousfluid. The stretch-
ing rate and temperature of the sheet vary with time. The
governing equations for momentum and thermal energy
are reduced to ordinary differential equations by means of
similarity transformation. These equations are solved ap-
proximately by means of the Optimal Homotopy Asymp-
totic Method (OHAM)which provides us with a convenient
way to control the convergence of approximation solutions
and adjust convergence rigorously when necessary. Some
examples are given and the results obtained reveal that the
proposed method is effective and easy to use.
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1 Introduction
The flow and heat transfer in a viscous fluid over a

stretching surface is important for engineers and applied
mathematicians. Studies have been conducted which take
into account the numerous industrial applications. Exam-
ples of such applications are crystal growing, continu-
ous casting, polymer extrusion, manufacture and draw-
ing of plastics and rubber sheets, wire drawing and so on.
Sakiadis [1, 2], Crane [3], Tsou et al. [4], Gupta and Gupta
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[5], Maneschy et al. [6], Grubka and Bobba [7], Wang [8],
Usha and Rukamani [9], Anderson et al. [10], Ali [11], Mag-
yari et al. [12], Vajravelu [13], Magyari and Keller [14], El-
bashbeshy and Bazid [15], Dandapat et al. [16], Ali and
Magyari [17], Liu and Anderson [18], Chen [19], Dandapat
et al. [20], Cortell [21] have studied different problems re-
lated to such applications.

Analytical solutions to nonlinear differential equa-
tions play an important role in the study of flow and
heat transfer of different types of fluids, but it is diffi-
cult to find these solutions in the presence of strong non-
linearity. A few approaches have been proposed to find
and develop approximate solutions of nonlinear differen-
tial equations. Perturbation methods have been applied
to determine approximate solutions to weakly nonlinear
problems [22]. But the use of perturbation theory in many
problems is invalid for parameters beyond a certain spec-
ified range. Other procedures have been proposed such as
the Adomian decomposition method [23], some lineariza-
tionmethods [24, 25], variousmodified Lindstedt-Poincare
methods [26], variational iteration method [27], optimal
homotopy perturbation method [28] and optimal homo-
topy asymptotic method [29–34].

In this studywe propose an accurate approach to non-
linear differential equations of the flow and heat transfer
in a viscous fluid, using an analytical technique, namely
the optimal homotopy asymptoticmethod. Our procedure,
which does not imply the presence of a small or large pa-
rameter in the equation or in the boundary/initial condi-
tions, is based on the construction and determination of
the linear operators and of the auxiliary functions, com-
bined with a convenient way to optimally control the con-
vergence of the solution. The efficiency of the proposed
procedure is proven, while an accurate solution is explic-
itly analytically obtained in an iterative way after only one
iteration. The validity of this method is demonstrated by
comparing the results obtained with the numerical solu-
tion.
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2 Equations of motion
Consider an unsteady, two dimensional flow on a continu-
ous stretching surface. If u and v are velocity components,
T is the temperature and k is the thermal conductivity,
then the governing time-dependent equations for the con-
tinuity, momentum and thermal energy are [8, 10, 15, 17,
18]:

∂u
∂x + ∂v∂y = 0 (1)

∂u
∂t + u

∂u
∂x + v ∂v∂y = v ∂

2u
∂y2 (2)

∂T
∂t + u

∂T
∂x + v ∂T∂y = k ∂

2T
∂y2 (3)

The appropriate boundary conditions are:

u =
u0 xl
1 + 𝛾t , v = 0, (4)

T = T∞ + T0
(1 + 𝛾t)c

(︁ x
l

)︁n
at y = 0

u → 0, T → T∞ at y →∞ (5)

where u0, T0, T∞, 𝛾 are positive constants, c and n are ar-
bitrary and l is a reference length.
If Re = u0 l

v and Pr = v
k are the Reynolds number and

the Prandtl number respectively and if we choose a stream
function Ψ(x, y) such that:

u = ∂Ψ∂y , v = −∂Ψ∂x (6)

then equation (1) of continuity is satisfied. The mathemat-
ical analysis of equations (2) and (3) is simplified by intro-
ducing the following similarity transformation:

Ψ = xl
f (η)√

Re(1 + 𝛾t)1/2
(7)

η =
√
Re y
l(1 + 𝛾t)1/2

(8)

T = T∞ + T0
(︁ x
l

)︁n θ(η)
(1 + 𝛾t)c (9)

where T0 is a reference temperature. In this way equations
(6) can be written in the form:

u(x, y, t) = u0l
x

(1 + 𝛾t) f
′(η) (10)

v(x, y, t) = − u0√
Re(1 + 𝛾t)1/2

f (η) (11)

where prime denotes differentiation with respect to η.
Substituting equations (7), (8), (9), (10) and (11) into

equations (2) and (3), we obtain

f ′′′ + � ′′ − f ′2 + Λ
(︁
f ′ + 1

2ηf
′′
)︁
= 0 (12)

1
Pr θ

′′ + fθ′ − nf ′θ + Λ
(︁
cθ + 1

2ηθ
′
)︁
= 0. (13)

Here Λ = 𝛾 l
u0 is a dimensionless measure of the un-

steadiness.
The dimensional boundary conditions (4) and (5) be-

come:

u = u0l
x

(1 + 𝛾t) f
′(0) at y = 0 (14)

v = − u0√
Re(1 + 𝛾t)1/2

f (0) at y = 0 (15)

T = T∞ + T0
(︁ x
l

)︁n θ(0)
(1 + 𝛾t)c at y = 0 (16)

such that for the dimensionless functions f and θ, the
boundary/initial conditions become:

f (0) = fw , f ′(0) = 1, f ′(∞) = 0 (17)

θ(0) = 1, θ(∞) = 0. (18)

In addition to the boundary conditions (17) and (18),
the requirements

f ′(η) ≥ 0, θ(η) ≥ 0, ∀ η ≥ 0 (19)

must also satisfied [17].

3 Basic ideas of optimal homotopy
asymptotic method

Equations (12) (or (13)) with boundary conditions (17) (or
(18)) can be written in a more general form:

N
(︁
Φ(η)

)︁
= 0 (20)

where N is a given nonlinear differential operator depend-
ing on the unknown function Φ(η), subject to the ini-
tial/boundary conditions:

B
(︁
Φ(η), dΦ(η)dη

)︁
= 0. (21)
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It is clear that Φ(η) = f (η) or Φ(η) = θ(η).
LetΦ0(η) be an initial approximation ofΦ(η) and L an

arbitrary linear operator such as:

L
(︁
Φ0(η)

)︁
= 0, B

(︁
Φ0(η),

dΦ0(η)
dη

)︁
= 0. (22)

We remark that this operator L is not unique.
If p ∈ [0, 1] denotes an embedding parameter and F is

a function, then we propose to construct a homotopy [29]
- [33]:

H
[︁
L
(︁
F(η, p)

)︁
, H(η, Ci), N

(︁
F(η, p)

)︁]︁
(23)

with the following two properties:

H
[︁
L
(︁
F(η, 0)

)︁
, H(η, Ci), N

(︁
F(η, 0)

)︁]︁
= (24)

= L
(︁
F(η, 0)

)︁
= L

(︁
Φ0(η)

)︁

H
[︁
L
(︁
F(η, 1)

)︁
, H(η, Ci), N

(︁
F(η, 1)

)︁]︁
(25)

= H(η, Ci)N
(︁
Φ(η)

)︁
where H(η, Ci) ≠ 0, is an arbitrary auxiliary convergence-
control function depending on variable η and on anumber
of arbitrary parameters C1, C2, . . ., Cm which ensure the
convergence of the approximate solution.

Let us consider the function F in the form:

F(x, p) = Φ0(η) + pΦ1(η, Ci) + p2Φ2(η, Ci) + . . . (26)

By substituting equation (26) into the equation ob-
tained by means of the homotopy (23), then:

H
[︁
L
(︁
F(η, p)

)︁
, H(η, Ci), N

(︁
F(η, p)

)︁]︁
= 0 (27)

and equating the coefficients of like powers of p, we obtain
the governing equation ofΦ0(x) givenby equation (22) and
the governing equation of Φ1(η, Ci), Φ2(η, Ci) and so on.
If the series (26) is convergent at p = 1, one has:

F(η, 1) = Φ0(η) + Φ1(η, Ci) + Φ2(η, Ci) + . . . (28)

But in particular we consider only the first-order ap-
proximate solution:

Φ(η, Ci) = Φ0(η) + Φ1(η, Ci), i = 1, 2, . . . ,m (29)

and the homotopy (23) in the form:

H
[︁
L
(︁
F(η, p)

)︁
, H(η, Ci), N

(︁
F(η, p)

)︁]︁
= L

(︁
Φ0(η)

)︁
+
(30)

+ p
[︁
L
(︁
Φ1(η, Ci)

)︁
− L

(︁
Φ0(η)

)︁
− H(η, Ci)N

(︁
Φ0(η)

)︁]︁
.

Equating only the coefficients of p0 and p1 into equa-
tion (30), we obtain the governing equation ofΦ0(η) given
by equation (22) and the governing equation of Φ1(η, Ci)
i.e.:

L
(︁
Φ1(η, Ci)

)︁
= H(η, Ci)N

(︁
Φ0(η)

)︁
, (31)

B
(︁
Φ1(η, Ci),

dΦ1(η, Ci)
dη

)︁
= 0, i = 1, 2, . . . ,m.

It should be emphasized that Φ0(η) and Φ1(η, Ci) are
governed by the linear equations (22) and (31) respectively,
with boundary conditions that come from the original
problem, which can be easily solved. The convergence of
the approximate solution (29) depends upon the auxiliary
convergence-control function H(η, Ci). There are many
possibilities to choose the auxiliary function H(η, Ci). Ba-
sically, the shape ofH(η, Ci)must follow the terms appear-
ing in equation (31). Therefore, we try to chooseH(η, Ci) so
that in equation (31) the product H(η, Ci)N

(︁
Φ0(η)

)︁
will

be the same shape with N
(︁
Φ0(η)

)︁
. Now, by substituting

equation (29) into equation (20), the following residual is
given:

R(η, Ci) = N
(︁
Φ(η, Ci)

)︁
. (32)

At this moment, the first-order approximate solution
given by equation (29) depends on the parameters C1, C2,
. . ., Cm and these parameters can be optimally identified
via various methods, such as the least square method, the
Galerkin method, the Kantorowich method, the colloca-
tion method or by minimizing the square residual error:

J(C1, C2, . . . , Cm) =
b∫︁
a

R2(η, C1, C2, . . . , Cm) dη (33)

where a and b are twovalues depending on the givenprob-
lem. The unknown parameters C1, C2, . . ., Cm can be iden-
tified from the conditions:

∂J
∂C1

= ∂J
∂C2

= . . . = ∂J
∂Cm

= 0. (34)

With these parameters known (namely convergence-
control parameters), the first-order approximate solution
(29) is well-determined.

4 Application of OHAM to flow and
heat transfer

We use the basic ideas of the OHAM by considering equa-
tion (12) with the boundary conditions given by equation
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(17). We can choose the linear operator in the form:

Lf
(︁
Φ(η)

)︁
= Φ′′′ − K2Φ′, (35)

where K > 0 is an unknown parameter at this moment.
Here, we state that the linear operator is not unique.
Equation (22) becomes:

Φ0
′′′ − K2Φ0

′ = 0, Φ0(0) = fw ,
Φ0

′(0) = 1, Φ0
′(∞) = 0.

which has the following solution:

Φ0(η) = fw +
1 − e−Kη

K . (36)

The nonlinear operator Nf
(︁
Φ(η)

)︁
is obtained from

equation (12):

Nf
(︁
Φ(η)

)︁
= Φ′′′(η) + Φ(η)Φ′′(η) − Φ′(η)2 (37)

+ Λ
(︁
Φ′(η) + 1

2ηΦ
′′(η)

)︁
= 0

such that substituting equation (36) into equation (37), we
obtain

Nf
(︁
Φ0(η)

)︁
= (αη + β)e−Kη (38)

where

α = 1
2KΛ; β = K2 − 1 − Kfw − Λ. (39)

Having in view that in equation (38) there is an expo-
nential function and that the auxiliary function Hf (η, Ci)
must follow the terms appearing in equation (38), then we
can choose the function Hf (η, Ci) in the following forms:

Hf (η, Ci) = C1 + C2η + (C3 + C4η)e−Kη (40)
+ (C5 + C6η)e−2Kη

or

H*f (η, Ci) = C1 + (C2 + C3η + C4η2)e−Kη (41)

or yet

H**f (η, Ci) = C1 + C2η + C3η2 + (C4 + C5η)e−Kη (42)
+ (C6 + C7η + C8η2)e−2Kη

and so on, where C1, C2, . . . are unknown parameters at
this moment.

If we choose only the expression (40) for Hf (η, Ci),
then by using equations (38), (40) and (31), we can obtain
the equation in Φ1(η, Ci):

Φ1
′′′ − K2Φ1

′ =
[︁
βC1 + (αC1 + βC2)η + αC2η2

]︁
e−Kη (43)

+
[︁
βC3 + (αC3 + βC4)η + αC4η2

]︁
e−2Kη

+
[︁
βC5 + (αC5 + βC6)η + αC6η2

]︁
e−3Kη ,

Φ1(0) = Φ1
′(0) = Φ1

′(∞) = 0.

The solution of equation (43) can be found as:

Φ1(η) = M1 +
[︁
N1 +

(︁7αC2
4K4 + 3αC1

4K3 + 3βC2
4K3 (44)

+ βC12K2

)︁
η +

(︁3αC2
4K3 + αC14K2 + βC24K2

)︁
η2 + αC26K2 η

3
]︁
e−Kη

+
[︁
− 85αC4
108K5 −

11αC3
36K4 −

11βC4
36K4 −

βC3
6K3 −

(︁11αC4
18K4

+ αC36K3 + βC46K3

)︁
η − αC46K3 η

2
]︁
e−2Kη +

(︁
− 115αC6
1728K5

− 13αC5
288K4 −

13βC6
288K4 −

βC5
24K3

)︁
e−Kη

where

M1 = −
3α + 2Kβ

4K4 C1 −
7α + 3Kβ

4K5 C2 −
5α + 6Kβ
36K4 C3− (45)

− 19α + 15Kβ
108K5 C4 −

7α + 12Kβ
144K4 C5 −

37α + 42Kβ
864K5 C6

N1 =
3α + 2Kβ

4K4 C1 +
7α + 3Kβ

4K5 C2 +
4α + 3Kβ

9K4 C3+

+ 26α + 12Kβ
27K5 C4 +

3α + 4Kβ
32K4 C5 +

7α + 6Kβ
64K5 C6.

The first-order approximate solution (29) for equations
(12) and (17) is obtained from equations (36) and (45):

f (η) = Φ(η) = Φ0(η) + Φ1(η). (46)

In what follows, we consider equations (13) and (18).
In this case, we choose the linear operator in the form:

Lθ
(︁
φ(η)

)︁
= φ′′ + Kφ′ (47)

where the parameter K is defined in equation (35).
Equation (22) becomes:

φ0
′′ + Kφ0

′ = 0, φ0(0) = 1, φ0(∞) = 0. (48)

Equation (48) has the solution

φ0(η) = e−Kη . (49)

The nonlinear operator Nθ
(︁
φ(η)

)︁
is obtained from

equation (12):

Nθ
(︁
φ(η)

)︁
= 1
Pr φ

′′ + Φφ′ − nΦ′φ (50)

+ Λ
(︁
cφ + 1

2ηφ
′
)︁
.

Substituting equation (49) into equation (50), we ob-
tain:

Nθ
(︁
φ0(η)

)︁
= (m1η + m2)e−Kη + m3e−2Kη (51)
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where

m1 = −
1
2KΛ; m2 =

K2

Pr − Kfw − 1 + cΛ; (52)

m3 = 1 − n.

The auxiliary function Hθ(η, Ci) can be chosen in the
forms:

Hθ(η, Ci) = C7 + C8η + (C9 + C10η)e−Kη (53)
+ (C11 + C12η)e−2Kη

or

H*θ(η, Ci) = C7 + C8η + C9η2 + (C10 + C11η)e−Kη (54)
+ C13e−2Kη

or yet

H**θ (η, Ci) = C7 + (C8 + C9η)e−Kη + (C10 (55)
+ C11η)e−2Kη

and so on, where C7, C8, . . . are unknown parameters.
If we choose equation (53) for Hθ, then from equations

(51), (53) and (31) we obtain the equation in φ1(η, Ci) as

φ1
′′ + Kφ1

′ =
[︁
m2C7 + (m1C7 + m2C8)η + m1C8η2

]︁
(56)

· e−Kη +
[︁
m2C9 + m3C7 + (m1C9 + m2C10

+ m3C8)η + m1C10η2
]︁
e−2Kη +

[︁
m3C9

+ m2C11 + (m3C10 + m1C11 + m2C12)η

+ m1C12η2
]︁
e−3Kη + (m3C11 + m3C12η)e−4Kη ,

ϕ1(0) = ϕ1(∞) = 0.

Solving equation (56), we obtain:

φ1(η) =
[︁
P1 −

(︁2m1C8
K3 + m1C7

K2 + m2C8
K2 + m2C7

K

)︁
η (57)

−
(︁m1C8
K2 + m1C7

2K + m2C8
2K

)︁
η2 − m1C8

3K η3
]︁
e−Kη

+
[︁7m1C10

4K4 + 3m1C9
4K3 + 3m2C10

4K3 + 3m3C8
4K3

+ m2C9
2K2 + m3C7

2K2 +
(︁3m1C10

2K3 + m1C9
2K2 + m2C10

2K2

+ m3C8
2K2

)︁
η + m1C10

2K2 η2
]︁
e−2Kη

+
[︁5(m3C10 + m1C11 + m2C12)

36K3 + m3C9 + m2C11
6K2

+
(︁m3C10 + m1C11 + m2C12

6K2 + 5m1C12
18K3

)︁
η

+ m1C12
6K2 η2

]︁
e−3Kη +

(︁7m3C11
12K2 + 7m3C12

144K3

+ m3C12
12K2 η

)︁
e−4Kη , ϕ1(0) = ϕ1(∞) = 0,

where

P1 = −
m3C7
2K2 − 3m3C8

4K3 − 9m1 + 6Km2 + 2Km3
12K3 C9 (58)

− 63m1 + 27Km2 + 5Km3
36K4 C10 −

5m1 + K(m2 + 3m3)
36K3 C11

− 20m2 + 7m3
144K3 C12.

In this way, the first-order approximate solution (29)
for equations (13) and (18) becomes

θ(η) = φ(η) = φ0(η) + φ1(η, Ci). (59)

5 Numerical examples
In order to prove the accuracy of the obtained results, we
will determine the convergence-control parameters K and
Ci which appear in equations (46) and (59) bymeans of the
least square method. In this way, the convergence-control
parameters are optimally determined and the first-order
approximate solutions known for different values of the
known parameters fw, Λ, Pr, n and c. In what follows,
we illustrate the accuracy of the OHAM by comparing pre-
viously obtained approximate solutions with the numeri-
cal integration results computed bymeans of the shooting
method combined with fourth-order Runge-Kutta method
usingWolframMathematica 6.0 software. For some values
of the parameters fw, Λ, Pr, n and c we will determine the
approximate solutions.

Example 5.1.a In the first case we consider fw = −1,
Λ = 1, c = 1

2 , n = 1, Pr = 0.7. For equation (46),
following the procedure described above, the following
convergence-control parameters are obtained:

C1 = −0.0881661632, C2 = 0.0159074525,
C3 = 101.5499315816, C4 = −16.3157319695,
C5 = −99.5951678657, C6 = −64.5910051875
K = 0.7591636981

and consequently thefirst-order approximate solution (46)
can be written in the form:

f (η) = 0.4921333156 + (−0.5668554881 (60)
+ 0.0071536463η − 0.0087518103η2

+ 0.0017461596η3)e−0.7591636981η

+ (−0.3980837570 − 7.4190413787η
+ 2.3591440003η2)e−1.5183273963η

+ (−0.5271940704 + 6.1764503488η
+ 2.3348551362η2)e−2.2774910945η



376 | R.-D. Ene et al.

Table 1: Comparison between OHAM results given by equation (60)
and numerical results for fw = −1, Λ = 1.

η fnumeric fOHAM, Eq. (60) relative error =
|fnumeric − fOHAM|

0 −1 −0.9999999999 1.88 ·10−15

1 −0.1497942276 −0.1501421749 3.47 ·10−4

2 0.3108643384 0.3106655367 1.98 ·10−4

3 0.4604991620 0.4600705386 4.28 ·10−4

4 0.4887865463 0.4894195278 6.32 ·10−4

5 0.4919308455 0.4920394273 1.08 ·10−4

6 0.4921388939 0.4918417250 2.97 ·10−4

7 0.4921471111 0.4919782168 1.68 ·10−4

8 0.4921472622 0.4922151064 6.78 ·10−5

9 0.4921472290 0.4923440748 1.96 ·10−4

10 0.4921472001 0.4923640175 2.16 ·10−4

Now, for equation (59), the convergence-control pa-
rameters are:

C7 = 0.0363993085, C8 = 0.0363993085,
C9 = −7.1448075448, C10 = 4.3237724702,
C11 = 42.1871800319, C12 = 18.0805214975

and therefore the first-order approximate solution (59) be-
comes:

θ(η) = (0.3541683003 + 0.2415876957η (61)
− 0.0823906873η2+
+ 0.0060665514η3)e−0.7591636981η

+ (−2.6848440528 + 6.3660521866η
− 1.4238603876η2)e−1.5183273963η+
+ (3.3306757524 − 3.3281240073η
− 1.9846972772η2)e−2.2774910945η

In Tables 1 and 2we present a comparison between the
first-order approximate solutions given by equations (60)
and (61) respectively, with numerical results for some val-
ues of variable η and the corresponding relative errors.

Example 5.1.b In this case, we consider fw = −1,
Λ = 1, c = 1

2 , n = 1, Pr = 2. The solution f (η) is given
by equation (60). The convergence-control parameters for
equation (59) are:

C7 = 0.3992391297, C8 = −0.0398233823,
C9 = 13.9195482545, C10 = −9.8140323466,
C11 = −37.1866029355, C12 = −48.0634410813

such that the first-order approximate solution (59) be-
comes:

θ(η) = (−2.1207041376 − 0.0561685488η (62)

Table 2: Comparison between OHAM results given by equation (61)
and numerical results for fw = −1, Λ = 1, c = 1

2 , n = 1, Pr = 0.7.

η θnumeric θOHAM, Eq. (61) relative error =
|θnumeric−θOHAM|

0 1 0.9999999999 8.88 ·10−16

1 0.5325816311 0.5344078544 1.82 ·10−3

2 0.2137609331 0.2123010871 1.45 ·10−3

3 0.0624485224 0.0627998626 3.51 ·10−4

4 0.0129724736 0.0141235139 1.15 ·10−3

5 0.0019027817 0.0018865990 1.61 ·10−5

6 0.0001968219 −0.0002871987 4.84 ·10−4

7 0.0000144329 −0.0002516924 2.66 ·10−4

8 8.27 ·10−7 0.0000468974 4.60 ·10−5

9 1.08 ·10−7 0.0002281868 2.28 ·10−4

10 7.47 ·10−8 0.0002807824 2.80 ·10−4

+ 0.0879369070η2 − 0.0066372303η3)
· e−0.7591636981η + e−1.5183273963η(7.9716346529−
− 9.1921128520η + 3.2318564396η2)e−0.7591636981η

+ (−4.8509305153 + 8.0572360536η
+ 5.2759197606η2)e−2.2774910945η

In Table 3 we present a comparison between the first-
order approximate solutions given by equation (62) with
numerical results and corresponding relative errors.

Example 5.2.a For fw = 0, Λ = 1, c = 1
2 , n = 1, Pr =

0.7, the convergence-control parameters for equation (46)
are:

C1 = −1.2640611927, C2 = 0.1680009020,
C3 = −34.0575215187, C4 = 30.7898356526,
C5 = 37.1281425060, C6 = 13.8590545976,
K = 1.1203766872

and therefore, the first-order approximate solution (46)
can be written in the form:

f (η) = 0.9662722752 + (1.3563995648 (63)
+ 0.0351604322η − 0.1157605059η2

+ 0.0124958644η3)e−1.1203766872η

+ (−2.5490820161 − 1.7111113870η
− 2.0440805123η2)e−2.2407533744η + (0.2264101761−
− 0.7552406743η − 0.2300192808η2)e−3.3611300616η

For equation (59), the convergence-control parame-
ters are:

C7 = −1.6947892627, C8 = 0.2632100295,
C9 = −1.2815579214, C10 = 2.6268699384,
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C11 = 15.8897673738, C12 = 9.5966071873

and the first-order approximate solution (59) is:

θ(η) = (0.2987405005 + 1.1383970916η (64)
− 0.4581387031η2 + 0.0438683382η3)
· e−1.1203766872η + (−0.1000278783+
+ 1.4818560845η − 0.5861577557η2)
· e−2.2407533744η + (0.8012873778−
− 0.5959066165η − 0.7137932043η2)
· e−3.3611300616η

In Tables 4 and 5 we present a comparison between
the first-order approximate solutions given by equations
(63) and (64) respectively, with numerical results and cor-
responding relative errors.

Table 3: Comparison between OHAM results given by equation (62)
and numerical results for fw = −1, Λ = 1, c = 1

2 , n = 1, Pr = 2.

η θnumeric θOHAM, Eq. (62) relative error =
|θnumeric−θOHAM|

0 1 0.9999999999 1.77 ·10−15

1 0.3341908857 0.3295767993 4.61 ·10−3

2 0.0347540513 0.0372485103 2.49 ·10−3

3 0.0011305745 −0.0002320988 1.36 ·10−3

4 0.0000127262 −0.0002852788 2.98 ·10−4

5 −5.44 ·10−8 0.0002991504 2.99 ·10−4

6 −9.15 ·10−8 0.0002884740 2.88 ·10−4

7 −7.96 ·10−8 0.0001372878 1.37 ·10−4

8 −7.05 ·10−8 −0.0000295212 2.94 ·10−5

9 −6.53 ·10−8 −0.0001505702 1.50 ·10−4

10 −5.99 ·10−8 −0.0002044072 2.04 ·10−4

Table 4: Comparison between OHAM results given by equation (63)
and numerical results for fw = 0, Λ = 1.

η fnumeric fOHAM, Eq. (63) relative error =
|fnumeric− fOHAM|

0 −5.50 ·10−21 4.44 ·10−16 4.44 ·10−16

1 0.6894348341 0.6894914970 5.66 ·10−5

2 0.9167696529 0.9166682157 1.01 ·10−4

3 0.9608821303 0.9609858144 1.03 ·10−4

4 0.9659196704 0.9659030730 1.65 ·10−5

5 0.9662619960 0.9661631962 9.87 ·10−5

6 0.9662759513 0.9662663279 9.62 ·10−6

7 0.9662762950 0.9663395358 6.32 ·10−5

8 0.9662763018 0.9663501433 7.38 ·10−5

9 0.9662763032 0.9663306688 5.43 ·10−5

10 0.9662763043 0.9663080318 3.17 ·10−5

Table 5: Comparison between OHAM results given by equation (64)
and numerical results for fw = 0, Λ = 1, c = 1

2 , n = 1, Pr = 0.7.

η θnumeric θOHAM, Eq. (64) relative error =
|θnumeric−θOHAM|

0 1 1.00 2.22 ·10−16

1 0.4003127445 0.4006174190 3.04 ·10−4

2 0.1184290061 0.1183366534 9.23 ·10−5

3 0.0250358122 0.0254649591 4.29 ·10−4

4 0.0037386526 0.0032572108 4.81 ·10−4

5 0.0003935287 −0.0000242886 4.17 ·10−4

6 0.0000291963 0.0001165652 8.73 ·10−5

7 1.53 ·10−6 0.0003370019 3.35 ·10−4

8 6.39 ·10−8 0.0003255701 3.25 ·10−4

9 8.43 ·10−9 0.0002261157 2.26 ·10−4

10 6.39 ·10−9 0.0001326393 1.32 ·10−4

Example 5.2.b For fw = 0, Λ = 1, c = 1
2 , n = 1,

Pr = 2 the firs-order approximate solution (46) is given
by equation (63). The convergence-control parameters for
equation (59) are determined as:

C7 = 0.4652101281, C8 = −0.0724620728,
C9 = 14.4924736065, C10 = −12.1643720147,
C11 = 0.7277740132, C12 = −56.0450834796

such that the first-order approximate solution (59) may be
written as:

θ(η) = (−1.4030799687 + 0.1042610535η (65)
+ 0.0880913412η2 − 0.0120770121η3)
· e−1.1203766872η + (3.1476673319−
− 3.8089261057η + 2.7143486992η2)
· e−2.2407533744η + (−0.7445873632+
+ 5.1973912018η + 4.1686190694η2)e−3.3611300616η

In Table 6 we present a comparison between the first-
order approximate solutions given by equation (65) with
numerical results. The corresponding relative errors are
also presented.

Example 5.3.a We consider fw = 1, Λ = 1, c = 1
2 ,

n = 1, Pr = 0.7. The convergence-control parameters for
equation (46) are given by:

C1 = 0.6287723857, C2 = −0.1379103919,
C3 = −64.6127509553, C4 = 52.1862259014,
C5 = 65.7049797786, C6 = 66.9471031457,
K = 1.6976766716.
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Table 6: Comparison between OHAM results given by equation (65)
and numerical results for fw = 0, Λ = 1, c = 1

2 , n = 1, Pr = 2.

η θnumeric θOHAM, Eq. (65) relative error =
|θnumeric−θOHAM|

0 1 1 0
1 0.1197281855 0.1187072441 1.02 ·10−3

2 0.0042249398 0.0041010249 1.23 ·10−4

3 5.09 ·10−5 −6.04 ·10−6 5.69 ·10−5

4 2.41 ·10−7 0.0001841967 1.83 ·10−4

5 1.67 ·10−8 0.0000163574 1.63 ·10−5

6 1.42 ·10−8 −0.0001452859 1.45 ·10−4

7 1.26 ·10−8 −0.0001791057 1.79 ·10−4

8 1.15 ·10−8 −0.0001403309 1.40 ·10−4

9 1.09 ·10−8 −0.0000887807 8.87 ·10−5

10 1.05 ·10−8 −0.0000493843 4.93 ·10−5

such that the first-order approximate solution (46) may be
written as:

f (η) = 1.6119245343 + (−0.1095284867 (66)
− 0.0145745495η + 0.0381089526η2

− 0.0067695650η3)e−1.6976766716η

+ (−0.6841717456 + 0.0590171180η
− 1.5089146740η2)e−3.3953533432η

+ (0.1817756979 − 0.6276022634η
− 0.4839278208η2)e−5.0930300148η

The convergence-control parameters for equation
(59), are:

C7 = −2.4317156290, C8 = 0.4199773974,
C9 = 3.2538989273, C10 = 2.8819189890,
C11 = 2.6307320394, C12 = 0.0503403055

and the first-order approximate solution (59) becomes:

θ(η) = (0.0191058146 + 1.8994242629η (67)
− 0.7216780879η2 + 0.0699962329η3)
· e−1.6976766716η + (0.9928667494+
+ 0.3712879543η − 0.4243916166η2)
· e−3.3953533432η + (−0.0119725641−
− 0.1259716711η − 0.0024710391η2)
· e−5.0930300148η

In Tables 7 and 8 we present a comparison between
the first-order approximate solutions given by equations
(66) and (67) respectively, with numerical results and cor-
responding relative errors.

Table 7: Comparison between OHAM results given by equation (66)
and numerical results for fw = 1, Λ = 1.

η fnumeric fOHAM, Eq. (66) relative error =
|fnumeric − fOHAM|

0 1 1.00 2.22 ·10−16

1 1.5177074192 1.5176780223 2.93 ·10−5

2 1.6030516967 1.6030350430 1.66 ·10−5

3 1.6114161917 1.6114348208 1.86 ·10−5

4 1.6119056438 1.6119031833 2.46 ·10−6

5 1.6119228465 1.6119073012 1.55 ·10−5

6 1.6119232066 1.6119136285 9.57 ·10−6

7 1.6119232084 1.6119199331 3.27 ·10−6

8 1.6119232063 1.6119229505 2.55 ·10−7

9 1.6119232045 1.6119240509 8.46 ·10−7

10 1.6119232031 1.6119243982 1.19 ·10−6

Table 8: Comparison between OHAM results given by equation (67)
and numerical results for fw = 1, Λ = 1, c = 1

2 , n = 1, Pr = 0.7.

η θnumeric θOHAM, Eq. (67) relative error =
|θnumeric−θOHAM|

0 1 1 0
1 0.2625870984 0.2626175913 3.04 ·10−5

2 0.0500304293 0.0500306615 2.32 ·10−7

3 0.0067456425 0.0067634155 1.77 ·10−5

4 0.0006411532 0.0006125219 2.86 ·10−5

5 0.0000429270 0.0000457402 2.81 ·10−6

6 2.01 ·10−6 2.08 ·10−5 1.88 ·10−5

7 5.14 ·10−8 1.35 ·10−5 1.34 ·10−5

8 −1.29 ·10−8 6.14 ·10−6 6.16 ·10−6

9 −1.33 ·10−8 2.24 ·10−6 2.25 ·10−6

10 −1.22 ·10−8 7.13 ·10−7 7.25 ·10−7

Example 5.3.b For fw = 1, Λ = 1, c = 1
2 , n = 1, Pr =

2 the first-order approximate solution for f (η) is given by
equation (66).

For equation (59) the convergence-control parameters
are given by:

C7 = −0.3023817542, C8 = 0.0519503347,
C9 = −27.1653468182, C10 = 23.1898068679,
C11 = −15.3543205956, C12 = 31.0226487950.

such that the first-order approximate solution (59) may be
written as:

θ(η) = (0.9205703595 − 0.1921602046η (68)
− 0.0487183578η2 + 0.0086583891η3)
· e−1.6976766716η + (0.2637846962+
+ 0.9429053366η − 3.4149327807η2)
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· e−3.3953533432η + (−0.1843550558−
− 2.0986586159η − 1.5227992326η2)
· e−5.0930300148η

In Table 9 we present a comparison between the first-
order approximate solutions given by equations (68) with
numerical results. The corresponding relative errors are
presented.

Table 9: Comparison between OHAM results given by equation (68)
and numerical results for fw = 1, Λ = 1, c = 1

2 , n = 1, Pr = 2.

η θnumeric θOHAM, Eq. (68) relative error =
|θnumeric−θOHAM|

0 1 1.00 2.22 ·10−16

1 0.0288461240 0.0286378502 2.08 ·10−4

2 0.0002627867 0.0004342087 1.71 ·10−4

3 1.00 ·10−6 −1.91 ·10−4 1.91 ·10−4

4 1.21 ·10−7 −1.46 ·10−4 1.46 ·10−4

5 1.05 ·10−7 −3.96 ·10−5 3.97 ·10−5

6 9.39 ·10−8 −4.54 ·10−6 4.63 ·10−6

7 8.68 ·10−8 1.08 ·10−6 9.96 ·10−7

8 7.95 ·10−8 8.82 ·10−7 8.02 ·10−7

9 7.44 ·10−8 3.60 ·10−7 2.85 ·10−7

10 6.91 ·10−8 1.18 ·10−7 4.89 ·10−8

In Figs 1 and 2 are plotted the profiles of f (η) and ve-
locity profile f ′(η) respectively for different values of fw. It
is clear that the solution f (η) increases with an increase of
fw and the velocity decreases with an increase of fw. The
condition f ′(η) > 0 for η > 0 is satisfied.

In Figs. 3–7 are plotted the temperature profiles given
for two values of Prandtl number Pr = 0.7 and Pr = 2
respectively and different values of fw. From Figs 3 and 4

fw = -1

fw = 0

fw = 1

2 4 6 8 10
Η

-1.0
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1.5
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Figure 1: Solutions fOHAM(η) given by (60), (63) and (66) for differ-
ent values of fw
— numerical solution; · · · OHAM solution.
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Figure 2: Solutions f
′

OHAM(η) obtained from (60), (63) and (66) for
different values of fw
— numerical solution; · · · OHAM solution.
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Figure 3: Plots of θOHAM(η) given by Eqs. (61), (64) and (67) for
Λ = 1, c = 1

2 , n = 1, Pr = 0.7 and three values of fw
— numerical solution; · · · OHAM solution.
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Figure 4: Plots of θOHAM(η) given by Eqs. (62), (65) and (68) for
Λ = 1, c = 1

2 , n = 1, Pr = 2 and three values of fw
— numerical solution; · · · OHAM solution.
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it is observed that the temperature θ(η) decreases with an
increase of the fw for any values of parameter Pr.

Pr = 0.7, 2

2 4 6 8 10
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Figure 5: Plots of θOHAM(η) given by Eqs. (61) and (62) for Λ = 1,
c = 1

2 , n = 1, fw = −1 and two values of Pr
— numerical solution; · · · OHAM solution.
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Figure 6: Plots of θOHAM(η) given by Eqs. (64) and (65) for Λ = 1,
c = 1

2 , n = 1, fw = 0 and two values of Pr
— numerical solution; · · · OHAM solution.
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Figure 7: Plots of θOHAM(η) given by Eqs. (67) and (68) for Λ = 1,
c = 1

2 , n = 1, fw = 1 and two values of Pr
— numerical solution; · · · OHAM solution.

From Figs. 5–7 we can conclude that the temperature
decreases with the Prandtl number and different values of
fw.

FromTables 1–9we can summarize that the results ob-
tained bymeans of OHAMare accurate in comparisonwith
the numerical results.

6 Conclusions
In this work, the Optimal Homotopy Asymptotic Method
(OHAM) is employed to propose analytical approximate
solutions to the flow and heat transfer in a viscous fluid
over anunsteady stretching surface. For three values of the
suction/injection parameter fw, themethod provides solu-
tions which are compared with numerical solutions com-
puted by means of the shooting method combined with
Runge-Kutta method and using Wolfram Mathematica 6.0
software. An analytical expressions for the heat transfer
for two values of the Prandtl number are obtained. The so-
lution f (η) increases with an increase of fw and velocity
decreases with an increase of fw. The temperature θ(η) de-
creases monotonically with the Prandtl number and with
the distance η from the stretching surface.

Our procedure is valid even if the nonlinear equa-
tions of the motion do not contain any small or large pa-
rameters. The proposed approach is mainly based on a
new construction of the approximate solutions and espe-
cially with regard to the involvement of the convergence-
control parameters via the auxiliary functions. These pa-
rameters lead to an excellent agreement of the approxi-
mate solutions with numerical results. This technique is
effective, explicit and accurate for nonlinear approxima-
tions rapidly converging to the exact solution after only
one iteration. Also, OHAM provides a simple but rigor-
ous way to control and adjust the convergence of the so-
lution by means of some convergence-control parameters.
Our construction of homotopy is different from other ap-
proaches, especially with regard to the linear operator L
and to the auxiliary convergent-control functionHf andHθ
which ensure a fast convergence of the solutions.

It is worth mentioning that the proposed method is
straightforward, concise and can be applied to other non-
linear problems.
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