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Abstract: In this paper we have studied the flow and heat
transfer of a horizontal sheet in a viscous fluid. The stretch-
ing rate and temperature of the sheet vary with time. The
governing equations for momentum and thermal energy
are reduced to ordinary differential equations by means of
similarity transformation. These equations are solved ap-
proximately by means of the Optimal Homotopy Asymp-
totic Method (OHAM) which provides us with a convenient
way to control the convergence of approximation solutions
and adjust convergence rigorously when necessary. Some
examples are given and the results obtained reveal that the
proposed method is effective and easy to use.
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1 Introduction

The flow and heat transfer in a viscous fluid over a
stretching surface is important for engineers and applied
mathematicians. Studies have been conducted which take
into account the numerous industrial applications. Exam-
ples of such applications are crystal growing, continu-
ous casting, polymer extrusion, manufacture and draw-
ing of plastics and rubber sheets, wire drawing and so on.
Sakiadis [1, 2], Crane [3], Tsou et al. [4], Gupta and Gupta
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[5], Maneschy et al. [6], Grubka and Bobba [7], Wang [8],
Usha and Rukamani [9], Anderson et al. [10], Ali [11], Mag-
yari et al. [12], Vajravelu [13], Magyari and Keller [14], El-
bashbeshy and Bazid [15], Dandapat et al. [16], Ali and
Magyari [17], Liu and Anderson [18], Chen [19], Dandapat
et al. [20], Cortell [21] have studied different problems re-
lated to such applications.

Analytical solutions to nonlinear differential equa-
tions play an important role in the study of flow and
heat transfer of different types of fluids, but it is diffi-
cult to find these solutions in the presence of strong non-
linearity. A few approaches have been proposed to find
and develop approximate solutions of nonlinear differen-
tial equations. Perturbation methods have been applied
to determine approximate solutions to weakly nonlinear
problems [22]. But the use of perturbation theory in many
problems is invalid for parameters beyond a certain spec-
ified range. Other procedures have been proposed such as
the Adomian decomposition method [23], some lineariza-
tion methods [24, 25], various modified Lindstedt-Poincare
methods [26], variational iteration method [27], optimal
homotopy perturbation method [28] and optimal homo-
topy asymptotic method [29-34].

In this study we propose an accurate approach to non-
linear differential equations of the flow and heat transfer
in a viscous fluid, using an analytical technique, namely
the optimal homotopy asymptotic method. Our procedure,
which does not imply the presence of a small or large pa-
rameter in the equation or in the boundary/initial condi-
tions, is based on the construction and determination of
the linear operators and of the auxiliary functions, com-
bined with a convenient way to optimally control the con-
vergence of the solution. The efficiency of the proposed
procedure is proven, while an accurate solution is explic-
itly analytically obtained in an iterative way after only one
iteration. The validity of this method is demonstrated by
comparing the results obtained with the numerical solu-
tion.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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2 Equations of motion

Consider an unsteady, two dimensional flow on a continu-
ous stretching surface. If u and v are velocity components,
T is the temperature and k is the thermal conductivity,
then the governing time-dependent equations for the con-
tinuity, momentum and thermal energy are [8, 10, 15, 17,
18]:

ou ov
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The appropriate boundary conditions are:

l.l()%

:m, v=0, (4)

_ To (x\" _
T—Tm+m(7) aty=0

u—0, T—Tw aty — oo (5)

where uo, To, Te, 7 are positive constants, ¢ and n are ar-
bitrary and [ is a reference length.
If Re = “70’ and Pr = § are the Reynolds number and
the Prandtl number respectively and if we choose a stream
function ¥(x, y) such that:
oY oY

e A A T (©)
then equation (1) of continuity is satisfied. The mathemat-
ical analysis of equations (2) and (3) is simplified by intro-
ducing the following similarity transformation:

X f)
1 VRe(1 +~0)1/2 @
= rl(1+ ~t)1/2 ®)
n 6(n)
T= T+ To(7) RS )

where Ty is a reference temperature. In this way equations
(6) can be written in the form:

X
(1+ ~t)

u(x,y, t) = ') (10)
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vix,y,t) = ———f(n) (11)

VRe (1 vt)” 2
where prime denotes differentiation with respect to .

Substituting equations (7), (8), (9), (10) and (11) into
equations (2) and (3), we obtain

4 _f’2 +A(f’ + %qf”) =0 (12)

1 " / / 1 /\

-0 +f6—nf6+A(c0+§n9)—O (13)
Here A =

steadiness.
The dimensional boundary conditions (4) and (5) be-

come:

3—; is a dimensionless measure of the un-

Ll() _
e t)f (0) aty=0 (14)
V= Wﬂo) aty =0 (15)
x\"* 6(0) B
T=To +T( ) Wrpe V-0 (16)

such that for the dimensionless functions f and 6, the
boundary/initial conditions become:

fO) =fuw, f0)=1, fl(e)=0 17)

0(0)=1, 60(0)=0 (18)

In addition to the boundary conditions (17) and (18),
the requirements

f'm)=0, 6(n)=0, Vvn=0 (19)

must also satisfied [17].

3 Basic ideas of optimal homotopy
asymptotic method

Equations (12) (or (13)) with boundary conditions (17) (or
(18)) can be written in a more general form:

N(o@m) =

where N is a given nonlinear differential operator depend-
ing on the unknown function @(1n), subject to the ini-
tial/boundary conditions:

B(@(m), dq’fl”)) 0.

(20)

(1)
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It is clear that @(n) = f(n) or @(n) = 6(n).
Let @y(n) be an initial approximation of @(n) and L an
arbitrary linear operator such as:

(22)

d@o(ﬂ)) —o.

L(@o(m) =0, B(@o(), a

We remark that this operator L is not unique.

If p € [0, 1] denotes an embedding parameter and F is
a function, then we propose to construct a homotopy [29]
- [33]:

H [L (F(n, p)) , H(n, C), N (F(n, p))} (23)

with the following two properties:
9|L(Fr.0), H@n, €, N(FaL0)] = (24)

= L(F(n,0)) = L(@o(n))
5[L(Fn, 1)), Hop, ), N(FL D) @)

= H(n, CON(@(n))

where H(n, C;) # 0, is an arbitrary auxiliary convergence-
control function depending on variable  and on a number
of arbitrary parameters C;, Cs, ..., Cm Which ensure the
convergence of the approximate solution.

Let us consider the function F in the form:

F(x,p) = @o(n) + p@1(17, C)) + p*D2(, C) +...  (26)

By substituting equation (26) into the equation ob-
tained by means of the homotopy (23), then:

%[L (F(q, p)), H(n, C), N(F(rl, p))] -0 (@7

and equating the coefficients of like powers of p, we obtain
the governing equation of @ (x) given by equation (22) and
the governing equation of @;(1, C;), @,(n, C;) and so on.
If the series (26) is convergent at p = 1, one has:
F(n,1) = @o(n) + @1(n, Ci) + D(n, C)) +.... (28)

But in particular we consider only the first-order ap-
proximate solution:

@, C;)) = Do(n) + D1(n,Cy), i=1,2,....,m (29)
and the homotopy (23) in the form:
H [L (F(n,p)) , H(n, Cy), N(F(rz,p))] =L (®o(f1))+
(30)

+p[L(@1n, C)) - L(@o(m)) - HOn, CON(Polm)) |-
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Equating only the coefficients of p° and p! into equa-
tion (30), we obtain the governing equation of @¢(1) given
by equation (22) and the governing equation of @ (n, C;)
ie.:

L(@1(n, €)) = HOL CON (o)), (31)

d®dq(n, Cy)

B(cpl(n, e g

) =0, i=1,2,...,m.

It should be emphasized that @ () and @ (1, C;) are
governed by the linear equations (22) and (31) respectively,
with boundary conditions that come from the original
problem, which can be easily solved. The convergence of
the approximate solution (29) depends upon the auxiliary
convergence-control function H(n, C;). There are many
possibilities to choose the auxiliary function H(n, C;). Ba-
sically, the shape of H(n7, C;) must follow the terms appear-
ing in equation (31). Therefore, we try to choose H(n, C;) so
that in equation (31) the product H(n, C;)N (cDo(n)) will

be the same shape with N ((Do(n)). Now, by substituting
equation (29) into equation (20), the following residual is
given:

R(n, C) = N(@(1, ). (32)

At this moment, the first-order approximate solution
given by equation (29) depends on the parameters C, C,,
..., Cm and these parameters can be optimally identified
via various methods, such as the least square method, the
Galerkin method, the Kantorowich method, the colloca-
tion method or by minimizing the square residual error:

b
J(cl,cz,...,cm)=/R2(n,cl,cz,...,cm)dn 33)

a

where a and b are two values depending on the given prob-
lem. The unknown parameters Cy, C», ..., Cn can be iden-
tified from the conditions:

o] o _ dJ

3G T = 0. (34)

=3 -

With these parameters known (namely convergence-
control parameters), the first-order approximate solution
(29) is well-determined.

4 Application of OHAM to flow and
heat transfer

We use the basic ideas of the OHAM by considering equa-
tion (12) with the boundary conditions given by equation
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(17). We can choose the linear operator in the form:

Li(@) = @ - K0, (35)

where K > 0 is an unknown parameter at this moment.
Here, we state that the linear operator is not unique.
Equation (22) becomes:

@) - K@y =0, @o(0) = fuw,
D' (0) =1, Dy (c0) =0.

which has the following solution:

1-eKn

CDO("I) =fw+ K

(36)

The nonlinear operator Ny (CD(n)) is obtained from
equation (12):
Ny (@) = @ () + 2" () - ' ()°  G7)
/ 1 " _
+A(cD () + 5NP (n)) =0

such that substituting equation (36) into equation (37), we
obtain

Ni (@o(m)) = (an + pe™™ (38)
where
a= %KA; B=K?-1-Kfy-A. (39)

Having in view that in equation (38) there is an expo-
nential function and that the auxiliary function H(1, C;)
must follow the terms appearing in equation (38), then we
can choose the function H(1, C;) in the following forms:

Hy(, Ci) = C1 + Can + (C3 + C4m)e ™ (40)
+(Cs + Cen)e 21
or
Hy(n, Ci) = C1 +(C2 + C3n + Cqn)e™ (41)
or yet
Hi' (0, Ci) = C1+ Con + C3n° + (C4 + Csme™  (42)

+(Cg + Cym + Cgn?)e 0

and so on, where Cy, C», ..
this moment.

If we choose only the expression (40) for Hs(n, Cy),
then by using equations (38), (40) and (31), we can obtain
the equation in @1 (n, C;):

. are unknown parameters at

0" KD, = [ﬁcl +(aCy +BCa)n + aCznz} e (43)
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+ [ﬁC3 +(aCs + BCyn + asz} e 2Kn
n [ﬁCS +(aCs + BCe)n + aCGnZ} e 3,
@1(0) = @;1'(0) = @1/(c0) = 0.

The solution of equation (43) can be found as:

3(1C1 + 3ﬁC2
4K 4K
aCy  BCoN o aCh 3] iy
a2t 41(2)'7 T ek }e
11ﬁC4 _ BC3 _ (11(XC4

|:_ 85aC, _ 11aCs pLs
108K5  36K* 36K* 6K3 18K*
115aC6

aCs  BCysN\ _ aCy 21 —2kq , [ _

0 Heo ) eo e (- T7asp
_ 13(XC5 _ 13BC6 _ BCs )e_K,l

288K* 288K*4 24K3

7aC
o=+ (7

%)” " (3403532 "

(44)

+

where

3a+ 2K 7a + 3K a+ 6K
My =~ Pev- 41(35 Pe, -2 36K* Por- w
19a + 15K 7a+12Kp 37a + 42K
T T 108K5 YT T 144KY ° T T 864K
3a+ 2K 7a + 3K, 4a + 3K
Ni= =5 Bevs 4K5 Pe 9K4 Pese
26a + 12Kf 3a + 4K 7a+ 6Kf
27K5 32K% 64K5

The first-order approximate solution (29) for equations
(12) and (17) is obtained from equations (36) and (45):

Cs

C4+ C5+

Ce.

f(n) = @(n) = Do(n) + D1(n). (46)

In what follows, we consider equations (13) and (18).
In this case, we choose the linear operator in the form:

Lo (<p(n)) =¢" +Ko' (47)
where the parameter K is defined in equation (35).
Equation (22) becomes:
P0” +Kgpo' =0, 9o(0)=1, @o(oo)=0.  (48)
Equation (48) has the solution
Po(n) = ™. (49)

The nonlinear operator Ny ((p(n)) is obtained from
equation (12):
1
Ny (gp(r[)) = ﬁgo” + @@’ -nd'p (50)
1,
+A (C(p +5ng ) .

Substituting equation (49) into equation (50), we ob-
tain:

Ny ((po(n)) = (myn + my)e XM + mye K1 (51)
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where

2
L K—r—KfW—1+cA;

P (52)

The auxiliary function Hy(1, C;) can be chosen in the
forms:

Hg(n, C;) = C7 + Can + (Co + Crome™™  (53)
+(C11 + Cram)e ™ "
or
Hy(n, C;) = C7 + Cgn + Con + (Cro + C1in)e ™ (54)
+ C13€72Kn
or yet
Hy (n, C;) = C7 +(Cs + Con)e ™ + (C1o (55)

+ Cqin)e K

and so on, where C7, Cg, ... are unknown parameters.
If we choose equation (53) for Hy, then from equations
(51), (53) and (31) we obtain the equation in ¢4(n, C;) as

01" + Ko, = [m2C7 +(myCy + myCe)n + m1C8n2} (56)
ek [mzcg +m3C; + (m1Co + m,Cro
+m3Cg)n + mlclonz} e Kn 4 [m3C9
+myCy1 + (M3C10 + m1C11 + MyCr2)n
+m; C12722} e M+ (m3C11 + m3Cram)e ™,

$1(0) = ¢1(e0) = 0.
Solving equation (56), we obtain:

ZYH1C3 YH1C7 mng m2C7
‘pl(”)z[Pl_( © Tk Tk "k

)n (57)

miCs miC; myCs\ > miCs 3] k
_(K2+2K 21<) _31('7}6'"
[7m1C10 3m1C9 3m2C10 3m3C3
4K4 4K3 4K3 4K3
L MG msC7 (3m1C1o L MGy myCio
2K?2 2K? 2K3 2K? 2K?2

m3Cg miCio 2] -2k
" ZKZ) 2K2 1 }e !
N [5(m3C10 +myCy1 + myC13) | m3Co+myCiq
36K3 6K?2
+ (m3C10+m1C11 +myC1o 5m1C12)
6K2 18K3
miCi, z} 3K (7m3C11 7m3Cq
6K? 12K? 144K3
ms3Ci

D) e, $1(0) = (o) - O,
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where
msC 3msC 9mqi + 6Km, + 2Km
Py =- 231<27 - 413<38 - 121(23 C (58)
_ 63my +27Km; + 5Km; Cro — 5my + K(m; + 3m3)C
36K% 10 36K3 1
_ 20m; + 7ms C
144K3 1

In this way, the first-order approximate solution (29)
for equations (13) and (18) becomes

6(n) =) = po(n) + 1(n, Cy). (59)

5 Numerical examples

In order to prove the accuracy of the obtained results, we
will determine the convergence-control parameters K and
C; which appear in equations (46) and (59) by means of the
least square method. In this way, the convergence-control
parameters are optimally determined and the first-order
approximate solutions known for different values of the
known parameters fw, A, Pr, n and c. In what follows,
we illustrate the accuracy of the OHAM by comparing pre-
viously obtained approximate solutions with the numeri-
cal integration results computed by means of the shooting
method combined with fourth-order Runge-Kutta method
using Wolfram Mathematica 6.0 software. For some values
of the parameters fw, A, Pr, n and ¢ we will determine the
approximate solutions.

Example 5.1.a In the first case we consider fy, = -1,
A =1,¢c =1 n=1,Pr = 0.7. For equation (46),
following the procedure described above, the following
convergence-control parameters are obtained:

C, =-0.0881661632, C, =0.0159074525,

C3 =101.5499315816, C4=-16.3157319695,
Cs =-99.5951678657, (¢ =-64.5910051875
K =0.7591636981

and consequently the first-order approximate solution (46)
can be written in the form:

f(n) = 0.4921333156 + (-0.5668554881
+0.00715364631 — 0.0087518103n°
+0.00174615961>)e 0-7°91636981n
+(~0.3980837570 - 7.4190413787n
+2.359144000371%)e 121832739631
+(=0.5271940704 + 6.17645034881
+2.3348551362n)e #774210%41

(60)
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Table 1: Comparison between OHAM results given by equation (60)
and numerical results for fy, = -1, A = 1.
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Table 2: Comparison between OHAM results given by equation (61)

and numerical results for fy = -1,A=1,c = %, n=1,Pr=0.7.

n faumeric l?OHAM! Eq.(60) relative error = n Onumeric EOHAM, Eq.(61) relative error =
|fnumeric _fOHAM‘ |9numeric_90HAM|

0 -1 -0.9999999999  1.88-107%° 0 1 0.9999999999 8.88-1071°

1 -0.1497942276 -0.1501421749  3.47 -107* 1 0.5325816311 0.5344078544 1.82-1073

2 0.3108643384 0.3106655367 1.98-107% 2 0.2137609331 0.2123010871 1.45-1073

3 0.4604991620 0.4600705386 4.28 -107* 3 0.0624485224 0.0627998626 3.51-107%

4 0.4887865463 0.4894195278 6.32-107* 4 0.0129724736 0.0141235139 1.15-1073

5 0.4919308455 0.4920394273 1.08-107* 5 0.0019027817 0.0018865990 1.61-107°

6 0.4921388939 0.4918417250 2.97 -107* 6 0.0001968219 -0.0002871987  4.84-.107*

7 0.4921471111 0.4919782168 1.68-107% 7 0.0000144329 -0.0002516924  2.66-107*

8 0.4921472622 0.4922151064 6.78-107° 8 8.27 1077 0.0000468974 4.60-107°

9  0.4921472290 0.4923440748 1.96 -107% 9 1.08-1077 0.0002281868 2.28-107%

10 0.4921472001 0.4923640175 2.16 1074 10 7.47 -1078 0.0002807824 2.80-107*

Now, for equation (59), the convergence-control pa-
rameters are:
C; =0.0363993085,
Co = -7.1448075448,
C11 =42.1871800319,

Cs = 0.0363993085,

Cio = 4.3237724702,

Ci2 = 18.0805214975
and therefore the first-order approximate solution (59) be-
comes:

6(n) = (0.3541683003 +0.24158769577
- 0.08239068731%+
+0.0060665514n° )¢ 0-7591636981n
+(-2.6848440528 + 6.36605218667
_ 1.4238603876n2)e_1'5183273963”+
+(3.3306757524 - 3.3281240073n
_ 1.9846972772”2)e—2.2774910945r[

(61)

In Tables 1and 2 we present a comparison between the
first-order approximate solutions given by equations (60)
and (61) respectively, with numerical results for some val-
ues of variable 1 and the corresponding relative errors.

Example 5.1.b In this case, we consider f, = -1,
A=1,c = %, n = 1, Pr = 2. The solution f(n) is given
by equation (60). The convergence-control parameters for
equation (59) are:

C; =0.3992391297,
Cy = 13.9195482545,
C11 =-37.1866029355,

Cg = -0.0398233823,
Cio = -9.8140323466,
Ci12 = -48.0634410813

such that the first-order approximate solution (59) be-
comes:

8(n) = (-2.1207041376 - 0.05616854887 (62)

+0.08793690701° - 0.00663723031°)

. e—0.7591636981n + 6_1'5183273963n(7.9716346529—
-9.19211285201 + 3.23185643961>)e 0791636981
+(~4.8509305153 + 8.05723605367
+5.2759197606n°)e">2774210%451

In Table 3 we present a comparison between the first-
order approximate solutions given by equation (62) with
numerical results and corresponding relative errors.

Example5.2.aForfy, =0,A=1,c=%1,n=1,Pr=
0.7, the convergence-control parameters for equation (46)
are:

C1 =-1.2640611927,
C3 =-34.0575215187,
Cs =37.1281425060,
K =1.1203766872

C, = 0.1680009020,
C4 =30.7898356526,
Ce = 13.8590545976,

and therefore, the first-order approximate solution (46)
can be written in the form:

f(n) =0.9662722752 + (1.3563995648
+0.03516043221 - 0.1157605059n°
+0.01249586441>)e 112037668721
+(-2.5490820161 - 1.71111138707
- 2.0440805123n%)e 224072337441 4 (0.2264101761~
- 0.75524067431 - 0.23001928081%)e>-3611300616n

(63)

For equation (59), the convergence-control parame-
ters are:

C; =-1.6947892627,
Co =-1.2815579214,

Cg = 0.2632100295,
Ci0 = 2.6268699384,
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C11 = 15.8897673738, (12 =9.5966071873

and the first-order approximate solution (59) is:

6(n) = (0.2987405005 + 1.1383970916n
-0.4581387031n% + 0.04386833821°)
. @ 112037668721 4 (_0.1000278783+
+1.48185608451 — 0.5861577557n°)
. @ 224075337440 4 (0.8012873778~

~0.59590661651 — 0.71379320431n?)
-3.3611300616n

(64)

e

In Tables 4 and 5 we present a comparison between
the first-order approximate solutions given by equations
(63) and (64) respectively, with numerical results and cor-
responding relative errors.

Table 3: Comparison between OHAM results given by equation (62)

Viscous flow and heat transfer over an unsteady stretching surface = 377

Table 5: Comparison between OHAM results given by equation (64)

and numerical results forfy =0,A=1,c =

E:

1 n=1,Pr=0.7.

BOnumeric Oonam, Eq. (64)  relative error =

|enumeric_90HAM|
0 1 1.00 22210710
1 0.4003127445 0.4006174190 3.04-107%
2 0.1184290061 0.1183366534 9.23.107°
3 0.0250358122 0.0254649591 4.29 107
4 0.0037386526 0.0032572108 4.81-107*
5 0.0003935287 -0.0000242886  4.17-107*
6 0.0000291963 0.0001165652 8.73-107
7 1.53-107° 0.0003370019 3.35.107%
8 6.39.1078 0.0003255701 3.25-107%
9 8.43-107° 0.0002261157 2.26 107
10 6.39-107° 0.0001326393 1.32-1074

Example 5.2b Forfy, = 0,4 = 1,¢c = 3,n = 1,

and numerical results for fy = -1,A=1,c = %, n=1, Pr=2.

n BOnumeric Oonam, Eq. (62)  relative error =
‘Onumeric_QOHAM|

0 1 0.9999999999 1.77 -107%

1 0.3341908857 0.3295767993 4.61-1073

2 0.0347540513 0.0372485103 2.49 1073

3 0.0011305745 -0.0002320988  1.36-1073

4 0.0000127262 -0.0002852788  2.98-107*

5 -5.44 1078 0.0002991504 2.99-.107%

6 -9.15.1078 0.0002884740 2.88-107*

7 -7.96 1078 0.0001372878 1.37-107%

8 -7.05.1078 -0.0000295212  2.94-10™°

9 -6.53:1078 -0.0001505702  1.50-107*

10 -5.99-1078 -0.0002044072  2.04-107*

Table 4: Comparison between OHAM results given by equation (63)
and numerical results for fy = 0, A = 1.

n frumeric fOHAM’ Eq. (63) relative ejror =
‘f numeric _f OHAM|

0 -550-107%! 4.44 10710 4.44 10710

1 0.6894348341 0.6894914970 5.66 -:107°

2 0.9167696529 0.9166682157 1.01-107*

3 0.9608821303 0.9609858144 1.03-107*

4 0.9659196704 0.9659030730 1.65:107°

5 0.9662619960 0.9661631962 9.87 107

6 0.9662759513 0.9662663279 9.62-10°°

7 0.9662762950 0.9663395358 6.32:107

8 0.9662763018 0.9663501433 7.38:107°

9 0.9662763032 0.9663306688 5.43.107°

10 0.9662763043 0.9663080318 3.17 107

Pr = 2 the firs-order approximate solution (46) is given
by equation (63). The convergence-control parameters for
equation (59) are determined as:

C; =0.4652101281,
Co = 14.4924736065,
Ci11 =0.7277740132,

Cs = -0.0724620728,
Ci0 =-12.1643720147,
C12 = -56.0450834796

such that the first-order approximate solution (59) may be
written as:

6(n) = (-1.4030799687 +0.10426105357
+0.0880913412n - 0.0120770121n°)
. @ 112037668721 4 (3 1476673319~
~3.8089261057n + 2.7143486992n%)
. @ 2A0TSIITAM 4 (L0, 7445873632+
+5.19739120187 + 4.16861906941>)e 336113006161

(65)

In Table 6 we present a comparison between the first-
order approximate solutions given by equation (65) with
numerical results. The corresponding relative errors are
also presented.

Example 5.3.a We consider fy, = 1,4 = 1,¢ = 3,
n = 1, Pr = 0.7. The convergence-control parameters for
equation (46) are given by:

C1 =0.6287723857,
C3 = -64.6127509553,
Cs = 65.7049797786,
K=1.6976766716.

C, =-0.1379103919,
Cy =52.1862259014,
Ce = 66.9471031457,
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Table 6: Comparison between OHAM results given by equation (65)

and numerical results forfy, =0,A=1,c = %, n=1,Pr=2.
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Table 7: Comparison between OHAM results given by equation (66)
and numerical results for fy =1, A = 1.

n O numeric Bonam, EQ. (65)  relativeerror=  p foumeric fouams EG. (66)  relative error =
‘enumeric_GOHAM‘ |fnumeric _foHAM‘

0 1 1 0 0 1 1.00 2.22-.10716

1 0.1197281855 0.1187072441 1.02-1073 1 1.5177074192 1.5176780223 2.93:107°

2 0.0042249398 0.0041010249 1.23.107* 2 1.6030516967 1.6030350430 1.66-107°

3 5.09-10™° -6.04:107° 5.69-107° 3 1.6114161917 1.6114348208 1.86-107°

4 2.41-1077 0.0001841967 1.83-107* 4 1.6119056438 1.6119031833 2.46 -10°°

5 1.67 -1078 0.0000163574 1.63-107° 5 1.6119228465 1.6119073012 1.55-107°

6 1.42-1078 -0.0001452859  1.45.107* 6 1.6119232066 1.6119136285 9.57-107°

7 1.26 1078 -0.0001791057  1.79-107* 7 1.6119232084 1.6119199331 3.27-107°

8 1.15-.10°8 -0.0001403309  1.40-107% 8 1.6119232063 1.6119229505 2.55-1077

9 1.09-1078 -0.0000887807  8.87-10™° 9 1.6119232045 1.6119240509 8.46 -1077

10 1.05-1078 -0.0000493843  4.93.107° 10 1.6119232031 1.6119243982 1.19-10°°

such that the first-order approximate solution (46) may be
written as:

f(n) = 1.6119245343 + (-0.1095284867
-0.01457454951 + 0.03810895261>
_ 0_0067695650”3)6—1.697676671611
+(-0.6841717456 + 0.0590171180n
_ 1.5089146740n2)e—3.3953533432n
+(0.1817756979 - 0.6276022634n
_ 0.4839278208?’12)6_5'0930300148”

(66)

The convergence-control parameters for equation
(59), are:

C; =-2.4317156290,
Co =3.2538989273,
C11 =2.6307320394,

Cs = 0.4199773974,
C10 =2.8819189890,
C12 = 0.0503403055

and the first-order approximate solution (59) becomes:

6(n) = (0.0191058146 + 1.89942426297
-0.72167808791n° +0.06999623291°)
. @ 1-69767667161 4 (0.9928667494+
+0.3712879543n - 0.42439161661°)
. 7339535334321 4 (_0.0119725641-

-0.12597167117 - 0.0024710391n2)
-5.0930300148n

(67)

-e

In Tables 7 and 8 we present a comparison between
the first-order approximate solutions given by equations
(66) and (67) respectively, with numerical results and cor-
responding relative errors.

Table 8: Comparison between OHAM results given by equation (67)
and numerical results forfy, =1,A=1,c = %, n=1,Pr=0.7.

n O numeric Oonam, Eq. (67)  relative error =
|6numeric_6OHAM|

0 1 1 0

1 0.2625870984 0.2626175913 3.04-107°

2 0.0500304293 0.0500306615 2.32-1077

3 0.0067456425 0.0067634155 1.77 -107°

4 0.0006411532 0.0006125219 2.86:107°

5 0.0000429270 0.0000457402 2.81:107°

6 2.01-107° 2.08:107° 1.88:107°

7 5.14-1078 1.35.107° 1.34-107°

8 -1.29-1078 6.14-107° 6.16 -107°

9 -1.33.1078 2.24-107° 2.25.107°

10 -1.22-10°8 7.13-.1077 7.25 1077

Example53bForf, =1,A=1,c=3,n=1,Pr=
2 the first-order approximate solution for f(n) is given by
equation (66).

For equation (59) the convergence-control parameters
are given by:

C; =-0.3023817542,

Co =-27.1653468182,

C11 =-15.3543205956,

Cs =0.0519503347,
Ci0 = 23.1898068679,
C12 =31.0226487950.
such that the first-order approximate solution (59) may be
written as:
6(n) = (0.9205703595 - 0.192160204671
- 0.0487183578n2 + 0.00865838917°)
. @ 1-69T6TO6TION | ((0.2637846962+
+0.94290533661 — 3.41493278071n°)

(68)
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. @73:3953533432n 4 (_0,1843550558—

~2.0986586159n — 1.52279923261%)

. e—5 .0930300148n

In Table 9 we present a comparison between the first-
order approximate solutions given by equations (68) with
numerical results. The corresponding relative errors are
presented.

Table 9: Comparison between OHAM results given by equation (68)

and numerical results forfy =1,A=1,c = %, n=1,Pr=2.

n BOnumeric Oonam, Eq. (68)  relative error =
‘enumeric_HOHAM|

0 1 1.00 2.22-1071

1 0.0288461240 0.0286378502 2.08-107*

2 0.0002627867 0.0004342087 1.71-107*

3 1.00-:10°° -1.91-1074 1.91-107*

4 1.21-1077 -1.46-107* 1.46 1074

5 1.05-1077 -3.96 107 3.97 .10

6 9.39.1078 -4.54.107° 4.63-107°

7 8.68-1078 1.08 107 9.96 -1077

8 7.95.1078 8.82:1077 8.02-1077

9 7.44 1078 3.60-1077 2.85-1077

10 6.91-1078 1.18-1077 4.89-1078

In Figs 1 and 2 are plotted the profiles of f(n) and ve-
locity profile f’(n) respectively for different values of fy. It
is clear that the solution f(n) increases with an increase of
fw and the velocity decreases with an increase of f,y. The
condition f/(n) > 0 for 7 > 0 is satisfied.

In Figs. 3—7 are plotted the temperature profiles given
for two values of Prandtl number Pr = 0.7 and Pr = 2
respectively and different values of f,,. From Figs 3 and 4

=

15}

-05f /

—1.0{

Figure 1: Solutions f oy (17) given by (60), (63) and (66) for differ-
ent values of f
— numerical solution; - - - OHAM solution.
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- n 4 n - n i n . n i
2 4 6 8 10”

Figure 2: Solutions fOHAM(n) obtained from (60), (63) and (66) for
different values of fi,
— numerical solution; - - - OHAM solution.

PR— 4 L - L i L " L i
n
6 8 10

Figure 3: Plots of 8o (1) given by Egs. (61), (64) and (67) for
A=1,c= %, n =1, Pr = 0.7 and three values of f,,
— numerical solution; - - - OHAM solution.

fw=-1, 0, 1

4 6 8 10 1
Figure 4: Plots of Oppan(n) given by Egs. (62), (65) and (68) for
A=1,c= %, n =1, Pr = 2 and three values of f,,

— numerical solution; - - - OHAM solution.
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it is observed that the temperature 5(11) decreases with an
increase of the f,, for any values of parameter Pr.

101

08!

04

02l

T*:‘..A_'_“a!‘ PR | L " L i L " L i

2 4 6 8 10
Figure 5: Plots of 8pya(17) given by Egs. (61) and (62) for A = 1,
c=1,n=1,fs=-1and two values of Pr

— numerical solution; - - - OHAM solution.

i L " L i L " L 4
n
6 8 10

Figure 6: Plots of Opx (1) given by Egs. (64) and (65) for A = 1,

c= %, n =1, fy = 0 and two values of Pr

— numerical solution; - - - OHAM solution.

10+

0.8 ;u

0.2

| u'/Pr o

B s O S S O S PR S PR S PR |

2 4 6 8 10

n

Figure 7: Plots of g4 (17) given by Egs. (67) and (68) for A = 1,
Cc= %, n =1, fy = 1 and two values of Pr
— numerical solution; - - - OHAM solution.
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From Figs. 5-7 we can conclude that the temperature
decreases with the Prandtl number and different values of
fw.

From Tables 1-9 we can summarize that the results ob-
tained by means of OHAM are accurate in comparison with
the numerical results.

6 Conclusions

In this work, the Optimal Homotopy Asymptotic Method
(OHAM) is employed to propose analytical approximate
solutions to the flow and heat transfer in a viscous fluid
over an unsteady stretching surface. For three values of the
suction/injection parameter fy,, the method provides solu-
tions which are compared with numerical solutions com-
puted by means of the shooting method combined with
Runge-Kutta method and using Wolfram Mathematica 6.0
software. An analytical expressions for the heat transfer
for two values of the Prandtl number are obtained. The so-
lution f(n) increases with an increase of f,, and velocity
decreases with an increase of f,,. The temperature 5(’1) de-
creases monotonically with the Prandtl number and with
the distance 7 from the stretching surface.

Our procedure is valid even if the nonlinear equa-
tions of the motion do not contain any small or large pa-
rameters. The proposed approach is mainly based on a
new construction of the approximate solutions and espe-
cially with regard to the involvement of the convergence-
control parameters via the auxiliary functions. These pa-
rameters lead to an excellent agreement of the approxi-
mate solutions with numerical results. This technique is
effective, explicit and accurate for nonlinear approxima-
tions rapidly converging to the exact solution after only
one iteration. Also, OHAM provides a simple but rigor-
ous way to control and adjust the convergence of the so-
lution by means of some convergence-control parameters.
Our construction of homotopy is different from other ap-
proaches, especially with regard to the linear operator L
and to the auxiliary convergent-control function Hy and Hy
which ensure a fast convergence of the solutions.

It is worth mentioning that the proposed method is
straightforward, concise and can be applied to other non-
linear problems.

Conflict of Interests: The authors declare that there is no
conflict of interests regarding the publication of this paper.
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