Research Article Open Access

Bo Tang\*, Yingzhe Fan, Jianping Zhao, and Xuemin Wang

# Solitary and compacton solutions of fractional KdV-like equations

DOI 10.1515/phys-2016-0038 Received Jun 13, 2015; accepted Jul 02, 2016

**Abstract:** In this paper, based on Jumarie's modified Riemann-Liouville derivative, we apply the fractional variational iteration method using He's polynomials to obtain solitary and compacton solutions of fractional KdV-like equations. The results show that the proposed method provides a very effective and reliable tool for solving fractional KdV-like equations, and the method can also be extended to many other fractional partial differential equations.

**Keywords:** Fractional variational iteration method; Homotopy perturbation method; Modified Riemann-Liouville derivative; Fractional partial differential equation

PACS: 02.30.Jr; 02.60.-x; 04.20.Fy; 04.20.Jb

#### 1 Introduction

In recent years, theory and numerical analysis of fractional partial differential equations (FPDEs) have received considerable interest due to their numerous applications in the areas of physics, biology, fluid and continuum mechanics, and engineering [1–11]. For example, in [10], Devendra Kumar, Jagdev Singh and Sunil Kumar used the homotopy perturbation transform method to study the nonlinear fractional Zakharov-Kuznetsov equation arising in ion-acoustic waves; Devendra Kumar, Jagdev Singh and Sushila used the homotopy analysis transform method to

Recently, Jumarie proposed a new definition of the fractional derivative which is a simple alternative definition to the Riemann-Liouville derivative. His definition has the advantages of both the standard Riemann-Liouville and the Caputo fractional derivatives, because the Jumarie derivative of a constant is equal to zero, an arbitrary continuous function needs not to be differentiable, and more importantly it removes singularity at the origin for all functions, for example, the exponentials functions and Mittag-Leffler functions.

In this paper, we will apply the the fractional variational iteration method using He's polynomials (FVIMHP) [27–29] and Jumarie's modified Riemann-Liouville derivative to get solitary and compacton solutions of the following KdV-like equations

• The time fractional K(2, 2) equation:

$$D_t^{\alpha} u + a(u^2)_x + b(u^2)_{xxx} = 0, \quad 0 < \alpha \le 1.$$

• (2+1)-dimensional time fractional Z-K equation:

$$D_t^{\alpha} u + a(u^2)_x + b(u^2)_{xxx} + k(u^2)_{yyx} = 0, \quad 0 < \alpha \le 1.$$

• (3+1)-dimensional time fractional Z-K equation:

$$D_t^{\alpha} u + a(u^2)_x + b(u^2)_{xxx} + k(u^2)_{yyx} + r(u^2)_{zzx} = 0,$$
  
0 < \alpha \le 1.

• (3+1)-dimensional time fractional K-P equation:

$$[D_t^{\alpha}u + \frac{a}{2}(u^2)_x + b(u(u)_{xx})_x]_x + u_{yy} + u_{zz} = 0,$$
  
0 < \alpha \le 1.

Yingzhe Fan: School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, P.R. China

**Jianping Zhao:** College of Mathematics and System Sciences, Xin-Jiang University, Urumqi 830046, P.R. China

**Xuemin Wang:** Department of Mechanical Engineering, University of Texas at Dallas, Richardson, United States of America

study the fractional biological population model in [11]. For better understanding of the complicated nonlinear physical phenomena, the solution of the fractional differential equation is much involved. In the past, various methods have been proposed to obtain solutions of FPDEs, such as homotopy perturbation method [12–14], homotopy perturbation Sumudu transform method [15, 16], Adomian decomposition method [17, 18], homotopy analysis method [19], fractional variational iteration method [20, 21], finite difference method [22], fractional sub-ODE method [23–26], and so on. Based on these methods, many fractional differential equations have been investigated.

<sup>\*</sup>Corresponding Author: Bo Tang: School of Mathematics and Computer Science, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, P.R. China; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, P.R. China; Email: tangbo0809@163.com

<sup>© 2016</sup> B. Tang *et al.*, published by De Gruyter Open.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

The rest of this paper is organized as follows: In Section 2, we introduce some basic definitions of Jumarie's modified Riemann-Liouville derivative and give the main steps of the method here. In Section 3, we construct solitary and compacton solutions of fractional KdV-like equations by the proposed method. Some conclusions are given in Section 4.

### 2 Description of Modified Riemann-Liouville derivative and FVIMHP method

In this section, we first introduce some basic definitions of the fractional calculus theory.

**Definition 2.1.** The Riemann-Liouville fractional integral [30] is defined as

$$I_x^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-\xi)^{\alpha-1} f(\xi) d\xi, \qquad \alpha > 0.$$
 (1)

**Definition 2.2.** The Jumarie's modified Riemann-Liouville derivative [31–34] is defined as

$$D_{x}^{\alpha}f(x) = \begin{cases} \frac{1}{\Gamma(-\alpha)} \frac{d}{dx} \int_{0}^{x} (x - \xi)^{-\alpha - 1} (f(\xi) - f(0)) d\xi, & \alpha < 0, \\ \frac{1}{\Gamma(1-\alpha)} \frac{d}{dx} \int_{0}^{x} (x - \xi)^{-\alpha} (f(\xi) - f(0)) d\xi, & 0 < \alpha < 1, \\ (f^{(n)}(x))^{(\alpha - n)}, & n \le \alpha < n + 1, \\ & n \ge 1, \end{cases}$$

**Definition 2.3.** The integral with respect to  $(dx)^{\alpha}$  is defined by Jumarie [31] as follows:

$$\int_{0}^{x} f(\xi)(d\xi)^{\alpha} = \alpha \int_{0}^{x} (x - \xi)^{\alpha - 1} f(\xi) d\xi, \qquad 0 < \alpha \le 1. \quad (3)$$

We present the essential steps of the FVIMHP method as follows: Consider the following initial value problem

$$D_t^r u(x,t) + L(u(x,t)) + N(u(x,t)) = f(x,t)$$
 (4)

where  $D_t^r$  is the Jumarie's modified Riemann-Liouville derivative, L is the linear operator, N is the nonlinear operator.

**Step 1.** By using the fractional variational iteration method (FVIM), we can get the iteration formula as follows:

$$u_{m+1}(x,t) = u_m(x,t) + I_t^{\gamma} \left\{ \lambda(\tau) \left[ D_t^r u_m(x,\tau) + L(u_m(x,\tau)) + N(\widetilde{u}_m(x,\tau)) - f(x,\tau) \right] \right\}, \quad (5)$$

where  $\lambda$  is the Lagrangian multiplier, the subscript m denotes the m-th order approximation, and  $\widetilde{u}_m$  is considered as a restricted variation.

**Step 2.** By means of the homotopy perturbation method (HPM), Eq. (5) becomes the following form:

$$\sum_{m=0}^{\infty} p^{m} u_{m}(x, t) = u_{0}(x, t) + p \left\{ \sum_{m=1}^{\infty} p^{m} u_{m}(x, t) + I_{t}^{\gamma} \left[ \lambda(\tau) t \left( \sum_{m=0}^{\infty} p^{m} D_{t}^{r} u_{m}(x, \tau) + \sum_{m=0}^{\infty} p^{m} L(u_{m}(x, \tau)) + \sum_{m=0}^{\infty} p^{m} N(\widetilde{u}_{m}(x, \tau)) - f(x, \tau) \right) \right] \right\},$$
(6)

where  $p \in [0, 1]$  is an imbedding parameter, and  $u_0$  is an initial approximation of Eq. (4).

**Step 3.** Comparing the coefficients of the same order of p on both sides of Eq. (6), we can obtain  $u_m(m = 0, 1, 2, ...)$ . According to the HPM, the solution of Eq. (4) can be expressed as:

$$u = \sum_{m=0}^{\infty} u_m. (7)$$

## 3 Application of the proposed method

In this section, we apply the FVIMHP method to obtain solitary and compacton solutions of the time fractional KdV-like equations.

### 3.1 Time fractional K(2, 2) equation

We consider the following time fractional K(2, 2) equation:

$$D_t^{\alpha} u + a(u^2)_x + b(u^2)_{xxx} = 0, \quad 0 < \alpha \le 1,$$
 (8)

with the initial condition

$$u(x,0) = \frac{4c}{3a} \cosh^2(\frac{1}{4}\sqrt{-\frac{a}{b}}x).$$
 (9)

According to the FVIMHP method given in Section 2, we can get the iteration formula of Eq. (8) in the following form:

$$\sum_{m=0}^{\infty} p^m u_m = u_0 + p \left\{ \sum_{m=1}^{\infty} p^m u_m - \frac{1}{\Gamma(1+\alpha)} \int_0^t \left[ \sum_{m=0}^{\infty} p^m D_{\tau}^{\alpha} u_m \right] \right\}$$

330 — B. Tang et al. DE GRUYTER OPEN

$$+ a \left( \left( \sum_{m=0}^{\infty} p^{m} u_{m} right \right)^{2} \right)_{x}$$

$$+ b \left( \left( \sum_{m=0}^{\infty} p^{m} u_{m} \right)^{2} \right)_{xyy} \left( d\tau \right)^{\alpha} \right\}. \tag{10}$$

By the above iteration formula and initial approximation  $u_0(x,t) = u(x,0) = \frac{4c}{3a} \cosh^2(\frac{1}{4}\sqrt{-\frac{a}{b}}x) = \frac{2c}{3a}[\cosh(\frac{1}{2}\sqrt{-\frac{a}{b}}x) + 1]$ , we can obtain

$$p^{1}: u_{1}(x, y, t) = -\frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b}}\right)$$

$$\cdot \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}x\right) \frac{t^{\alpha}}{\Gamma(1+\alpha)},$$

$$p^{2}: u_{2}(x, y, t) = \frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b}}\right)^{2}$$

$$\cdot \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}x\right) \frac{t^{2\alpha}}{\Gamma(1+2\alpha)},$$

$$p^{3}: u_{3}(x, y, t) = -\frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b}}\right)^{3}$$

$$\cdot \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}x\right) \frac{t^{3\alpha}}{\Gamma(1+3\alpha)},$$

$$p^{4}: u_{4}(x, y, t) = \frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b}}\right)^{4}$$

$$\cdot \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}x\right) \frac{t^{4\alpha}}{\Gamma(1+4\alpha)},$$

$$\vdots$$

So we have the solitary solution of Eq. (8):

$$u(x,t) = \frac{2c}{3a} \left\{ \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}x\right) \left[ 1 + \left(\frac{c}{2}\sqrt{-\frac{a}{b}}\right)^{2} \right] \right.$$

$$\left. \cdot \frac{t^{2\alpha}}{\Gamma(1+2\alpha)} + \left(\frac{c}{2}\sqrt{-\frac{a}{b}}\right)^{4} \frac{t^{4\alpha}}{\Gamma(1+4\alpha)} + \cdots \right]$$

$$- \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}x\right) \left[ \left(\frac{c}{2}\sqrt{-\frac{a}{b}}\right) \frac{t^{\alpha}}{\Gamma(1+\alpha)} + \left(\frac{c}{2}\sqrt{-\frac{a}{b}}\right)^{3} \frac{t^{3\alpha}}{\Gamma(1+3\alpha)} + \cdots \right] + 1 \right\}$$

$$= \frac{2c}{3a} \left[ \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}x\right) \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}ct^{\alpha},\alpha\right) - \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}ct^{\alpha},\alpha\right) + 1 \right],$$

where the functions  $\sinh(z, \alpha)$  and  $\cosh(z, \alpha)$  are defined as follows:

$$\sinh(z,\alpha) = \frac{E_{\alpha}(z) - E_{\alpha}(-z)}{2}, \quad \cosh(z,\alpha) = \frac{E_{\alpha}(z) + E_{\alpha}(-z)}{2}.$$

Here  $E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(1+k\alpha)} (\alpha > 0)$  is the Mittag-Leffler function.

We show some properties of the approximate solution (11) obtained by the proposed method in Fig. 1. The plot (a) shows that approximate solution (11) is in good agreement with the exact solution. The plot (b) shows the fifth-order approximate solution (11) when  $\alpha = 0.89$ . The plot (c) shows the approximate solution (11) for different values of  $\alpha$ .

If we select the initial approximation  $u(x, 0) = -\frac{4c}{3a}\sinh^2(\frac{1}{4}\sqrt{-\frac{a}{b}}x)$ , we can get the solitary solution as follows:

$$u(x,t) = -\frac{2c}{3a} \left[ \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}x\right) \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}ct^{\alpha},\alpha\right) - \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}x\right) \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b}}ct^{\alpha},\alpha\right) - 1 \right].$$
(12)

In order to search compacton solutions of Eq. (8), we select the following initial approximations

$$u(x,0) = \begin{cases} \frac{4c}{3a} \sin^2(\frac{1}{4}\sqrt{\frac{a}{b}}x), & |x| < \frac{\pi}{\mu}, \\ 0, & \end{cases}$$

and

$$u(x,0) = \begin{cases} \frac{4c}{3a}\cos^2(\frac{1}{4}\sqrt{\frac{a}{b}}x), & |x| < \frac{\pi}{2\mu}, \\ 0. & \end{cases}$$

Using the FVIMHP in the same manner, we could get the compacton solutions as follows:

$$u(x,t) = \begin{cases} \frac{2c}{3a} \left[ 1 - \cos(\frac{1}{2}\sqrt{\frac{a}{b}}x)\cos(\frac{1}{2}\sqrt{\frac{a}{b}}ct^{\alpha}, \alpha) - \sin(\frac{1}{2}\sqrt{\frac{a}{b}}x)\sin(\frac{1}{2}\sqrt{\frac{a}{b}}ct^{\alpha}, \alpha) \right], & |x - ct^{\alpha}| < \frac{\pi}{\mu}, \\ 0, & \end{cases}$$

and

$$u(x,t) = \begin{cases} \frac{2c}{3a} \left[ 1 + \cos(\frac{1}{2}\sqrt{\frac{a}{b}}x)\cos(\frac{1}{2}\sqrt{\frac{a}{b}}ct^{\alpha}, \alpha) + \\ \sin(\frac{1}{2}\sqrt{\frac{a}{b}}x)\sin(\frac{1}{2}\sqrt{\frac{a}{b}}ct^{\alpha}, \alpha) \right], & |x - ct^{\alpha}| < \frac{\pi}{2\mu}, \\ 0, & \end{cases}$$

where  $\mu = \frac{1}{4} \sqrt{\frac{a}{b}}$ .

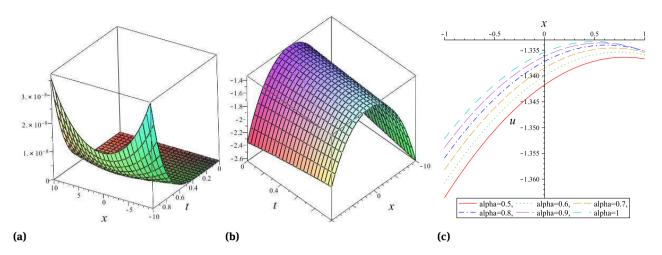
### 3.2 (2+1)-dimensional time fractional Z-K equation

Consider the following (2+1)-dimensional time fractional Z-K equation:

$$D_t^{\alpha} u + a(u^2)_x + b(u^2)_{xxx} + k(u^2)_{yyx} = 0, \quad 0 < \alpha \le 1.$$
 (13)

with the initial condition

$$u(x, y, 0) = \frac{4c}{3a} \cosh^{2}(\frac{1}{4} \sqrt{-\frac{a}{b+k}}(x+y)).$$
 (14)



**Figure 1:** (a) the absolute error between the fifth-order approximate solution (11) and exact solution when  $\alpha = 1$  (b) the fifth-order approximate solution (11) when  $\alpha = 0.89$  (c) the fifth-order approximate solution (11) for different values of  $\alpha$  when t = 0.5; c = 1; a = -1; b = 10

According to the method given in Section 2, its iteration formula can be constructed in the following form:

$$\sum_{m=0}^{\infty} p^m u_m = u_0 + p \left\{ \sum_{m=1}^{\infty} p^m u_m - \frac{1}{\Gamma(1+\alpha)} \int_0^t \left[ \sum_{m=0}^{\infty} p^m D_{\tau}^{\alpha} u_m \right] \right\}$$
 of Eq. (13)
$$+ a \left( \left( \sum_{m=0}^{\infty} p^m u_m \right)^2 \right)_{\chi} + b \left( \left( \sum_{m=0}^{\infty} p^m u_m \right)^2 \right)_{\chi\chi\chi}$$

$$+ k \left( \left( \sum_{m=0}^{\infty} p^m u_m \right)^2 \right)_{\chi\chi\chi} \right] (d\tau)^{\alpha}$$
 (15)

By initial approximation  $u_0(x, y, t) = u(x, y, 0) = \frac{4c}{3a} \cosh^2(\frac{1}{4}\sqrt{-\frac{a}{b+k}}(x+y))$ , we can obtain

$$p^{1}: u_{1}(x, y, t) = -\frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b+k}}\right)$$

$$\cdot \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}(x+y)\right) \frac{t^{\alpha}}{\Gamma(1+\alpha)},$$

$$p^{2}: u_{2}(x, y, t) = \frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b+k}}\right)^{2}$$

$$\cdot \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}(x+y)\right) \frac{t^{2\alpha}}{\Gamma(1+2\alpha)},$$

$$p^{3}: u_{3}(x, y, t) = -\frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b+k}}\right)^{3}$$

$$\cdot \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}(x+y)\right) \frac{t^{3\alpha}}{\Gamma(1+3\alpha)},$$

$$p^{4}: u_{4}(x, y, t) = \frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b+k}}\right)^{4}$$

$$\cdot \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}(x+y)\right) \frac{t^{4\alpha}}{\Gamma(1+4\alpha)},$$

Consequently, we have the following solitary solution of Eq. (13)

$$u(x, y, t) = \frac{2c}{3a} \left[ \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}(x+y)\right) \right]$$

$$\cdot \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}ct^{a}, \alpha\right)$$

$$- \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}(x+y)\right)$$

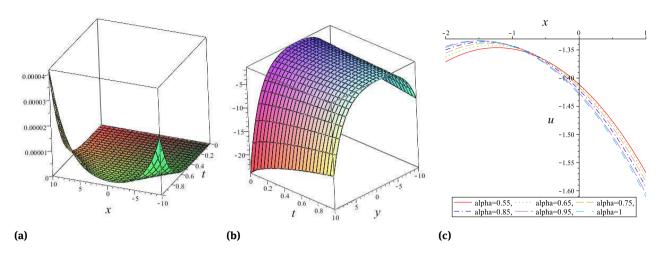
$$\cdot \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}ct^{a}, \alpha\right) + 1, \quad (16)$$

We show some properties of the approximate solution (16) obtained by the proposed method in Fig. 2. The plot (a) shows that the approximate solution (16) is in good agreement with the exact solution when  $\alpha = y = 1$ . The plot (b) shows the fifth-order approximate solution (16) when x = 2,  $\alpha = 0.75$ . The plot (c) shows the approximate solution (16) for different values of  $\alpha$ .

If we choose  $u(x, y, 0) = -\frac{4c}{3a}\sinh^2(\frac{1}{4}\sqrt{-\frac{a}{b+k}}(x+y))$ , then we can obtain the solitary solutions of Eq. (13) as follows:

$$u(x, y, t) = -\frac{2c}{3a} \left[ \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}(x+y)\right) \right]$$
$$\cdot \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}ct^{a}, \alpha\right)$$
$$-\sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}(x+y)\right)$$
$$\cdot \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k}}ct^{a}, \alpha\right) - 1 \right].$$

332 — B. Tang et al. DE GRUYTER OPEN



**Figure 2:** (a) the absolute error between the fifth-order approximate solution (16) and exact solution when  $\alpha = y = 1$  (b) the fifth-order approximate solution (16) when x = 2,  $\alpha = 0.75$  (c) the fifth-order approximate solution (16) for different values of  $\alpha$  when t = 0.5, y = 2, c = 1; a = -1; b = k = 1

In order to construct compacton solutions of Eq. (13), we select initial approximations as follows:

$$u(x,y,0) = \begin{cases} \frac{4c}{3a} \sin^2(\frac{1}{4}\sqrt{\frac{a}{b+k}}(x+y)), & |x+y| < \frac{\pi}{\mu}, \\ 0, & \end{cases}$$

and

$$u(x,y,0) = \begin{cases} \frac{4c}{3a}\cos^2(\frac{1}{4}\sqrt{\frac{a}{b+k}}(x+y)), & |x+y| < \frac{\pi}{2\mu}, \\ 0. & \end{cases}$$

By using the FVIMHP method, we can get the following compacton solutions of Eq. (13)

$$u(x, y, t) = \begin{cases} \frac{2c}{3a} \left[ 1 - \cos(\frac{1}{2} \sqrt{\frac{a}{b+k}} (x+y)) \cos(\frac{1}{2} \sqrt{\frac{a}{b+k}} c t^{\alpha}, \alpha) \\ -\sin(\frac{1}{2} \sqrt{\frac{a}{b+k}} (x+y)) \sin(\frac{1}{2} \sqrt{\frac{a}{b+k}} c t^{\alpha}, \alpha) \right], & |x+y-ct^{\alpha}| < \frac{\pi}{\mu}, \\ 0. \end{cases}$$

and

$$u(x, y, t) = \begin{cases} \frac{2c}{3a} \left[ 1 + \cos(\frac{1}{2} \sqrt{\frac{a}{b+k}} (x+y)) \cos(\frac{1}{2} \sqrt{\frac{a}{b+k}} c t^{\alpha}, \alpha) + \sin(\frac{1}{2} \sqrt{\frac{a}{b+k}} (x+y)) \sin(\frac{1}{2} \sqrt{\frac{a}{b+k}} c t^{\alpha}, \alpha) \right], & |x+y-ct^{\alpha}| < \frac{\pi}{2\mu}, \\ 0, & \end{cases}$$

where  $\mu = \frac{1}{4} \sqrt{\frac{a}{b+k}}$ .

#### 3.3 (3+1)-dimensional time fractional Z-K equation

We consider the following (2+1)-dimensional time fractional Z-K equation:

$$D_t^{\alpha} u + a(u^2)_x + b(u^2)_{xxx} + k(u^2)_{yyx} + r(u^2)_{zzx} = 0, \quad 0 < \alpha \le 1.$$
 (17)

with the initial condition

$$u(x, y, z, 0) = \frac{4c}{3a} \cosh^{2} \left( \frac{1}{4} \sqrt{-\frac{a}{b+k+r}} (x+y+z) \right).$$
 (18)

According to the FVIMHP method, its iteration formula can be constructed in the following form:

$$\sum_{m=0}^{\infty} p^{m} u_{m} = u_{0} + p \left\{ \sum_{m=1}^{\infty} p^{m} u_{m} - \frac{1}{\Gamma(1+\alpha)} \int_{0}^{t} \left[ \sum_{m=0}^{\infty} p^{m} u_{m} \right]^{2} \right\}$$

$$+ b \left( \left( \sum_{m=0}^{\infty} p^{m} u_{m} \right)^{2} \right)_{xxx}$$

$$+ k \left( \left( \sum_{m=0}^{\infty} p^{m} u_{m} \right)^{2} \right)_{yyx}$$

$$+ r \left( \left( \sum_{m=0}^{\infty} p^{m} u_{m} \right)^{2} \right)_{xxx}$$

$$(19)$$

By initial approximation  $u_0(x, y, z, t) = u(x, y, z, 0) = u(x, y, z, 0)$  $\frac{4c}{2a}\cosh^2(\frac{1}{h}\sqrt{-\frac{a}{h+k}}(x+y))$ , we can obtain

$$p^{1}: u_{1}(x,y,t) = -\frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b+k+r}}\right)$$

$$\cdot \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}(x+y+z)\right) \frac{t^{\alpha}}{\Gamma(1+\alpha)},$$

$$p^{2}: u_{2}(x,y,t) = \frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b+k+r}}\right)^{2}$$

$$\cdot \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}(x+y+z)\right) \frac{t^{2\alpha}}{\Gamma(1+2\alpha)},$$

$$p^{3}: u_{3}(x,y,t) = -\frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b+k+r}}\right)^{3}$$

$$\cdot \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}(x+y+z)\right) \frac{t^{3\alpha}}{\Gamma(1+3\alpha)},$$

$$p^{4}: u_{4}(x,y,t) = \frac{2c}{3a} \left(\frac{c}{2}\sqrt{-\frac{a}{b+k+r}}\right)^{4}$$

$$\cdot \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}(x+y+z)\right) \frac{t^{4\alpha}}{\Gamma(1+4\alpha)},$$

$$\vdots$$

Consequently, we have the following solitary solution of Eq. (17)

$$u(x, y, z, t) = \frac{2c}{3a} \left[ \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}(x+y+z)\right) \right] \qquad u(x, y, z, t) =$$

$$\cdot \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}ct^{\alpha}, \alpha\right) \qquad \begin{cases} \frac{2c}{3a} \left[1 + \cos\left(\frac{1}{2}\sqrt{\frac{a}{b+k+r}}(x+y+z)\right)\right] \\ + \sin\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}(x+y+z)\right) \\ - \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}ct^{\alpha}, \alpha\right) + 1 \right]. \qquad (20) \quad \text{where } \mu = \frac{1}{4}\sqrt{\frac{a}{b+k+r}}$$

We show some properties of the approximate solution (20) obtained by the proposed method in Fig. 3. The plot (a) shows that our approximate solution (20) is in good agreement with the exact solution. The plot (b) shows the fifth-order approximate solution expressed by (20) when  $\alpha$ , x, y are fixed. The plot (c) shows the approximate solution (20) for different values of  $\alpha$  when t, y, z are fixed.

If we choose  $u(x, y, z, 0) = -\frac{4c}{3a} \sinh^2(\frac{1}{4} \sqrt{-\frac{a}{h+k+r}}(x+y+$ z)), we can get the solitary solution of Eq. (17) as follows:

$$u(x, y, z, t) = -\frac{2c}{3a} \left[ \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}(x+y+z)\right) \right]$$

$$\cdot \cosh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}ct^{\alpha}, \alpha\right)$$

$$- \sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}(x+y+z)\right)$$

$$\sinh\left(\frac{1}{2}\sqrt{-\frac{a}{b+k+r}}ct^{\alpha}, \alpha\right) - 1 \right].$$

In order to construct compacton solutions of Eq. (17), we select initial approximations as follows:

$$u(x, y, z, 0) = \begin{cases} \frac{4c}{3a} \sin^2(\frac{1}{4}\sqrt{\frac{a}{b+k+r}}(x+y+z)), & |x+y+z| < \frac{\pi}{\mu}, \\ 0, & \end{cases}$$

and

$$u(x, y, z, 0) = \begin{cases} \frac{4c}{3a} \cos^2(\frac{1}{4} \sqrt{\frac{a}{b+k+r}} (x+y+z)), & |x+y+z| < \frac{\pi}{2\mu}, \\ 0. \end{cases}$$

By using the FVIMHP method, we can get the compacton solutions of Eq. (17) as follows

$$u(x, y, t) = \frac{2c}{3a} \left( \frac{c}{2} \sqrt{-\frac{\alpha}{b+k+r}} \right) \qquad u(x, y, z, t) =$$

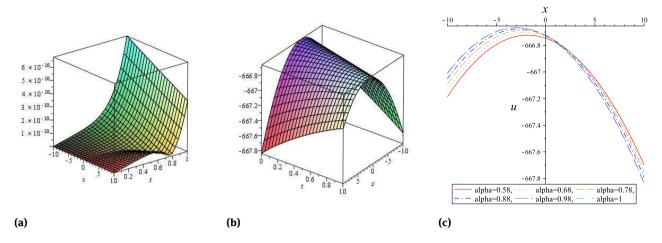
$$\cdot \cosh \left( \frac{1}{2} \sqrt{-\frac{a}{b+k+r}} (x+y+z) \right) \frac{t^{4\alpha}}{\Gamma(1+4\alpha)}, \qquad \begin{cases} \frac{2c}{3a} \left[ 1 - \cos(\frac{1}{2} \sqrt{\frac{\alpha}{b+k+r}} (x+y+z)) \cos(\frac{1}{2} \sqrt{\frac{\alpha}{b+k+r}} ct^{\alpha}, \alpha) \right. \\ -\sin(\frac{1}{2} \sqrt{\frac{\alpha}{b+k+r}} (x+y+z)) \sin(\frac{1}{2} \sqrt{\frac{\alpha}{b+k+r}} ct^{\alpha}, \alpha) \right], \quad |x+y| \\ +z - ct^{\alpha}| < \frac{\pi}{\mu}, \\ 0. \end{cases}$$

and

$$\begin{split} &u(x,y,z,t) = \\ &\left\{ \begin{array}{l} \frac{2c}{3a} \left[ 1 + \cos(\frac{1}{2} \sqrt{\frac{a}{b+k+r}} (x+y+z)) \cos(\frac{1}{2} \sqrt{\frac{a}{b+k+r}} c t^{\alpha}, \alpha) \right. \\ &+ \sin(\frac{1}{2} \sqrt{\frac{a}{b+k+r}} (x+y+z)) \sin(\frac{1}{2} \sqrt{\frac{a}{b+k+r}} c t^{\alpha}, \alpha) \right], \quad |x+y| \\ &+ z - c t^{\alpha}| < \frac{\pi}{2\mu}, \\ &0, \end{split}$$

where 
$$\mu = \frac{1}{4} \sqrt{\frac{a}{h+k+r}}$$

334 — B. Tang et al. DE GRUYTER OPEN



**Figure 3:** (a) the absolute error between the fifth-order approximate solution (20) and exact solution when  $\alpha = 1$ , y = 0.1, z = 0.2 (b) the fifth-order approximate solution (20) when x = 2, y = 1,  $\alpha = 0.94$  (c) the fifth-order approximate solution (20) for different values of  $\alpha$  when t = 0.6, y = 1, z = 5, c = 5; a = -0.01; b = 10; b = 1

### 3.4 (3+1)-dimensional time fractional K-P equation

We consider the following (3+1)-dimensional time fractional K-P equation:

$$\[ D_t^{\alpha} u + \frac{a}{2} (u^2)_x + b(u(u)_{xx})_x \]_x + u_{yy} + u_{zz} = 0, \quad 0 < \alpha \le 1.$$
(21)

with the initial condition

$$u(x, y, z, 0) = \frac{4(c-2)}{a} \cosh^{2} \left(\frac{1}{2} \sqrt{-\frac{a}{2b}} (x+y+z)\right).$$
(22)

According to the FVIMHP method, its iteration formula can be constructed in the following form:

$$\sum_{m=0}^{\infty} p^{m} u_{m} = u_{0} + p \left\{ \sum_{m=1}^{\infty} p^{m} u_{m} - \frac{1}{\Gamma(1+\alpha)} \right\}$$

$$\int_{0}^{t} \left[ \sum_{m=0}^{\infty} p^{m} D_{t}^{\alpha} u_{m} + \frac{a}{2} \left( \left( \sum_{m=0}^{\infty} p^{m} u_{m} \right)^{2} \right)_{x} \right]$$

$$+ b \left( \sum_{m=0}^{\infty} p^{m} u_{m} \left( \sum_{m=0}^{\infty} p^{m} u_{m} \right)_{xx} \right)_{x} \right]$$

$$+ \sum_{m=0}^{\infty} p^{m} (u_{myy} + u_{mzz}) (d\tau)^{\alpha} \right\},$$
(23)

By initial approximation  $u_0(x, y, z, t) = u(x, y, z, 0) = \frac{4(c-2)}{a} \cosh^2(\frac{1}{2}\sqrt{-\frac{a}{2h}}(x+y+z))$ , we can obtain

$$p^{1}: u_{1}(x, y, t) = -\frac{2(c-2)}{a} \left(\frac{c}{2}\sqrt{-\frac{a}{2b}}\right)$$

$$\cdot \sinh\left(\sqrt{-\frac{a}{2b}}(x+y+z)\right) \frac{t^{\alpha}}{\Gamma(1+\alpha)},$$

$$p^{2}: u_{2}(x,y,t) = \frac{2(c-2)}{a} \left(\frac{c}{2}\sqrt{-\frac{a}{2b}}\right)^{2}$$

$$\cdot \cosh\left(\sqrt{-\frac{a}{2b}}(x+y+z)\right) \frac{t^{2\alpha}}{\Gamma(1+2\alpha)},$$

$$p^{3}: u_{3}(x,y,t) = -\frac{2(c-2)}{a} \left(\frac{c}{2}\sqrt{-\frac{a}{2b}}\right)^{3}$$

$$\cdot \sinh\left(\sqrt{-\frac{a}{2b}}(x+y+z)\right) \frac{t^{3\alpha}}{\Gamma(1+3\alpha)},$$

$$p^{4}: u_{4}(x,y,t) = \frac{2(c-2)}{a} \left(\frac{c}{2}\sqrt{-\frac{a}{2b}}\right)^{4}$$

$$\cdot \cosh\left(\sqrt{-\frac{a}{2b}}(x+y+z)\right) \frac{t^{4\alpha}}{\Gamma(1+4\alpha)},$$

$$\vdots$$

Consequently, we have the following solitary solution of Eq. (21)

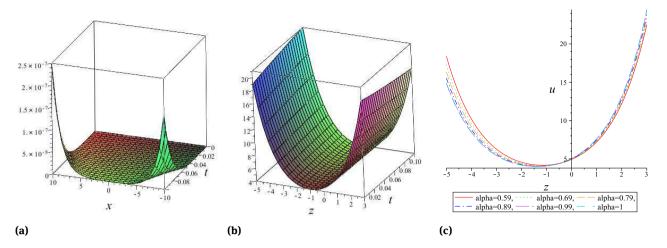
$$u(x, y, z, t) = \frac{2(c-2)}{a} \left[ \cosh\left(\sqrt{-\frac{a}{2b}}(x+y+z)\right) \right]$$

$$\cdot \cosh\left(\sqrt{-\frac{a}{2b}}ct^{\alpha}, \alpha\right)$$

$$- \sinh\left(\sqrt{-\frac{a}{2b}}(x+y+z)\right)$$

$$\cdot \sinh\left(\sqrt{-\frac{a}{2b}}ct^{\alpha}, \alpha\right) + 1 \right]. \tag{24}$$

We show some properties of the approximate solution (24) obtained by the proposed method in Fig. 4. The plot (a) shows the absolute error between the approximate



**Figure 4:** (a) the absolute error between the fifth-order approximate solution (24) and exact solution when  $\alpha = 1$ , y = 0.1, z = 0.2 (b) the fifth-order approximate solution (24) when x = 1, y = 0,  $\alpha = 0.82$  (c) the fifth-order approximate solution (24) for different values of  $\alpha$  when t = 0.6, x = 1, y = 1, c = 1; a = -1; b = 1

solution (24) and exact solution. The plot (b) shows the approximate solution expressed by (24) when  $\alpha$  is fixed. And the plot (c) shows the approximate solution (24) for different values of  $\alpha$  when time is fixed.

If we choose  $u(x, y, z, 0) = -\frac{4(c-2)}{a} \sinh^2(\frac{1}{2}\sqrt{-\frac{a}{2b}}(x+y+z))$ , we can get the solitary solution of Eq. (22) as follows:

$$u(x, y, z, t) = -\frac{2(c-2)}{a} \left[ \cosh\left(\sqrt{-\frac{a}{2b}}(x+y+z)\right) \right]$$
$$\cdot \cosh\left(\sqrt{-\frac{a}{2b}}ct^{\alpha}, \alpha\right)$$
$$-\sinh\left(\sqrt{-\frac{a}{2b}}(x+y+z)\right)$$
$$\sinh\left(\sqrt{-\frac{a}{2b}}ct^{\alpha}, \alpha\right) - 1 .$$

In order to construct compacton solutions of Eq.(22), we select initial approximations as follows:

$$u(x, y, z, 0) = \begin{cases} \frac{4(c-2)}{a} \sin^2(\frac{1}{2}\sqrt{\frac{a}{2b}}(x+y+z)), & |x+y+z| < \frac{\pi}{\mu}, \\ 0, & \end{cases}$$

and

$$u(x,y,z,0) = \begin{cases} \frac{4(c-2)}{a} \cos^2(\frac{1}{2} \sqrt{\frac{a}{2b}}(x+y+z)), & |x+y+z| < \frac{\pi}{2\mu}, \\ 0. \end{cases}$$

By using the FVIMHP method, we can get the following compacton solutions of Eq. (22)

$$u(x, y, z, t) = \begin{cases} \frac{2(c-2)}{a} \left[ 1 - \cos(\sqrt{\frac{a}{2b}}(x+y+z)) \\ \cdot \cos(\frac{1}{2}\sqrt{\frac{a}{2b}}ct^{\alpha}, \alpha) \\ -\sin(\sqrt{\frac{a}{2b}}(x+y+z))\sin(\sqrt{\frac{a}{2b}}ct^{\alpha}, \alpha) \right], \\ |x+y+z-ct^{\alpha}| < \frac{\pi}{\mu}, \\ 0, \end{cases}$$

and

$$u(x, y, z, t) = \begin{cases} \frac{2(c-2)}{a} \left[ 1 + \cos(\sqrt{\frac{a}{2b}}(x+y+z)) \\ \cdot \cos(\sqrt{\frac{a}{2b}}ct^{\alpha}, \alpha) \\ + \sin(\sqrt{\frac{a}{2b}}(x+y+z)) \sin(\sqrt{\frac{a}{2b}}ct^{\alpha}, \alpha) \right], \\ |x+y+z-ct^{\alpha}| < \frac{\pi}{2\mu}, \\ 0, \end{cases}$$

where  $\mu = \frac{1}{2} \sqrt{\frac{a}{2b}}$ .

### 4 Conclusion

In this paper, we apply the FVIMHP method to obtain the solitary and compacton solutions of fractional KdVlike equations. The numerical results given in Section 3 demonstrate the good accuracy of the proposed method. The results show that the FVIMHP method is direct, effective, and can be useful in dealing with many other fractional partial differential equations. Our results confirm that the method takes all the advantages of the variational iteration method, homotopy perturbation method, and Jumarie's modified Riemann-Liouville derivative. The comparison made with the exact solutions, enables us to see the accuracy of the FVIMHP method clearly. It is worth mentioning that the FVIMHP method is capable of reducing the volume of the computational work. In our future studies, we will solve many other nonlinear fractional partial differential equations by this method.

**Acknowledgement:** This work is supported by the National Natural Science Foundation of China (11526088).

### References

- Meerschaert M.M., Zhang Y., Baeumerc B, Particle tracking for fractional diffusion with two time scales, Comput. Math. Appl., 2010, 59, 1078-1086.
- [2] Meerschaaert M., Benson D., Scheffler H. P., and Baeumer B., Stochastic solution of space time fractional diffusion equations, Phys. Rev. E, 2002, 65, 1103-1106.
- [3] Baleanu D., Defterli O., Agrawal O.P., A central difference numerical scheme for fractional optimal control problems, J. Vib. Control, 2009, 15, 583–597.
- [4] Özis T., Ağıseven D., He's homotopy perturbation method for solving heat-like and wave-like equations with variable coefficients, Phys. Lett. A, 2008, 372(38), 5944-5950.
- [5] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, New Jersey, 2000.
- [6] Tenreiro Machado J.A., Analysis and design of fractional-order digital control systems, Syst. Aanl. Model. Simul., 1997, 27, 107–122.
- [7] Momani S. and Odibat Z., A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula, J. Comput. Appl. Math., 2008, 220(1), 85-95.
- [8] West B.J., Bolognab M., Grigolini P., Physics of Fractal Operators, Springer, New York, 2003.
- [9] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999.
- [10] Kumar D., Singh J. and Kumar S., Numerical Computation of Nonlinear Fractional Zakharov-Kuznetsov Equation arising in Ion-Acoustic Waves, J. Egyptian Math. Soc., 2014, 22(3), 373–378.
- [11] Kumar D., Singh J. and Sushila, Application of homotopy analysis transform method to fractional biological population model, Romanian Reports in Physics, 2013, 65(1), 63–75.
- [12] He J.H., Wu X.H., Variational iteration method: New development and applications, Comput. Math. Appl., 2007, 54, 881–894.
- [13] He J.H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., 1999, 178(3-4), 257-262.
- [14] Rajeev and Kushwaha M. S., Homotopy perturbation method for a limit case Stefan problem governed by fractional diffusion equation, Appl. Math. Model., 2013, 37(5), 3589-3599.
- [15] Singh J., Kumar D., and Adem Kılıçman, Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations, Abstr. Appl. Anal., 2014, Article ID 535793, 12 pages.
- [16] Sushila, Singh J., Shishodia Y.S., A New Reliable Approach for Two-Dimensional and Axisymmetric Unsteady Flows between Parallel Plates, Zeitschrift fr Naturforschung A, 2013, 68a, 629– 634.
- [17] Daftardar-Gejji V. and Bhalekar S., Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method, Appl. Math. Comput., 2008, 202 (1), 113–120.

- [18] Hu Y., Luo Y., Lu Z., Analytical solution of the linear fractional differential equation by Adomian decomposition method, J. Comput. Appl. Math., 2008, 215, 220–229.
- [19] Ganjiani M., Solution of nonlinear fractional differential equations using homotopy analysis method, Appl. Math. Model., 2010, 34, 1634–1641.
- [20] Wu G., Lee E.W.M., Fractional variational iteration method and its application, Phys. Lett. A, 2010, 374, 2506–2509.
- [21] Khan Y., Faraz N., Yildirim A., and Wu Q. B., Fractional variational iteration method for fractional initial-boundary value problems arising in the application of nonlinear science, Comput. Math. Appl., 2011, 62, 2273–2278.
- [22] Cui M., Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 2009, 228, 7792–7804.
- [23] Zhang S., Zhang H., Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 2011, 375(7), 1069–1073.
- [24] Guo S., Mei L., Li Y., Sun Y., The improved fractional subequation method and its applications to the space-time fractional differential equations in fluid mechanics, Phys. Lett. A, 2012, 376(4), 407–411.
- [25] Tang B., He Y., Wei L., and Zhang X., A generalized fractional subequation method for fractional differential equations with variable coefficients, Phys. Lett. A, 2012, 376(38-39), 2588–2590.
- [26] Zhao J. P., Tang B., Kumar S., and Hou Y. R., The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations, Math. Probl. Eng., 2012, Article ID 367802, 8 pages.
- [27] Guo S., Mei L., The fractional variational iteration method using He's polynomials, Phys. Lett. A, 2011, 375(3), 309–311.
- [28] Guo S., Mei L., Fang Y., Qiu Z., Compacton and solitary pattern solutions for nonlinear dispersive KdV-type equations involving Jumarie's fractional derivative, Phys. Lett. A, 2012, 376(3), 158– 164.
- [29] Tang B., Wang X., Wei L., and Zhang X., Exact solutions of fractional heat-like and wave-like equations with variable coefficients, Internat. J. Numer. Methods Heat Fluid Flow, 2014, 24, 455–467.
- [30] Sayevand K., Golbabai A., Yildirim A., Analysis of differential equations of fractional order, Appl. Math. Model., 2012, 36(9), 4356-4364.
- [31] Jumarie G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 2006, 51(9-10), 1367-1376.
- [32] Jumarie G., Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution, J. Appl. Math. Comput., 2007, 24, 31–48.
- [33] Jumarie G., Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order, Appl. Math. Lett., 2010, 23, 1444–1450.
- [34] Jumarie G., New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations, Math. Comput. Modelling, 2006, 44(3-4), 231– 254.