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Abstract: In this paper, based on Jumarie’s modified
Riemann-Liouville derivative, we apply the fractional vari-
ational iteration method using He’s polynomials to ob-
tain solitary and compacton solutions of fractional KdV-
like equations. The results show that the proposedmethod
provides a very effective and reliable tool for solving frac-
tional KdV-like equations, and the method can also be ex-
tended to many other fractional partial differential equa-
tions.
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1 Introduction
In recent years, theory and numerical analysis of frac-
tional partial differential equations (FPDEs) have received
considerable interest due to their numerous applications
in the areas of physics, biology, fluid and continuum me-
chanics, and engineering [1–11]. For example, in [10], De-
vendra Kumar, Jagdev Singh and Sunil Kumar used the ho-
motopy perturbation transform method to study the non-
linear fractional Zakharov-Kuznetsov equation arising in
ion-acoustic waves; Devendra Kumar, Jagdev Singh and
Sushila used the homotopy analysis transform method to
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study the fractional biological population model in [11].
For better understanding of the complicated nonlinear
physical phenomena, the solution of the fractional dif-
ferential equation is much involved. In the past, various
methods have beenproposed to obtain solutions of FPDEs,
such as homotopy perturbation method [12–14], homo-
topyperturbationSumudu transformmethod [15, 16], Ado-
mian decomposition method [17, 18], homotopy analysis
method [19], fractional variational iteration method [20,
21], finite difference method [22], fractional sub-ODE
method [23–26], and so on. Based on thesemethods,many
fractional differential equations have been investigated.

Recently, Jumarie proposed a new definition of the
fractional derivative which is a simple alternative defini-
tion to the Riemann-Liouville derivative. His definition has
the advantages of both the standard Riemann-Liouville
and the Caputo fractional derivatives, because the Jumarie
derivative of a constant is equal to zero, an arbitrary con-
tinuous function needs not to be differentiable, and more
importantly it removes singularity at the origin for all func-
tions, for example, the exponentials functions andMittag-
Le�er functions.

In this paper, we will apply the the fractional
variational iteration method using He’s polynomials
(FVIMHP) [27–29] and Jumarie’s modified Riemann-
Liouville derivative to get solitary and compacton solu-
tions of the following KdV-like equations

• The time fractional K(2, 2) equation:

Dαt u + a(u2)x + b(u2)xxx = 0, 0 < α ≤ 1.

• (2+1)-dimensional time fractional Z-K equation:

Dαt u + a(u2)x + b(u2)xxx + k(u2)yyx = 0, 0 < α ≤ 1.

• (3+1)-dimensional time fractional Z-K equation:

Dαt u + a(u2)x + b(u2)xxx + k(u2)yyx + r(u2)zzx = 0,
0 < α ≤ 1.

• (3+1)-dimensional time fractional K-P equation:

[Dαt u +
a
2 (u

2)x + b(u(u)xx)x]x + uyy + uzz = 0,

0 < α ≤ 1.
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The rest of this paper is organized as follows: In Sec-
tion 2, we introduce some basic definitions of Jumarie’s
modified Riemann-Liouville derivative and give the main
steps of the method here. In Section 3, we construct soli-
tary and compacton solutions of fractional KdV-like equa-
tions by the proposedmethod. Some conclusions are given
in Section 4.

2 Description of Modified
Riemann-Liouville derivative and
FVIMHP method

In this section, we first introduce some basic definitions of
the fractional calculus theory.

Definition 2.1. The Riemann-Liouville fractional inte-
gral [30] is defined as

Iαx f (x) =
1
Γ(a)

x∫︁
0

(x − ξ )α−1f (ξ )dξ , α > 0. (1)

Definition 2.2. The Jumarie’s modified Riemann-
Liouville derivative [31–34] is defined as

Dαx f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
Γ(−α)

d
dx

∫︀ x
0 (x − ξ )

−α−1(f (ξ ) − f (0))dξ , α < 0,
1

Γ(1−α)
d
dx

∫︀ x
0 (x − ξ )

−α(f (ξ ) − f (0))dξ , 0 < α < 1,
(f (n)(x))(α−n) , n ≤ α < n + 1,

n ≥ 1,
(2)

Definition 2.3. The integral with respect to (dx)α is de-
fined by Jumarie [31] as follows:

x∫︁
0

f (ξ )(dξ )α = α
x∫︁

0

(x − ξ )α−1f (ξ )dξ , 0 < α ≤ 1. (3)

We present the essential steps of the FVIMHP method as
follows: Consider the following initial value problem

Drtu(x, t) + L(u(x, t)) + N(u(x, t)) = f (x, t) (4)

where Drt is the Jumarie’s modified Riemann-Liouville
derivative, L is the linear operator, N is the nonlinear op-
erator.

Step 1. By using the fractional variational iteration
method (FVIM), we can get the iteration formula as fol-
lows:

um+1(x, t) = um(x, t) + I𝛾t
{︀
λ(τ)

[︀
Drtum(x, τ)

+L(um(x, τ)) + N(̃︀um(x, τ)) − f (x, τ)]︀}︀ , (5)

where λ is the Lagrangian multiplier, the subscript m de-
notes them-th order approximation, and ̃︀um is considered
as a restricted variation.

Step 2. By means of the homotopy perturbation method
(HPM), Eq. (5) becomes the following form:

∞∑︁
m=0

pmum(x, t) = u0(x, t) + p
{︃ ∞∑︁
m=1

pmum(x, t) (6)

+ I𝛾t

[︃
λ(τ)t

(︃ ∞∑︁
m=0

pmDrtum(x, τ) +
∞∑︁
m=0

pmL(um(x, τ))

+
∞∑︁
m=0

pmN(̃︀um(x, τ)) − f (x, τ))︃]︃}︃ ,

where p ∈ [0, 1] is an imbedding parameter, and u0 is an
initial approximation of Eq. (4).

Step 3. Comparing the coefficients of the same order of p
on both sides of Eq. (6), we can obtain um(m = 0, 1, 2, . . .).
According to the HPM, the solution of Eq. (4) can be ex-
pressed as:

u =
∞∑︁
m=0

um . (7)

3 Application of the proposed
method

In this section, we apply the FVIMHP method to obtain
solitary and compacton solutions of the time fractional
KdV-like equations.

3.1 Time fractional K(2, 2) equation

We consider the following time fractional K(2, 2) equation:

Dαt u + a(u2)x + b(u2)xxx = 0, 0 < α ≤ 1, (8)

with the initial condition

u(x, 0) = 4c
3a cosh

2(14

√︂
−ab x). (9)

According to the FVIMHP method given in Section 2,
we can get the iteration formula of Eq. (8) in the following
form:

∞∑︁
m=0

pmum =u0 + p

⎧⎨⎩
∞∑︁
m=1

pmum −
1

Γ(1 + α)

t∫︁
0

[︃ ∞∑︁
m=0

pmDατu
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+ a

⎛⎝(︃ ∞∑︁
m=0

pmumright
)︃2
⎞⎠
x

+b

⎛⎝(︃ ∞∑︁
m=0

pmum

)︃2
⎞⎠
xxx

⎤⎦ (dτ)α
⎫⎬⎭ . (10)

By the above iteration formula and initial approx-
imation u0(x, t) = u(x, 0) = 4c

3a cosh
2( 14
√︀
− ab x) =

2c
3a [cosh(

1
2
√︀
− ab x) + 1], we can obtain

p1 : u1(x, y, t) = −
2c
3a

(︂
c
2

√︂
−ab

)︂
· sinh

(︂
1
2

√︂
−ab x

)︂
tα

Γ(1 + α) ,

p2 : u2(x, y, t) =
2c
3a

(︂
c
2

√︂
−ab

)︂2

· cosh
(︂
1
2

√︂
−ab x

)︂
t2α

Γ(1 + 2α) ,

p3 : u3(x, y, t) = −
2c
3a

(︂
c
2

√︂
−ab

)︂3

· sinh
(︂
1
2

√︂
−ab x

)︂
t3α

Γ(1 + 3α) ,

p4 : u4(x, y, t) =
2c
3a

(︂
c
2

√︂
−ab

)︂4

· cosh
(︂
1
2

√︂
−ab x

)︂
t4α

Γ(1 + 4α) ,

...

So we have the solitary solution of Eq. (8):

u(x, t) = 2c3a

{︃
cosh

(︂
1
2

√︂
−ab x

)︂[︃
1 +
(︂
c
2

√︂
−ab

)︂2

(11)

· t2α
Γ(1 + 2α) +

(︂
c
2

√︂
−ab

)︂4
t4α

Γ(1 + 4α) + · · ·
]︃

− sinh
(︂
1
2

√︂
−ab x

)︂[︂(︂
c
2

√︂
−ab

)︂
tα

Γ(1 + α)

+
(︂
c
2

√︂
−ab

)︂3
t3α

Γ(1 + 3α) + · · ·
]︃
+ 1
}︃

= 2c
3a

[︂
cosh

(︂
1
2

√︂
−ab x

)︂
cosh

(︂
1
2

√︂
−ab ct

α , α
)︂

− sinh
(︂
1
2

√︂
−ab x

)︂
sinh

(︂
1
2

√︂
−ab ct

α , α
)︂
+ 1
]︂
,

where the functions sinh(z, α) and cosh(z, α) are defined
as follows:

sinh(z, α) = Eα(z) − Eα(−z)2 , cosh(z, α) = Eα(z) + Eα(−z)2 .

Here Eα(z) =
∞∑︀
k=0

zk
Γ(1 + kα) (α > 0) is theMittag-Le�er func-

tion.

We show some properties of the approximate solu-
tion (11) obtained by the proposed method in Fig. 1. The
plot (a) shows that approximate solution (11) is in good
agreement with the exact solution. The plot (b) shows the
fifth-order approximate solution (11) when α = 0.89. The
plot (c) shows the approximate solution (11) for different
values of α.

If we select the initial approximation u(x, 0) =
− 4c
3a sinh

2( 14
√︀
− ab x), we can get the solitary solution as fol-

lows:

u(x, t) = − 2c
3a

[︂
cosh

(︂
1
2

√︂
−ab x

)︂
cosh

(︂
1
2

√︂
−ab ct

α , α
)︂

− sinh
(︂
1
2

√︂
−ab x

)︂
sinh

(︂
1
2

√︂
−ab ct

α , α
)︂
− 1
]︂
.

(12)

In order to search compacton solutions of Eq. (8), we
select the following initial approximations

u(x, 0) =
{︃

4c
3a sin

2( 14
√︀ a

b x), |x| < π
µ ,

0,

and

u(x, 0) =
{︃

4c
3a cos

2( 14
√︀ a

b x), |x| < π
2µ ,

0.

Using the FVIMHP in the same manner, we could get
the compacton solutions as follows:

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
2c
3a
[︀
1 − cos( 12

√︀ a
b x) cos(

1
2
√︀ a

b ct
α , α)−

sin( 12
√︀ a

b x) sin(
1
2
√︀ a

b ct
α , α)

]︀
, |x − ctα| < π

µ ,
0,

and

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
2c
3a
[︀
1 + cos( 12

√︀ a
b x) cos(

1
2
√︀ a

b ct
α , α)+

sin( 12
√︀ a

b x) sin(
1
2
√︀ a

b ct
α , α)

]︀
, |x − ctα| < π

2µ ,
0,

where µ = 1
4
√︀ a

b .

3.2 (2+1)-dimensional time fractional Z-K
equation

Consider the following (2+1)-dimensional time fractional
Z-K equation:

Dαt u + a(u2)x + b(u2)xxx + k(u2)yyx = 0, 0 < α ≤ 1. (13)

with the initial condition

u(x, y, 0) = 4c
3a cosh

2(14

√︂
− a
b + k (x + y)). (14)
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(a) (b) (c)

Figure 1: (a) the absolute error between the fifth-order approximate solution (11) and exact solution when α = 1 (b) the fifth-order approxi-
mate solution (11) when α = 0.89 (c) the fifth-order approximate solution (11) for different values of α when t = 0.5; c = 1; a = −1; b = 10

According to the method given in Section 2, its itera-
tion formula can be constructed in the following form:

∞∑︁
m=0

pmum = u0 + p

⎧⎨⎩
∞∑︁
m=1

pmum −
1

Γ(1 + α)

t∫︁
0

[︃ ∞∑︁
m=0

pmDατum

+ a

⎛⎝(︃ ∞∑︁
m=0

pmum

)︃2
⎞⎠
x

+ b

⎛⎝(︃ ∞∑︁
m=0

pmum

)︃2
⎞⎠
xxx

+k

⎛⎝(︃ ∞∑︁
m=0

pmum

)︃2
⎞⎠
yyx

⎤⎥⎦ (dτ)α
⎫⎪⎬⎪⎭ . (15)

By initial approximation u0(x, y, t) = u(x, y, 0) =
4c
3a cosh

2( 14
√︀
− a
b+k (x + y)), we can obtain

p1 : u1(x, y, t) = −
2c
3a

(︂
c
2

√︂
− a
b + k

)︂
· sinh

(︂
1
2

√︂
− a
b + k (x + y)

)︂
tα

Γ(1 + α) ,

p2 : u2(x, y, t) =
2c
3a

(︂
c
2

√︂
− a
b + k

)︂2

· cosh
(︂
1
2

√︂
− a
b + k (x + y)

)︂
t2α

Γ(1 + 2α) ,

p3 : u3(x, y, t) = −
2c
3a

(︂
c
2

√︂
− a
b + k

)︂3

· sinh
(︂
1
2

√︂
− a
b + k (x + y)

)︂
t3α

Γ(1 + 3α) ,

p4 : u4(x, y, t) =
2c
3a

(︂
c
2

√︂
− a
b + k

)︂4

· cosh
(︂
1
2

√︂
− a
b + k (x + y)

)︂
t4α

Γ(1 + 4α) ,

...

Consequently, we have the following solitary solution
of Eq. (13)

u(x, y, t) = 2c
3a

[︂
cosh

(︂
1
2

√︂
− a
b + k (x + y)

)︂
· cosh

(︂
1
2

√︂
− a
b + k ct

α , α
)︂

− sinh
(︂
1
2

√︂
− a
b + k (x + y)

)︂
· sinh

(︂
1
2

√︂
− a
b + k ct

α , α
)︂
+ 1
]︂
, (16)

We show some properties of the approximate solu-
tion (16) obtained by the proposed method in Fig. 2. The
plot (a) shows that the approximate solution (16) is in good
agreement with the exact solution when α = y = 1. The
plot (b) shows the fifth-order approximate solution (16)
when x = 2, α = 0.75. The plot (c) shows the approximate
solution (16) for different values of α.

If we choose u(x, y, 0) = − 4c
3a sinh

2( 14
√︀
− a
b+k (x + y)),

then we can obtain the solitary solutions of Eq. (13) as fol-
lows:

u(x, y, t) = − 2c3a

[︂
cosh

(︂
1
2

√︂
− a
b + k (x + y)

)︂
· cosh

(︂
1
2

√︂
− a
b + k ct

α , α
)︂

− sinh
(︂
1
2

√︂
− a
b + k (x + y)

)︂
· sinh

(︂
1
2

√︂
− a
b + k ct

α , α
)︂
− 1
]︂
.
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(a) (b) (c)

Figure 2: (a) the absolute error between the fifth-order approximate solution (16) and exact solution when α = y = 1 (b) the fifth-order
approximate solution (16) when x = 2, α = 0.75 (c) the fifth-order approximate solution (16) for different values of α when t = 0.5, y =
2, c = 1; a = −1; b = k = 1

In order to construct compacton solutions of Eq. (13), we select initial approximations as follows:

u(x, y, 0) =
{︃

4c
3a sin

2( 14
√︀ a

b+k (x + y)), |x + y| < π
µ ,

0,

and

u(x, y, 0) =
{︃

4c
3a cos

2( 14
√︀ a

b+k (x + y)), |x + y| < π
2µ ,

0.

By using the FVIMHP method, we can get the following compacton solutions of Eq. (13)

u(x, y, t) =

⎧⎪⎪⎨⎪⎪⎩
2c
3a
[︀
1 − cos( 12

√︀ a
b+k (x + y)) cos(

1
2
√︀ a

b+k ct
α , α)

− sin( 12
√︀ a

b+k (x + y)) sin(
1
2
√︀ a

b+k ct
α , α)

]︀
, |x + y − ctα| < π

µ ,
0.

and

u(x, y, t) =

⎧⎪⎪⎨⎪⎪⎩
2c
3a
[︀
1 + cos( 12

√︀ a
b+k (x + y)) cos(

1
2
√︀ a

b+k ct
α , α)

+ sin( 12
√︀ a

b+k (x + y)) sin(
1
2
√︀ a

b+k ct
α , α)

]︀
, |x + y − ctα| < π

2µ ,
0,

where µ = 1
4
√︀ a

b+k .

3.3 (3+1)-dimensional time fractional Z-K equation

We consider the following (2+1)-dimensional time fractional Z-K equation:

Dαt u + a(u2)x + b(u2)xxx + k(u2)yyx + r(u2)zzx = 0, 0 < α ≤ 1. (17)

with the initial condition

u(x, y, z, 0) = 4c
3a cosh

2
(︂
1
4

√︂
− a
b + k + r (x + y + z)

)︂
. (18)
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According to the FVIMHP method, its iteration for-
mula can be constructed in the following form:

∞∑︁
m=0

pmum = u0 + p

⎧⎨⎩
∞∑︁
m=1

pmum −
1

Γ(1 + α)

t∫︁
0

[︃ ∞∑︁
m=0

pm

· Dατum + a

⎛⎝(︃ ∞∑︁
m=0

pmum

)︃2
⎞⎠
x

+ b

⎛⎝(︃ ∞∑︁
m=0

pmum

)︃2
⎞⎠
xxx

+ k

⎛⎝(︃ ∞∑︁
m=0

pmum

)︃2
⎞⎠
yyx

+r

⎛⎝(︃ ∞∑︁
m=0

pmum

)︃2
⎞⎠
zzx

⎤⎦ (dτ)α
⎫⎬⎭ . (19)

By initial approximation u0(x, y, z, t) = u(x, y, z, 0) =
4c
3a cosh

2( 14
√︀
− a
b+k (x + y)), we can obtain

p1 : u1(x, y, t) = −
2c
3a

(︂
c
2

√︂
− a
b + k + r

)︂
· sinh

(︂
1
2

√︂
− a
b + k + r (x + y + z)

)︂
tα

Γ(1 + α) ,

p2 : u2(x, y, t) =
2c
3a

(︂
c
2

√︂
− a
b + k + r

)︂2

· cosh
(︂
1
2

√︂
− a
b + k + r (x + y + z)

)︂
t2α

Γ(1 + 2α) ,

p3 : u3(x, y, t) = −
2c
3a

(︂
c
2

√︂
− a
b + k + r

)︂3

· sinh
(︂
1
2

√︂
− a
b + k + r (x + y + z)

)︂
t3α

Γ(1 + 3α) ,

p4 : u4(x, y, t) =
2c
3a

(︂
c
2

√︂
− a
b + k + r

)︂4

· cosh
(︂
1
2

√︂
− a
b + k + r (x + y + z)

)︂
t4α

Γ(1 + 4α) ,

...

Consequently, we have the following solitary solution
of Eq. (17)

u(x, y, z, t) = 2c
3a

[︂
cosh

(︂
1
2

√︂
− a
b + k + r (x + y + z)

)︂
· cosh

(︂
1
2

√︂
− a
b + k + r ct

α , α
)︂

− sinh
(︂
1
2

√︂
− a
b + k + r (x + y + z)

)︂
· sinh

(︂
1
2

√︂
− a
b + k + r ct

α , α
)︂
+ 1
]︂
. (20)

We show some properties of the approximate solu-
tion (20) obtained by the proposed method in Fig. 3. The
plot (a) shows that our approximate solution (20) is in good
agreement with the exact solution. The plot (b) shows the
fifth-order approximate solution expressed by (20) when
α, x, y are fixed. The plot (c) shows the approximate solu-
tion (20) for different values of α when t, y, z are fixed.

If we choose u(x, y, z, 0) = − 4c
3a sinh

2( 14
√︀
− a
b+k+r (x+y+

z)), we can get the solitary solution of Eq. (17) as follows:

u(x, y, z, t) = − 2c3a

[︂
cosh

(︂
1
2

√︂
− a
b + k + r (x + y + z)

)︂
· cosh

(︂
1
2

√︂
− a
b + k + r ct

α , α
)︂

− sinh
(︂
1
2

√︂
− a
b + k + r (x + y + z)

)︂
sinh

(︂
1
2

√︂
− a
b + k + r ct

α , α
)︂
− 1
]︂
.

In order to construct compacton solutions of Eq. (17),
we select initial approximations as follows:

u(x, y, z, 0) ={︃
4c
3a sin

2( 14
√︀ a

b+k+r (x + y + z)), |x + y + z| < π
µ ,

0,

and

u(x, y, z, 0) ={︃
4c
3a cos

2( 14
√︀ a

b+k+r (x + y + z)), |x + y + z| < π
2µ ,

0.

By using the FVIMHP method, we can get the com-
pacton solutions of Eq. (17) as follows

u(x, y, z, t) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2c
3a
[︀
1 − cos( 12

√︀ a
b+k+r (x + y + z)) cos(

1
2
√︀ a

b+k+r ct
α , α)

− sin( 12
√︀ a

b+k+r (x + y + z)) sin(
1
2
√︀ a

b+k+r ct
α , α)

]︀
, |x + y

+z − ctα| < π
µ ,

0.

and

u(x, y, z, t) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2c
3a
[︀
1 + cos( 12

√︀ a
b+k+r (x + y + z)) cos(

1
2
√︀ a

b+k+r ct
α , α)

+ sin( 12
√︀ a

b+k+r (x + y + z)) sin(
1
2
√︀ a

b+k+r ct
α , α)

]︀
, |x + y

+z − ctα| < π
2µ ,

0,

where µ = 1
4
√︀ a

b+k+r .
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(a) (b) (c)

Figure 3: (a) the absolute error between the fifth-order approximate solution (20) and exact solution when α = 1, y = 0.1, z = 0.2 (b) the
fifth-order approximate solution (20) when x = 2, y = 1, α = 0.94 (c) the fifth-order approximate solution (20) for different values of α when
t = 0.6, y = 1, z = 5, c = 5; a = −0.01; b = 10; k = 20; r = 30

3.4 (3+1)-dimensional time fractional K-P
equation

We consider the following (3+1)-dimensional time frac-
tional K-P equation:[︁
Dαt u +

a
2 (u

2)x + b(u(u)xx)x
]︁
x
+ uyy + uzz = 0, 0 < α ≤ 1.

(21)

with the initial condition

u(x, y, z, 0) = 4(c − 2)
a cosh2

(︂
1
2

√︂
− a2b (x + y + z)

)︂
.

(22)

According to the FVIMHP method, its iteration for-
mula can be constructed in the following form:

∞∑︁
m=0

pmum =u0 + p
{︃ ∞∑︁
m=1

pmum −
1

Γ(1 + α)
t∫︁

0

⎡⎣ ∞∑︁
m=0

pmDαt um + a2

⎛⎝(︃ ∞∑︁
m=0

pmum

)︃2
⎞⎠
x

+b
(︃ ∞∑︁
m=0

pmum

(︃ ∞∑︁
m=0

pmum

)︃
xx

)x

)︃
x

⎤⎦
+

∞∑︁
m=0

pm(umyy + umzz)(dτ)α
}︃
, (23)

By initial approximation u0(x, y, z, t) = u(x, y, z, 0) =
4(c−2)
a cosh2( 12

√︀
− a
2b (x + y + z)), we can obtain

p1 : u1(x, y, t) = −
2(c − 2)
a

(︂
c
2

√︂
− a2b

)︂

· sinh
(︂√︂

− a2b (x + y + z)
)︂

tα
Γ(1 + α) ,

p2 : u2(x, y, t) =
2(c − 2)
a

(︂
c
2

√︂
− a2b

)︂2

· cosh
(︂√︂

− a2b (x + y + z)
)︂

t2α
Γ(1 + 2α) ,

p3 : u3(x, y, t) = −
2(c − 2)
a

(︂
c
2

√︂
− a2b

)︂3

· sinh
(︂√︂

− a2b (x + y + z)
)︂

t3α
Γ(1 + 3α) ,

p4 : u4(x, y, t) =
2(c − 2)
a

(︂
c
2

√︂
− a2b

)︂4

· cosh
(︂√︂

− a2b (x + y + z)
)︂

t4α
Γ(1 + 4α) ,

...

Consequently, we have the following solitary solution
of Eq. (21)

u(x, y, z, t) =2(c − 2)a

[︂
cosh

(︂√︂
− a2b (x + y + z)

)︂
· cosh

(︂√︂
− a2b ct

α , α
)︂

− sinh
(︂√︂

− a2b (x + y + z)
)︂

· sinh
(︂√︂

− a2b ct
α , α
)︂
+ 1
]︂
. (24)

We show some properties of the approximate solu-
tion (24) obtained by the proposed method in Fig. 4. The
plot (a) shows the absolute error between the approximate
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(a) (b) (c)

Figure 4: (a) the absolute error between the fifth-order approximate solution (24) and exact solution when α = 1, y = 0.1, z = 0.2 (b) the
fifth-order approximate solution (24) when x = 1, y = 0, α = 0.82 (c) the fifth-order approximate solution (24) for different values of α when
t = 0.6, x = 1, y = 1, c = 1; a = −1; b = 1

solution (24) and exact solution. The plot (b) shows the ap-
proximate solution expressed by (24) when α is fixed. And
the plot (c) shows the approximate solution (24) for differ-
ent values of α when time is fixed.

If we choose u(x, y, z, 0) = − 4(c−2)
a sinh2( 12

√︀
− a
2b (x+y+

z)), we can get the solitary solution of Eq. (22) as follows:

u(x, y, z, t) = − 2(c − 2)
a

[︂
cosh

(︂√︂
− a2b (x + y + z)

)︂
· cosh

(︂√︂
− a2b ct

α , α
)︂

− sinh
(︂√︂

− a2b (x + y + z)
)︂

sinh
(︂√︂

− a2b ct
α , α
)︂
− 1
]︂
.

In order to construct compacton solutions of Eq.( 22),
we select initial approximations as follows:

u(x, y, z, 0) =

⎧⎨⎩
4(c−2)
a sin2( 12

√︁
a
2b (x + y + z)), |x + y + z| < π

µ ,

0,

and

u(x, y, z, 0) =

⎧⎨⎩
4(c−2)
a cos2( 12

√︁
a
2b (x + y + z)), |x + y + z| < π

2µ ,

0.

By using the FVIMHP method, we can get the follow-
ing compacton solutions of Eq. (22)

u(x, y, z, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2(c−2)
a
[︀
1 − cos(

√︀ a
2b (x + y + z))

· cos( 12
√︀ a

2b ct
α , α)

− sin(
√︀ a

2b (x + y + z)) sin(
√︀ a

2b ct
α , α)

]︀
,

|x + y + z − ctα| < π
µ ,

0,

and

u(x, y, z, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2(c−2)
a
[︀
1 + cos(

√︀ a
2b (x + y + z))

· cos(
√︀ a

2b ct
α , α)

+ sin(
√︀ a

2b (x + y + z)) sin(
√︀ a

2b ct
α , α)

]︀
,

|x + y + z − ctα| < π
2µ ,

0,

where µ = 1
2
√︀ a

2b .

4 Conclusion
In this paper, we apply the FVIMHP method to obtain
the solitary and compacton solutions of fractional KdV-
like equations. The numerical results given in Section 3
demonstrate the good accuracy of the proposed method.
The results show that the FVIMHP method is direct, effec-
tive, and can be useful in dealing with many other frac-
tional partial differential equations. Our results confirm
that themethod takes all the advantages of the variational
iterationmethod, homotopy perturbationmethod, and Ju-
marie’s modified Riemann-Liouville derivative. The com-
parison made with the exact solutions, enables us to see
the accuracy of the FVIMHP method clearly. It is worth
mentioning that the FVIMHP method is capable of reduc-
ing the volume of the computational work. In our future
studies, wewill solvemany other nonlinear fractional par-
tial differential equations by this method.
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