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Abstract: We consider initial value problems for the non-
linear Klein-Gordon equation in de Sitter spacetime. We
use the differential transform method for the solution of
the initial value problem. In order to show the accuracy of
results for the solutions, we use the variational iteration
method with Adomian’s polynomials for the nonlinearity.
We show that the methods are effective and useful.
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1 Introduction
In this article, we are interested in the initial value prob-
lem for the nonlinear Klein-Gordon equation in de Sitter
spacetime,

ϕtt + nHϕt − e−2Ht∆ϕ + m2ϕ = |ϕ|p−1ϕ, (x, t) ∈ Rn × [0, ∞),

ϕ(x, 0) = φ0(x), ϕt(x, 0) = φ1(x), x ∈ Rn , x ∈ Rn , (1)

where m > 0 represents physical mass, H is the Hubble
constant and p > 1. The sign of H specifies the model of
the universe. If H < 0, then it is called the anti de Sitter
spacetime model while H = 0 determines the Minkowski
spacetimemodel. On the other hand,whenH > 0, then the
so-called de Sitter spacetime model decribes exponential
expansion of the universe.

The Klein-Gordon equation arises in relativistic
physics such as cosmology and in general relativity, in
particular in quantum field theory. We briefly explain how
the equation in (1) is deduced.
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The line element in de Sitter spacetime is given by

ds2 = −
(︂
1 − r

2

R2

)︂
dt2 +

(︂
1 − r

2

R2

)︂−1
dr2

+ r2(dθ2 + sin2 θdϕ2), (2)

where R is the radius of the universe. By using the
Lemaitre-Robertson transformation in [1],

r′ = r√︀
1 − r2/R2

e−t/R , t′ = t + R2 ln
(︂
1 − r

2

R2

)︂
,

θ′ = θ, ϕ′ = ϕ,

the line element has the following form

ds2 = −dt′2 + e2t
′/R

(︁
dr′2 + r′2dθ′2 + r′2 sin2 θ′dϕ′2

)︁
.
(3)

Changing the coordinates as

t = t′, x1 = r′ sin θ′ cosϕ′, x2 = r′ sin θ′ sinϕ′,
x3 = r′ cos θ′,

we get

ds2 = −dt2 + e2Ht
(︁
dx21 + dx22 + dx23

)︁
, (4)

where H = 1/R.
We may write the line element in general spatial di-

mensions as

ds2 = −dt2 + e2Ht
(︁
dx21 + . . . + dx2n

)︁
.

Thus the corresponding metric is

(gik)0≤i,k≤n := diag(−1, e2Ht , . . . , e2Ht).

Let g := det(gik)0≤i,k≤n and (gik)0≤i,k≤n be the inverse matrix
of (gik)0≤i,k≤n . Then the scalar field ϕ in de Sitter spacetime
is described by the following equation:

1√︀
|g|

∂
∂xi

(︂√︀
|g|gik ∂ϕ∂xk

)︂
= m2ϕ − V ′(ϕ),

where x0 := t and V(ϕ) is a potential function. More ex-
plicitly, we get

ϕtt + nHϕt − e−2Ht∆ϕ + m2ϕ = −V ′(ϕ),
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(x, t) ∈ Rn × [0,∞). (5)

Setting |ϕ|p−1ϕ = −V ′(ϕ), we obtain the equation in (1).
In Minkowski spacetime, the initial value problem for

the semilinear Klein-Gordon equation

utt − ∆u + m2u = |u|α u, (6)

has been extensively investigated. The existence of
global weak solutions has been obtained by Jörgens [2],
Pecher [3], Brenner [4], Ginibre and Velo [5, 6]. On the
other hand, the initial value problem for so-called Higgs
boson equation

utt − ∆u − m2u = − |u|α u, (x, t) ∈ Rn ×R

in Minkowski spacetime, and

ϕtt + nHϕt − e−2Ht∆ϕ − m2ϕ = − |ϕ|α ϕ,
(x, t) ∈ Rn ×R

in de Sitter spacetime have been studied by Yagdjian [7],
and the necessary conditions have been derived for the ex-
istence of the global solution that the solutionhas a chang-
ing sign and is oscillating in time.

Turning back to the initial value problem (1), the
small data global existence result is proved by Yagdjian [8]
in Sobolev space Hs(Rn) for s > n/2 when m ∈
(0,

√
n2 − 1/2) ∪ [n/2,∞). In Nakamura [9], the existence

of local and global solutions with power type nonlinear
terms are shown by using the energy method in the case
of large mass, i.e., m ≥ n/2.

Our first aim in this article is to give approximate so-
lutions of (1) based on the initial data by using the dif-
ferential transform method in de Sitter spacetime. This
methodwas first considered by Zhou [10] for solving initial
value problems in electrical circuit analysis. Jang, Chen
and Liu [11] used the two dimensional differential trans-
form for obtaining the analytic solutions of linear andnon-
linear partial differential equations. In addition, Kurnaz,
Oturanç and Kiris [12] generalized the transform method
to the n dimensional case for solving partial differential
equations.

In Minkowski spacetime (that is, H = 0), the initial
value problem for the Klein-Gordon equation

utt − ∆u + u = up Rn × [0,∞),

where p ≥ 2 has been studied with the differential trans-
form method by Kanth and Aruna [13] in one spatial di-
mension and by Do and Jang [14] in higher spatial dimen-
sion.

On the other hand, in order to illustrate our results,
we use another method called variational iteration. This

method which is iterative based on a correction functional
with a Lagrange multiplier was first considered by He [15,
16]. It was applied to the Klein-Gordon equation by Yusu-
foglu [17] in Minkowski spacetime.

This paper is organized as follows. In Section 2, we
give the definition of the differential transform and some
basic properties of the transform. The basic concepts of
the variational iteration method are given in Section 2.1.
Section 3 is devoted to some numerical examples. We ap-
ply the methods to the linear and nonlinear Klein-Gordon
equations in de Sitter spacetime to investigate the so-
lutions. The results obtained by the differential trans-
form method are compared with the variational iteration
method. We give the conclusion in the last section.

2 Preliminaries

2.1 Differential Transform Method

We give the definition and some properties of differential
transformations for solving (1). (See, e.g., [11–13].)

Let the function u = u(x, t) be analytic in the domain
D and let (x0, t0) ∈ D. Then the differential transform
U(k, h) of the function u(x, t) which is the series expanded
at (x0, t0) ∈ D defined by

U(k, h) = 1
k!h!

[︂
∂k+hu(x, t)
∂xk∂th

]︂
(x0 ,t0)

. (7)

The differential inverse transform of U(k, h) is defined by

u(x, t) =
∞∑︁
k=0

∞∑︁
h=0

U(k, h)(x − x0)k(t − t0)h . (8)

The following fundamental properties of differential trans-
formations are listed in [11–13]. Since the proofs are di-
rectly the result of (7), we give only their statements.

Theorem 2.1. Let c ∈ R be a constant. Assume that
U(k, h), and V(k, h) are the differential transforms of the
functions u(x, t) and v(x, t) respectively. Then we have the
following properties for linearity:

1. If w(x, t) = u(x, t) ± v(x, t) then, W(k, h) = U(k, h) ±
V(k, h).

2. If w(x, t) = cu(x, t) then, W(k, h) = cU(k, h).

Theorem 2.2. Let U(k, h) be the differential transform of
the function u(x, t). If w(x, t) = ∂

p+qu(x, t)
∂xp∂tq , then W(k, h) =

(k + p)!
p!

(h + q)!
q! U(k + p, h + q).
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Theorem 2.3. Let U(k, h) and V(k, h) be the differential
transforms of the functions u(x, t) and v(x, t) respectively.
If w(x, t) = u(x, t)v(x, t), then we have the transformation

W(k, h) =
k∑︁
p=0

h∑︁
q=0

U(k − p, q)V(p, h − q).

Theorem 2.4. Let a, b ∈ R be constants. If w(x, t) =

eax+bt , then W(k, h) = a
kbh
k!h! .

2.2 Variational Iteration Method

In this subsection, basic concepts of the variational itera-
tionmethodare given for the general nonlinear differential
equation

Lu(x, t) + Nu(x, t) = g(x, t) (9)

where L is a linear operator, N is a nonlinear operator and
g(x, t) is a given analytic function. By [15], the correction
functional for (9) is written as

ui+1(x, t) = ui(x, t) +
t∫︁

0

λ
(︀
Lui(x, τ)

+Nũi(x, τ) − g(x, τ)
)︀
dτ, i ≥ 0, (10)

where λ is a Lagrange multiplier and ũi is a restricted
variation which is δũi = 0. The Lagrange multiplier λ
is obtained via integration by parts from the restricted
variation of the correction functional δui+1 = 0. (See,
e.g., [15, 16, 18].)

3 Applications
In this section, the differential transform method is ap-
plied to solve the linear and nonlinear Klein-Gordon equa-
tions in de Sitter spacetime. To illustrate the accuracy of
the results, we compare them with the results obtained
by using the variational iteration method. We have used
Mathematica 10 for the results. However, we notice that
the computations in the nonlinear term for the variational
iterational method become complicated. In order to over-
come the difficulty arising in calculating, we apply the
variational iteration method with Adomian’s polynomials
for the nonlinear part proposed in [19, 20]. For simplicity,
we take H = 1 and m = 1.

Example 1.We first consider the initial value problem for
the linear Klein-Gordon equation in de Sitter spacetime,

ϕtt + ϕt − e−2t∆ϕ + ϕ = 0, (x, t) ∈ R × [0,∞),

ϕ(x, 0) = e−x , ϕt(x, 0) = 0, x ∈ R. (11)

If we take the differential transform of the equation in (11),
by using Theorem2.1, Theorem2.2 andTheorem2.3,we get

(h + 1)(h + 2)Φ(k, h + 2) + (h + 1)Φ(k, h + 1)

−
h∑︁
s=0

(−2)h−s
(h − s)!

[︀
(k + 1)(k + 2)Φ(k + 2, s)

]︀
+ Φ(k, h) = 0.

(12)

Hence we have

Φ(k, h + 2) = − 1
(h + 2)Φ(k, h + 1) −

1
(h + 1)(h + 2)Φ(k, h)

+ 1
(h + 1)(h + 2)

h∑︁
s=0

(−2)h−s
(h − s)! [(k + 1)(k + 2)Φ(k + 2, s)],

(13)

for h = 0, 1, 2, . . .. From Theorem 2.4, the transforms of
the initial conditions in (11) are

Φ(k, 0) = (−1)k
k! , Φ(k, 1) = 0. (14)

Substituting (14) into (13), we obtain the closed form of the
solution as

ϕ(x, t) =
∞∑︁
k=0

∞∑︁
h=0

Φ(k, h)xk th

=
(︂
1 − t

3

3 + t
4

4 −
7t5
60 + 23t6

360 −
109t7
2520 + 113t8

4032

− 2939t
9

181440 + . . .
)︂

×
(︂
1 − x + x

2

2! −
x3
3! +

x4
4! −

x5
5! + . . .

)︂
=
(︂
1 − t

3

3 + t
4

4 −
7t5
60 + 23t6

360 −
109t7
2520 + 113t8

4032

− 2939t
9

181440 + . . .
)︂
e−x . (15)

On the other hand, if we apply the variational iteration
method, we construct the correction functional as

ϕi+1(x, t) = ϕi(x, t) +
t∫︁

0

λ
(︀
ϕiττ(x, τ) + ϕiτ(x, τ)

−e−2τϕ̃ixx(x, τ) + ϕi(x, τ)
)︁
dτ. (16)

In order tomake (16) stationary, and noticing that δϕ̃i = 0,
we get

δϕi+1(x, t) = δϕi(x, t) + δ
t∫︁

0

λ
(︀
ϕiττ(x, τ) + ϕiτ(x, τ)
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−e−2τϕ̃ixx(x, τ) + ϕi(x, τ)
)︁
dτ. (17)

By using integration by parts, we have the following con-
ditions

λ
′′
− λ

′
+ λ = 0, (18)

1 + λ − λ
′ ⃒⃒
τ=t = 0, (19)

λ
⃒⃒
τ=t = 0. (20)

Therefore the Lagrange multiplier has the following form:

λ(τ) = 2 sin[
√
3(τ − t)/2]√
3

e(τ−t)/2. (21)

Hence we obtain the iterative formula

ϕi+1(x, t) = ϕi(x, t) +
t∫︁

0

2 sin[
√
3(τ − t)/2]√
3

e(τ−t)/2

×
(︁
ϕiττ(x, τ) + ϕiτ(x, τ) − e−2τϕixx(x, τ)

+ϕi(x, τ)
)︀
dτ, (22)

for i ≥ 0 where we set the first step

ϕ0(x, t) = ϕ(x, 0) + tϕt(x, 0) = e−x . (23)

Using the iteration formula (22), we obtain

ϕ1(x, t) =
1
3 e

−2t−x + 2
3 e

−x−t/2
(︁
cos(

√
3t/2)

+
√
3 sin(

√
3t/2)

)︁
,

ϕ2(x, t) =
7e−4t−x
273 + e

−5t/2−x

273

(︂(︁
65 + 201e2t

)︁
cos(

√
3t/2)

+
√
3
(︁
13 + 181e2t

)︁
sin(

√
3t/2)

)︂
,

ϕ3(x, t) =
532e−6t−x
643188 + e−9t/2−x

643188

(︂(︁
9269 + 159030e2t

+474357e4t
)︁
cos(

√
3t/2) +

√
3 (−403

+27094e2t + 426413e4t
)︁
sin(

√
3t/2)

)︂
, (24)

and so on. A closed form solution is not obtainable for
the initial value problem (11). Therefore this approxima-
tion can only be used for numerical purposes. In order
to illustrate our results, we use another method called
the projected differential method. This method which is
a series solution with respect to the variable t at t0 was
introduced in [14]. Since it is similar to the differential
transform method, we omit the statements. The compari-
son between the sixth iteration solution of the variational
iteration method, the differential transform method and

the projected differential transform method are given in
Table 1.

Example 2.We consider the initial value problem for the
nonlinear Klein-Gordon equation in de Sitter spacetime,

ϕtt + ϕt − e−2t∆ϕ + ϕ = |ϕ|2ϕ, (x, t) ∈ R × [0,∞),
ϕ(x, 0) = e−x , ϕt(x, 0) = 0, x ∈ R. (25)

If we take the differential transform of the equation in (25),
by using Theorem2.1, Theorem2.2 andTheorem2.3,we get

(h + 1)(h + 2)Φ(k, h + 2) + (h + 1)Φ(k, h + 1)

−
h∑︁
s=0

(−2)h−s
(h − s)!

[︀
(k + 1)(k + 2)Φ(k + 2, s)

]︀
+ Φ(k, h)

=
k∑︁
w=0

k−w∑︁
v=0

h∑︁
s=0

h−s∑︁
m=0

Φ(w, h − s − m)Φ(w, s)Φ(k − w − v,m).

(26)

Hence we have

Φ(k, h + 2) = − 1
(h + 2)Φ(k, h + 1) −

1
(h + 1)(h + 2)Φ(k, h)

+ 1
(h + 1)(h + 2)

h∑︁
s=0

(−2)h−s
(h − s)! [(k + 1)(k + 2)Φ(k + 2, s)]

+ 1
(h + 1)(h + 2)

k∑︁
w=0

k−w∑︁
v=0

h∑︁
s=0

h−s∑︁
m=0

Φ(w, h − s − m)Φ(w, s)

· Φ(k − w − v,m), (27)

for h = 0, 1, 2, . . .. From Theorem 2.4, the transforms of
the initial conditions in (25) are

Φ(k, 0) = (−1)k
k! , Φ(k, 1) = 0. (28)

Substituting (28) into (27), we obtain the closed form of the
solution as

ϕ(x, t) =
∞∑︁
k=0

∞∑︁
h=0

Φ(k, h)xk th = 1 + t
2

2 −
t3
2 + 3t4

4 − 97t5
120

− x − 3t2x
2 − 5t3x

6 − 2t4x + 55t5x
24 + x

2

2 + 9t2x2
4

− 11t3x2
12 − x

3

6 −
9t2x3
4 + 29t3x3

36 + x4
24 −

83t3x4
144

+ . . . . (29)

On the other hand, if we apply the variational itera-
tion method to (25), we have the following the correction
functional as

ϕi+1(x, t) = ϕi(x, t) +
t∫︁

0

λ
(︀
ϕiττ(x, τ) + ϕiτ(x, τ)
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− e−2τϕ̃ixx(x, τ) + ϕi(x, τ) − |ϕi|2ϕi
)︀
dτ. (30)

In order tomake (30) stationary, and noticing that δϕ̃i = 0,
we get

δϕi+1(x, t) = δϕi(x, t) + δ
t∫︁

0

λ
(︀
ϕiττ(x, τ) + ϕiτ(x, τ)

− e−2τϕ̃ixx(x, τ) + ϕi(x, τ) − ϕ̃i
3(x, τ)

)︀
dτ.

(31)

Due to the stationary condition for the nonlinear part, we
have the same Lagrangemultiplier with (21). Hence we ob-
tain the iterative formula

ϕi+1(x, t) = ϕi(x, t) +
t∫︁

0

2 sin[
√
3(τ − t)/2]√
3

e(τ−t)/2

·
(︀
ϕiττ(x, τ) + ϕiτ(x, τ) − e−2τϕixx(x, τ) + ϕi(x, τ)

− ϕ3
i (x, τ)

)︀
dτ, (32)

for i ≥ 0. The nonlinear part N(ϕ) = |ϕ|2ϕ in (25) can be
expressed by the Adomian’s polynomials as follows

N(ϕ) =
∞∑︁
i=0

Ai . (33)

The polynomials Ai are defined in [21] by

A0 = N(ϕ0),
A1 = ϕ1N′(ϕ0),

A2 = ϕ2N(ϕ0) +
1
2ϕ

2
1N′′(ϕ0),

A3 = ϕ3N′(ϕ0) + ϕ1ϕ2N′′(ϕ0) +
1
3!ϕ

3
1N′′′(ϕ0),

. . . , (34)

where we set

ϕ0(x, t) = ϕ(x, 0) + tϕt(x, 0) = e−x . (35)

The Adomian’s method defines the series solution ϕ =
ϕ(x, t) by

ϕ(x, t) =
∞∑︁
i=0

ϕi(x, t). (36)

Substituting (33) and (36) into (32), the components ϕi are
obtained by

ϕi+1(x, t) =
t∫︁

0

2 sin[
√
3(τ − t)/2]√
3

e(τ−t)/2
(︂ i∑︁

j=0

ϕjττ(x, τ)

+
i∑︁
j=0

ϕjτ(x, τ) − e−2τ
i∑︁
j=0

ϕjxx(x, τ) +
i∑︁
j=0

ϕj(x, τ)

−
i∑︁
j=0

Aj
)︂
dτ, (37)

for i ≥ 0. From the iteration formula (37), we obtain

ϕ1(x, t) =
√
3
6 e−2t+3x

(︁
3e2t + e2x − 3e2(t+x)

)︁
+
√
3
6 e−t/2+3x

×
(︁
(−3 + 3e2x) cos(

√
3t/2) + (−3 + 6e2x) sin(

√
3t/2)

)︁
,

ϕ2(x, t) =
1
52 e

−4t−x + 1
6 e

−2t−3x
(︁
15 + (−3

√
3)e2x

)︁
− 1
4

(︁
−e−5x + e−3x

)︁
×
(︁
9 + (−3 + 2

√
3)e2x

)︁
+
[︂
195
1092 e

−5t/2−x +
(︂
−489
1092 +

√
3
3

)︂
e−t/2−x

+ 39
2184 e

−5t/2−3x(−81 + e2t(109 − 28
√
3 − 84t))

+ 1638
2184 e

−t/2−5x × (t − 3)
]︂
cos(

√
3t/2)

+ 39
√
3

2184 e
−5t/2−3x

(︁
9 + 2e2x

)︁
sin(

√
3t/2)

−
[︂

1
728

(︁
−728 + 366

√
3
)︁
e−t/2−x

+
√
3

12 (5 + 3t)e
−t/2−5x

− 39
2184(−28 + 135

√
3 + 28

√
3t)e−t/2−3x

]︂
· sin(

√
3t/2), (38)

and so on. A closed form solution is not obtainable for
the initial value problem (25). Therefore we can only use
this approximation for numerical values of the solution.
The comparison between the fourth iteration solution of
the variational iterationmethod, the differential transform
method and the projected differential transform method
are given in Table 2.

4 Conclusion
In this contribution, we have considered the Klein-Gordon
equations in de Sitter spacetime. The lack of results for
the global solutions of such nonlinear equations motivate
us to approach the solutions approximately. Therefore,
differential transforms and variational iteration methods
were used. To overcome the computational difficulty aris-
ing from thenonlinear term,wehaveusedAdomian’s poly-
nomials with the variational iterational method. Since the
analytical solutions of these initial value problems are not
obtainable from these approaches, we deal with the nu-
merical results. As shown in Table 1 and Table 2, we get
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Ta
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be
tw
ee
n
th
e
va
lu
e
ϕ
fo
rt
he

so
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ea
rK

le
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tio
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fo
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te
d
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(P
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tv
al
ue
s
of
(x
,t
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1

0.
2

0.
3
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4

0.
5
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6
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7

0.
8

0.
9
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0

t=
0.
1

DT
M

0.
90
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84
77
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05
89
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67

01
13
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44
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9
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77
66
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similar results for the solutions of the linear and nonlin-
ear Klein-Gordon equations. Hence the numerical results
reveal that the proposed methods are accurate and effec-
tive for the approximate solutions.

References
[1] Møller C., The theory of relativity, Clarendon Press, Oxford,

1972.
[2] Jörgens K., Das anfangswert problem im grossen fur eine klasse

nichtlinearer wellengleichungen, Math. Z., 1961, 77, 295–308.
[3] Pecher H., Lp-abschützungen und klassische lösungen für

nichtlineare wellengleichungen I, Math. Z., 1976, 150, 159–183.
[4] Brenner P., On the existence of global smooth solutions of cer-

tain semilinear hyperbolic equations, Math. Z., 1979, 167, 99–
135.

[5] Ginibre J., Velo G., The global Cauchy problem for the nonlinear
Klein-Gordon equation, Math Z., 1985, 189, 487–505.

[6] Ginibre J., Velo G., The global Cauchy problem for the nonlinear
Klein-Gordon equation II, Ann. I. H. Poincare-An., 1989, 6, 15–
35.

[7] Yagdjian K., On the global solutions of the Higgs boson equa-
tion, Comm. Part. Diff. Eq., 2012, 37, 447–478.

[8] Yagdjian K., Global existence of the scalar field in de Sitter
spacetime, J. Math. Anal. Appl., 2012, 396, 323–344.

[9] NakamuraM., The Cauchy problem for semi-linear Klein-Gordon
equations indeSitter spacetime, J.Math. Anal. Appl., 2014, 410,
445–454.

[10] Zhou J. K., Differential transform and its applications for electri-
cal circuits, Huazhong University Press, Wuhan, 1986.

[11] Jang M., Chen C., Liu Y., Two-dimensional differential transform
for partial differential equations, Appl. Math. Comput., 2001,
121, 261–270.

[12] Kurnaz A., Oturanç G., Kiris M.E., N-dimensional differential
transformmethod for solving PDEs, Int. J. Comput. Math., 2005,
82, 369–380.

[13] Kanth A.S.V.R., Aruna K., Differential transformmethod for solv-
ing the linear and nonlinear Klein-Gordon equation, Comput.
Phys. Commun., 2009, 180, 708–711.

[14] Do Y., B. Jang, Nonlinear Klein-Gordon and Schrödinger equa-
tions by the projected differential transform method, Abstr.
App. Anal., 2012, 2012, 150527.

[15] He J.H, A new approach to nonlinear partial differential equa-
tions, Commun.Nonlinear Sci. Numer. Simul., 1997, 2, 230–235.

[16] He J.H., Variational iteration method – a kind of non-linear an-
alytical tecnique:some examples, Int. J. Nonlinear Mech., 1999,
34, 699–708.

[17] Yusufoğlu E., The variational iteration method for studying the
Klein-Gordon equation, Appl. Math. Lett., 2008, 21, 669–674.

[18] He J.H., Some asymptotics method for strongly nonlinear equa-
tions, Int. J. M. P. B., 2006, 10, 1141–1199.

[19] Abdou M.A., On the variational iteration method, Phys. Lett. A,
2007, 366, 61–68.

[20] El-Wakil S.A, Abdou M.A., New applications of variational iter-
ation method using Adomian polynomials, Nonlinear Dynam,
2008, 52, 41–49.

[21] Wazwaz A., A new algorithm for calculating adomian polynomi-
als for nonlinear operators, Appl.Math. Comput., 2000, 111, 53–
69.


	1 Introduction
	2 Preliminaries
	2.1 Differential Transform Method
	2.2 Variational Iteration Method

	3 Applications
	4 Conclusion

