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Abstract:TheWigner-Moyal approach is applied to investi-
gate thedynamics of theGaussianwavepacketmoving in a
double-well potential in the ‘Mexican hat’ form. Quantum
trajectories in the phase space are computed for different
kinetic energies of the initial wave packet in the Wigner
form. The results are compared with the classical trajecto-
ries. Some additional information on the dynamics of the
wavepacket in the phase space is extracted from the analy-
sis of the cross-correlation of theWigner distribution func-
tion with itself at different points in time.

Keywords: Wigner distribution, wave packet, quantum
trajectory

PACS: 03.65.Sq,03.65.Ca

1 Introduction
Description of the quantum dynamical processes in the
phase space can be realized on the Wigner-Moyal alge-
bra which is the non-commutative algebra of observables
based on the symplectic symmetry of the phase-space [1].
In this approach, the state of the quantum dynamical sys-
tem cannot be longer represented by the Dirac measure
localized at a point in the phase space, but rather by an
appropriate quasi-distribution function [2–4], because the
Heisenberg’s uncertainty principle prohibits precise deter-
mination of momentum and position at the same time [5].
The uncertainty also tampers with the algebra of observ-
ables which are represented by functions of the phase-
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space variables. In this case, the product of any functions
on the phase space is noncommutative. The classical alge-
bra of observables (commutative) is recovered in the limit
of the reduced Planck constant approaching zero (~→ 0).
Hence the presented approach is called the phase space
quantummechanics, or sometimes is referred to as the de-
formation quantization [6–8]. Currently, the deformation
theory has found applications in many fields of modern
physics, such as quantumgravity, string andM-theory, nu-
clear physics, quantum optics, condensed matter physics,
and quantum field theory.

In the present contribution, we examine the dynam-
ics of the initially coherent state in the double-well poten-
tial using the phase space formulation of the quantumme-
chanics. This autonomous path to quantization of the clas-
sical theory is based on the Wigner distribution function
(WDF), ϱW , which is defined by the Weyl transform of the
density operator [4, 9, 10],

ϱW (x, p; t) =
1

2π~

∫︁
dX ρ

(︂
x − 1

2X, x +
1
2X; t

)︂
e−(i/~)pX .

(1)
The WDF is normalized and real, but not always posi-
tive function of position and momentum over the phase
space [11]. The negative values of theWDF in some regions
of the space are a consequence of the Heisenberg’s uncer-
tainty principle and they can be regarded as an indicator
of the non-classicality of the state [12]. Despite the fact that
the WDF can be negative, the expectation value of any dy-
namical variable can be computedwith respect to theWDF
in the same way as the average value in the classical sta-
tistical mechanics, namely [4, 11]

⟨F(t)⟩ =
∫︁
dxdp FW (x, p)ϱW (x, p; t), (2)

where FW (x, p) is the Weyl symbol of quantum-
mechanical operator F in the position representation [13],

FW (x, p) =
1

2π~

∫︁
dX F

(︂
x − 1

2X, x +
1
2X

)︂
e−(i/~)pX . (3)
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2 Theory
The unitary time evolution of the WDF is generated by
the Moyal equation which exhibits the non-local nature
of the quantum dynamics. The equation of motion has a
Liouville-like form, i.e.,

∂
∂t ϱW (x, p; t) = LϱW (x, p; t), (4)

where the right hand side of the equation (4) is expressed
by the Moyal bracket. Its explicit form is given by the fol-
lowing formula [1, 8]:

LϱW (x, p; t) = {HW (x), ϱW (x, p; t)}*

= 1
i~

{︂
HW (x, p) exp

[︂
~
2

(︂−→
∂
∂p

←−
∂
∂x −

−→
∂
∂x

←−
∂
∂p

)︂]︂
× ϱW (x, p; t)

}︂
= HW (x, p) * ϱW (x, p; t), (5)

where HW (x, p) is the Weyl symbol of the small system
Hamiltonian, and the arrows indicate in which direction
the derivatives act. We note that the lowest order of the
series expansion of the time evolution generator for the
Moyal equationwith respect to the deformation parameter
~/2 corresponds to the Poisson bracket, and therefore the
Moyal equation is reduced to the exact form of the classi-
cal Liouville equation [1]. Alternatively the classical limit
of the dynamics generated by the Moyal equation can be
deduced on the basis of the Egorov’s theorem [14]. Follow-
ing this theorem, the quantum dynamics is reduced to the
classical as the semiclassical parameter ϵ which effectiv-
elly replaces ~ determined by the physical scales involved
in the system goes to zero corresponding to ϵ2 [15].

Some general similarities between the propagation of
the classical and coherent states in the phase space based
on the careful studies of the semiclassical limit [16] al-
low incorporating the split-operator technique to deter-
mine the time evolution of theWDF [17–19]. In the present
calculations, the initial condition for the Moyal equation
is taken in the coherent state form which is represented
by the Wigner form of the Gaussian wave packet centered
around some point (x0, p0) in the phase space [20],

ϱW (x, p; 0) =
1
π~ exp

{︂
−2δ

2
x(p − p0)2

~2 − (x − x0)2

2δ2x

}︂
, (6)

where δx is the initial half-width of the wave packet. The
form represents the most classical quantum state permit-
ted by the uncertainty principle [21].

We apply this formalism to the description of the co-
herent state dynamics in the small system which is mod-
eled by the double well potential in the “Mexican hat”
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Figure 1: The potential used in the calculations. All values are given
in atomic units.

form (presented in Fig. 1). The system may serve as a pro-
totype of an electronic nanosystem exhibiting nonequilib-
rium dynamics in the presence of the external gradients or
fields [22]. The Weyl symbol of the small system Hamilto-
nian takes the form

HW = p2
2m − 1

2mω
2x2 + λx4, (7)

where m is the mass of the electron, while ω and λ are the
parameters of the potential. For the present calculations
their values are taken to be equal ω = 2 a.u. (atomic units
of e = ~ = m = 1) and λ = 0.08 a.u.

3 Results
We have determined the propagation of the WDF in
the small system by means of the method presented in
Ref. [23]. For the present calculations the following val-
ues of the wave packet are assumed: δx = 1/

√
2 a.u.,

x0 = −3.5 a.u., and three different initial momenta: p0 =
−10, −3.5 and 5 a.u., which correspond to different kinetic
energies of the coherent state. The phase-space calcula-
tions are performed on the computational grid with Nx =
512mesh points for the x-coordinate, and Np = 512mesh
points for the x-component of momentum. The quantum
trajectories are determined by simultaneous calculations
of the expectation values of the position and momentum
variables according to the formula (2) with the WDF being
a solution of the Moyal equation (4). On the other hand,
the classical trajectories are computed on the basis of the
Hamilton’s equations [24]. The results of performed com-
puter simulations are presented in Figs. 2, 3, and 4, which
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display not only the snapshots of the WDF at different
times, but also the quantum and classical trajectories.

A comparison of the both types of the trajectories
seems to be extremely informative, because it displays the
main differences between the dynamics of the classical
and quantum states in the phase space, generated by the
Poisson andMoyal brackets, respectively. In the case of the
classical dynamics of the particle which moves under the
influence of a conservative force (in the present case, the
force is F = mω2x − 4λx3), the trajectory does not have in-
tersections and is always closed, although its geometrical
center as well as the shape strongly depends on the initial
momentum.Due to the knowledge of the classical trajecto-
ries, the Liouville formulation of the classical dynamics in
the phase space [25] can be simply reconstructed, namely
the Dirac measure, ρ(x, p, t),

ρ(x, p, t) = δ
(︀
x − x(t)

)︀
δ
(︀
p − p(t)

)︀
, (8)

which imitates the distribution function for the single par-
ticle, moves along the classical trajectory. This picture
partly overlaps with the classical limit of the quantum dy-
namics of the quantum state, where theWDFmoves along
the classical trajectory [26]. On the other hand, the quan-
tum limit of the WDF dynamics leads to the trajectory in
a form of a spiral, i.e., the quantum trajectory is not a
closed curve. In general, this is due to a gradual spread-
ing, distortion and the negative values of the WDF during
its time evolution. The nature of these deformations is a
consequence of the finite size of the initial WDF, and addi-
tional complications result from the Heisenberg’s uncer-
tainty principle. All of these effects give a contribution to
the calculation of the average values of the position and
momentum [c.f. Eq. (2)], which define the quantum trajec-
tory in the phase space. The justification for the statement
partly can be physical, namely the “Mexican hat” gener-
ates the non-local potential in the form

UW (x, p) =
2π
~

[︂
(4λx3−mω2x) ddp δ(p)−λx

d3
dp3 δ(p)

]︂
. (9)

Hence the dynamics of the phase-space points covered by
the WDF can be represented by the set of the equations in
the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx(t)
dt = p

m

dp(t)
dt = − 1

2π~

∫︁
dp′UW (x, p − p′)ρW (x, p′, t)

∂
∂p ρW (x, p, t)

(10)

which clearly generate the set of trajectorieswhich depend
on the the global state of the system.During the timeevolu-
tion of theWDFaccording to theMoyal equation the region

Figure 2: Color maps showing the WDF at t = 0, t = 0.2 fs, and
t = 0.8 fs, in case of p0 = −10 a.u. The quantum trajectory (dashed
line), the classical trajectory (red solid line).
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Figure 3: Color maps showing the WDF at t = 0, t = 0.1 fs, and t =
0.2 fs, in case of p0 = 5 a.u. The quantum trajectory (dashed line),
the classical trajectory (red solid line). In this case, the classical
trajectory exhibits a constriction in the vicinity of 0.

Figure 4: Color maps showing the WDF at t = 0, t = 0.1 fs, and
t = 0.2 fs, in case of p0 = −3.5 a.u. The quantum trajectory (dashed
line), the classical trajectory (red solid line).

of the phase space occupied by the WDF increases. Simul-
taneously, the negative values of the WDF emerge as a re-
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sult of the quantum correlations between different pieces
of the state in the phase space [27]. It stems from the fact
that the information from the off-diagonal terms in Eq. (1)
represented by X variable is transferred to theWDF via the
momentum p.

Apart from the trajectories, we also determine the au-
tocorrelation function of the WDF which is defined as [28]

C(t) = Tr
{︀
ϱW (x, p; 0)ϱW (x, p; t)

}︀
, (11)

where Tr refers to the trace in the phase space. The quan-
tity allows us to extract some additional information on
the WDF’s dynamics in the considered potential. We per-
formed appropriate calculations of the function C(t) for
the same initial momenta of the WDF for which we gen-
erated the classical and quantum trajectories in the phase
space. The results of the calculations are displayed in
Fig. 5. For comparison, we also display in Fig. 5 the clas-
sical autocorrelation function which is generated by the
classical evolution of the coherent state. For this purpose
we solve the Liouville equation with the initial condition
in the form (6).

In general, we can state that the details of the auto-
correlation function depend not only on the form of the
confining potential of the small system, but also on the ini-
tial momentum of the WDF. However, the autocorrelation
function possesses some universal properties, namely this
function almost always exhibits a finite sequence of regu-
lar peakswithmagnitudes decreasing in time. The consec-
utive peaks in the autocorrelation function are associated
with the return of theWDF to the vicinity of the initial loca-
tion,whereas an irregular part of the function C(t) is gener-
ated by some parts of theWDFwhich travel forth and back
across an available region of the phase space. Finally, this
fractional recurrences lead to occupation of the bounded
region of the phase space which is always larger than the
region occupied by the initial quantum state. This obser-
vation suggests that the autocorrelation function contains
information on the properties of the dynamical localiza-
tion of the WDF during its time evolution. Regardless of
this observation, the degree of localization of the quantum
state in the phase space can be investigated in terms of the
Husimi function [27] which is defined as the convolution
of theWigner distribution function and awindow function
with the resolution corresponding to the minimum result-
ing from the uncertainty principle.
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Figure 5: The autocorrelation function of the WDF generated by the
Moyal equation (blue line) and the Liouville equation (red line) for
three different initial momenta.

4 Conclusion
As a result of our computational studies we present the
analysis of the quantum trajectories in the phase space
generated by the time evolution of theWigner distribution
function. We compare the trajectories for different kinetic
energies of the initially localizedWigner distribution func-
tion with the classical counterparts, which are obtained
from the solution of the Hamilton’s equations. This strat-
egy allows us to visualize the differences between the both
types of trajectories and discuss reasons for such discrep-
ancy. The results presented are also supported by calcula-
tions of the autocorrelation function of the Wigner distri-
bution function for different initial momenta.
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