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Abstract: We will study uninorms on the unit square en-
dowed with the natural partial order defined coordinate-
wise. We will show that we can choose arbitrary pairs of
incomparable elements, (a, e) and construct a uninorm
whose neutral element is e and annihilator is a. As a spe-
cial case we construct uninorms which are at the same
time also nullnorms (or, expressed another way, we con-
struct proper nullnorms with neutral element). We will
also generalize this result to the direct product of two
bounded lattices. I.e., we will show that it is possible to
construct nullnorms with a neutral element on the direct
product of two bounded lattices.
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1 Introduction and Preliminaries
Associative, commutative and monotone (binary) opera-
tions on the unit interval, due to their associativity, can
be straightforwardly extended to n-ary operations for arbi-
trary n ∈ N. This means they are special types of aggrega-
tion functions. As such they have proven their importance
in various fields of applications, e.g., neuron nets, fuzzy
decision making and fuzzy modelling. Studying their be-
haviour is also interesting from a theoretical point of view.
It is important for researchers to have many families of
such operations to hand. Associative, commutative and
monotone operations have recently been studied also on
bounded lattices (see, e.g., [2, 7, 10, 11]).
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1.1 Associative Commutative and Monotone
Operations on [0, 1]

Currently, we distinguish several types of associative com-
mutative and monotone (isotone) operations. In fact, we
will consider only increasing operations. We say that an
operation *: [0, 1]2 → [0, 1] possesses:

(NE) a neutral element e ∈ [0, 1] if for every x ∈ [0, 1]

x * e = e * x = x,

(AE) an absorbing element (called also annihilator) a ∈
[0, 1] if for every x ∈ [0, 1]

x * a = a * x = a,

(IE) an idempotent element i ∈ [0, 1] if i * i = i

Lemma 1. Let *: [0, 1]2 → [0, 1] be an associative com-
mutative and monotone operation. Then * has an idempo-
tent element i which is also an absorbing element.
If * has a neutral element e then 0, 1 and e are idempotent
elements. Further, a = 0 * 1 is the absorbing element of *.

Schweizer and Sklar [13] introduced the notion of a tri-
angular norm (t-norm for brevity).

Definition 1 ([13]). An operation T : [0, 1]2 → [0, 1] is a t-
norm if it is associative, commutative, monotone, and 1 is
its neutral element.

T-norms and t-conorms are dual to each other. If
T : [0, 1]2 → [0, 1] is a t-norm, then

S(x, y) = 1 − T(1 − x, 1 − y)

is the dual t-conorm to T. For details on t-norms and t-
conorms see, e.g., [12].

Another type of operation was introduced by Dombi
in [8, 9] under the name aggregative operator. In current
terminology, aggregative operators are representable uni-
norms. They are defined via a continuous, strictly increas-
ing function g : [0, 1] → [−∞,∞] with g(0) = −∞ and
g(1) = ∞ by the following formula

A(x, y) = g−1(g(x) + g(y)),
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and the value −∞ +∞ is defined either as −∞ (conjuctive
case) or ∞ (disjuctive case).

General associative commutative andmonotone oper-
ations on [0, 1]were studied also byCzogała andDrewniak
[5].

As a generalization of both t-norms and t-conorms
Yager and Rybalov [14] proposed the notion of uninorm.

Definition 2 ([14]). An operation U : [0, 1]2 → [0, 1] is a
uninorm if it is associative, commutative, monotone, and if
it possesses a neutral element e ∈ [0, 1].

We say that a uninorm U is proper if its neutral element
e ∈ ]0, 1[.

Every uninorm has an absorbing element. We distin-
guish two types of uninorms according to the value of ab-
sorbing element, describing them as conjunctive uninorms
if the absorbing element is 0, and disjunctive uninorms if
the absorbing element is 1.

Lemma 2. Let U : [0, 1]2 → [0, 1]beauninormwhose neu-
tral element is e. Then its dual operation

Ud(x, y) = 1 − U(1 − x, 1 − y)

is a uninorm whose neutral element is 1 − e. Moreover, U is
conjunctive if and only if Ud is disjunctive.

Nullnorms as operations occur when studying the func-
tional equation by Frank and Alsina

U(x, y) + V(x, y) = x + y,

where U is a special uninorm and therefore the other op-
eration, V, is a nullnorm.

Definition 3 ([3]). An operation N : [0, 1]2 → [0, 1] is a
nullnorm if it is associative, commutative, monotone and
with an absorbing element a ∈ [0, 1] and moreover

(∀x ≤ a) N(x, 0) = x,
(∀x ≥ a) N(x, 1) = x.

We say that a nullnorm N is proper if its absorbing element
a ∈ ]0, 1[.

Lemma 3. Let N : [0, 1]2 → [0, 1] be a proper nullnorm.
Then N has no neutral element.

More detailed information on proper uninorms and proper
nullnorms one can found in [4].

1.2 Associative, Commutative and
Monotone Operations on Bounded
Lattices

Wewill skip a detailed introduction to bounded lattices re-
ferring to themonograph [1]. Let us just recall that on every
lattice (L, ≤L) there exists a partial order ≤L and this order
induces two binary operations: meet, ∧, and join, ∨. Meet
of x and y is the greatest lower bound of x, y. Join of x and
y is the lowest upper bound of x, y.

On every bounded lattice (L,∧,∨, 0, 1) we can de-
fine t-norms, t-conorms and proper uninorms as associative
commutative andmonotone operations having 1 (0, an el-
ement e ∈ L, respectively) as neutral element. As exam-
ples of t-norms and t-conorms we present the following.

T⊥(x, y) =
{︃
x ∧ y if x = 1 or y = 1,
0 otherwise

TM(x, y) = x ∧ y,

S⊤(x, y) =
{︃
x ∨ y if x = 0 or y = 0,
1 otherwise,

SM(x, y) = x ∨ y.

TM and T⊥ are the greatest and the least t-norm, respec-
tively. SM and S⊤ are the least and the greatest t-conorm,
respectively.

Remark 1. Let (L,∧,∨, 0, 1) be abounded lattice. Assume
that a ∈ L, b ∈ L are arbitrary elements such that a ≤L b
and a ≠ b. Then ([a, b], ∧̃, ∨̃, a, b) is also abounded lattice
with the lattice-theoretical operations inherited from the
lattice (L,∧,∨, 0, 1).

As it was shown by Karaçal and Mesiar in [11], on every
bounded lattice it is possible to construct a proper uni-
norm.

Similarly,we can also defineproper nullnorms ongen-
eral bounded lattices.

Definition 4. Let (L,∧,∨, 0, 1) be a bounded lattice. An
operation N : L2 → L is said to be a nullnorm if it is an
associative, commutative and monotone operation with an
absorbing element a ∈ L such that

(∀x ≤ a) N(x, 0) = x,
(∀x ≥ a) N(x, 1) = x.

If a ∈ L \ {0, 1}, we say that N is a proper nullnorm.

In the paper by Karaçal et al. [10] it was shown that on ev-
ery bounded lattice it is possible to construct proper null-
norms.
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Remark 2. Properties of proper uninorms on a bounded
lattice may substantially differ from those of proper uni-
norms as operations on [0, 1]. Particularly, Deschrijver
in [7] showed that for interval-valued fuzzy sets, i.e., if
LIV = {(x, y) ∈ [0, 1]2; x ≤ y}, then there exist proper
uninorms which are neither conjunctive nor disjunctive.
More precisely, he showed that for arbitrary element e =
(x, x) for x ∈ ]0, 1[ and arbitrary element a ∈ LIV that is
incomparable with e (except for elements from intervals
](0, 0), (0, 1)[ and ](0, 1), (1, 1)[) there exists a proper uni-
normUwhose neutral element is e and absorbing element
is a.

Example 1. Let U1 : [0, 1]2 → [0, 1] and U2 : [0, 1]2 →
[0, 1] be uninorms with the same neutral element e = 1

2 .
Let U1 be conjunctive and U2 be disjunctive and such that

U1(x, y) ≤ U2(x, y)

for all (x, y) ∈ [0, 1]2. Denote by LIV the lattice of interval-
valued fuzzy sets. Then U : L2IV → LIV defined by

U((x1, x2), (y1, y2)) = (U1(x1, y1), U2(x2, y2))

is a proper uninormwith neutral element e = ( 12 ,
1
2 ) which

is neither conjunctive nor disjunctive, since the absorbing
element of U is a = (0, 1).

2 Uninorms as operations on
[0, 1]2

First, we consider representable uninorms onU : [0, 1]4 →
[0, 1]2 where representability is meant in the sense of De-
schrijver [6], i.e., there exist uninorms U1 : [0, 1]2 → [0, 1]
and U2 : [0, 1]2 → [0, 1] such that

U((x1, x2), (y1, y2)) =
(︀
U1(x1, y1), U2(x2, y2)

)︀
.

Lemma 4. (a) Let (e1, e2) ∈ ]0, 1]2 be arbitrarily chosen.
Assume that U1 : [0, 1]2 → [0, 1] and U2 : [0, 1]2 → [0, 1]
are conjunctive uninorms with neutral elements e1 and e2,
respectively. Then

U1((x1, x2), (y1, y2)) =
(︀
U1(x1, y1), U2(x2, y2)

)︀
is a conjunctive uninorm on [0, 1]2 whose neutral element is
(e1, e2).
(b) Let e3 ∈ [0, 1[ and U3 : [0, 1]2 → [0, 1] be a disjunctive
uninorm with neutral element e3. Then

U2((x1, x2), (y1, y2)) =
(︀
U1(x1, y1), U3(x2, y2)

)︀
is a uninorm on [0, 1]2 whose neutral element is (e1, e3) and
annihilator is (0, 1).

This assertion is straightforward and therefore we have
skipped the proof.

Dually to Lemma 4 we have the following lemma.

Lemma 5. (a) Let (e1, e2) ∈ [0, 1[ 2 be arbitrarily chosen.
Assume that U1 : [0, 1]2 → [0, 1] and U2 : [0, 1]2 → [0, 1]
are disjunctive uninorms with neutral elements e1 and e2,
respectively. Then

U3((x1, x2), (y1, y2)) =
(︀
U1(x1, y1), U2(x2, y2)

)︀
is a disjunctive uninorm on [0, 1]2 whose neutral element is
(e1, e2).
(b) Let e3 ∈ ]0, 1] and U3 : [0, 1]2 → [0, 1] be a conjunctive
uninorm with neutral element e3. Then

U4((x1, x2), (y1, y2)) =
(︀
U1(x1, y1), U3(x2, y2)

)︀
is a uninorm on [0, 1]2 whose neutral element is (e1, e3) and
annihilator is (1, 0).

We have seen in Lemma 4 that there exists a conjunctive
representable uninorm with a neutral element equal to
(e1, e2), where e1 > 0 and e2 > 0. Now we show that there
exist conjunctive uninorms with arbitrary neutral element
e ≠ (0, 0).

Definition 5. Let * : [0, 1]2 → [0, 1] be a binary operation.
We say that an element x : [0, 1]2, x ≠ (0, 0), is a zero-
divisor of * if there exists an element y : [0, 1]2, y ≠ (0, 0),
such that x * y = (0, 0).

Proposition 1. Let e = (e1, e2) ∈ [0, 1]2 be such that e ≠
(0, 0). Further, let U1 : [0, 1]2 → [0, 1] and U2 : [0, 1]2 →
[0, 1] be uninormswithout zero-divisors andwith neutral el-
ements equal to e1 and e2, respectively. Assume that U1 as
well as U2 are conjunctive uninorms if e1 > 0 and e2 > 0,
respectively. Otherwise, if e1 = 0 or e2 = 0, the respective
uninorm is a t-conorm. Denote

U(x, y) = (U1(x1, y1), U2(x2, y2))

and 0 = (0, 0). Then

U5((x1, x2), (y1, y2)) =

⎧⎪⎪⎨⎪⎪⎩
0 if (x1, x2) = 0

or (y1, y2) = 0,
U(x, y) otherwise,

(1)

is a conjunctive uninorm with the neutral element equal to
e = (e1, e2).

Proof. We distinguish two cases. First, if (e1, e2) ∈ ]0, 1]2,
thenU5 is just a representable conjunctive uninormwhose
definition coincides with that of U1 from Lemma 4.
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Second, assume that e1 = 0 (we could treat the case when
e2 = 0 similarly). Directly from formula (1) we have that
(0, 0) is the annihilator of U5. Commutativity and mono-
tonicity of U1 and U2 (as well as formula (1)) ensure com-
mutativity and monotonicity of U5. Now we prove that
U5 is associative. Recall that U1, U2 are uninorms with-
out zero-divisors and, since we assume e1 = 0, U1 is a t-
conorm, i.e.,

(U1(x1, x2), U2(y1, y2)) = 0 ⇔ (x1, x2) = 0 or (y1, y2) = 0.

Hence, for x = (x1, x2) ∈ [0, 1]2, y = (y1, y2) ∈ [0, 1]2,
z = (z1, z2) ∈ [0, 1]2 we have two possibilities – either
none of the elements x, y, z is equal to 0, or at least one of
them is equal to 0.
In the former case we get

U5(U5(x, y), z) = (U1(U1(x1, y1), z1), U2(U2(x2, y2), z2)) =
(U1(x1, U1(y1, z1)), U2(x2, U2(y2, z2))) = U5(x,U5(y, z))

using associativity of U1 and U2.
In the latter case (assume x = 0) we have

U5(U5(0, y), z) = U5(0, z) = 0 = U5(0,U5(y, z))

directly from (1) and this finishes the proof of associativity
of U5.
The fact that e = (e1, e2) is the neutral element of U5 fol-
lows directly from the fact that e1 and e2 are the neutral
elements of U1 and U2, respectively.

Next we show that we can choose arbitrary incomparable
elements a ∈ [0, 1]2 and e ∈ [0, 1]2 and there exists a uni-
norm on [0, 1]2 with the annihilator a and the neutral ele-
ment e.

a2

a1 e1

e2

a

e

Figure 1: A uninorm on [0, 1]2 whose annihilator, a, and neutral
element, e, are incomparable

Proposition 2. Let a and e be incomparable elements such
that a1 < e1 and e2 < a2 (see Fig. 1). Let T1 : [0, 1]2 →

[0, 1], T2 : [0, 1]2 → [0, 1], T3 : [0, 1]2 → [0, 1] be ar-
bitrary t-norms and S1 : [0, 1]2 → [0, 1], S2 : [0, 1]2 →
[0, 1], S3 : [0, 1]2 → [0, 1] be arbitrary t-conorms. Let φ1 :
[0, a1] → [0, 1], φ2 : [a1, e1] → [0, 1], φ3 : [e1, 1] →
[0, 1], ψ1 : [a2, 1] → [0, 1], ψ2 : [e2, a2] → [0, 1] and
ψ3 : [0, e2] → [0, 1] denote the corresponding increasing
affine transformations. We further denote the endomorphic
transformations

T̃1 = φ−11 ∘ T1 ∘ φ1, S̃1 = ψ−11 ∘ S1 ∘ ψ1,
T̃2 = φ−12 ∘ T2 ∘ φ2, S̃2 = ψ−12 ∘ S2 ∘ ψ2,
T̃3 = φ−13 ∘ T3 ∘ φ3, S̃3 = ψ−13 ∘ S3 ∘ ψ3.

Define functions U1 : [0, 1]4 → [0, 1]2 and U2 : [0, 1]4 →
[0, 1]2 by

U1(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T̃1(x1, y1) if x1 < a1, y1 < a1,
T̃2(x1, y1) if x1 ∈ [a1, e1[ , y1 ∈ [a1, e1[ ,
S̃3(x1, y1) if x1 ≥ e1, y1 ≥ e1,
min{x1, y1} if x2 ≤ e2, x1 ≥ a1, y1 < a1,

or y2 ≤ e2, y1 ≥ a1, x1 < a1,
or x1 ≥ e1, y1 ∈ [a1, e1[ ,
or y1 ≥ e1, x1 ∈ [a1, e1[ ,

a1 if x1 < a1, y1 ≥ a1, y2 > e2
or y1 < a1, x1 ≥ a1, x2 > e2,

(2)

U2(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T̃3(x2, y2) if x2 ≤ e2, y2 ≤ e2,
S̃2(x2, y2) if x2 ∈ ]e2, a2], y3 ∈ ]e2, a2],
S̃1(x2, y2) if x2 > a2, y2 > a2,
max{x2, y2} if x2 ≤ e2, y2 ∈ ]e2, a2],

or y2 ≤ e2, x2 ∈ ]e2, a2],
or x1 ≥ e1, x2 ≤ a2 y2 > a2,
or y1 ≥ e1, y2 ≤ a2 x2 > a2,

a2 if x2 > a2, y1 < e1, y2 ≤ a2
or y2 > a2, x1 < e1, x2 ≤ a2.

(3)
Then U6 : [0, 1]4 → [0, 1]2, given by

U6(x, y) =
(︀
U1(x, y),U2(x, y)

)︀
, (4)

is a uninorm whose annihilator is a and neutral element is
e.

Proof. Formulae (2) and (3) imply immediately that U6 is
commutative and increasing. We show that a is the anni-
hilator. In the first coordinate, the unit interval is split into

I1 = [0, a1[ , I2 = [a1, e1[ , I3 = [e1, 1],
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and in the second coordinate, the unit interval is split into

J1 = [0, e2], J2 = ]e2, a2], J3 = ]a2, 1].

Let x = a. Then we get U1(x, y) = U1(a, y) = a1 from the
last, the second and the last but two item of (2), respec-
tively, if y1 ∈ I1, y1 ∈ I2, or y1 ∈ I3. Similarly, we get
U2(x, y) = U1(a, y) = a2 from the fifth, the second and the
last item of (3), respectively, if y2 ∈ J1, y2 ∈ J2, or y2 ∈ J3.
This implies that a is the annihilator of U6.
Let x = e. Then we get U1(x, y) = U1(e, y) = y1 from the
fourth, the sixth and the third item of (2), respectively, if
y1 ∈ I1, y1 ∈ I2, or y1 ∈ I3. We get U2(x, y) = U1(e, y) = y2
from the first, the fourth and the sixth item of (3), respec-
tively, if y2 ∈ J1, y2 ∈ J2, or y2 ∈ J3. This implies that e is
the neutral element of U6.
We show that U6 is associative. Let x, y, z ∈ [0, 1]2 are ar-
bitrary elements. First we are going to prove the following

U1(U1(x, y), z) = U1(x,U1(y, z)). (5)

We may assume that not all of the first coordinates,
x1, y1, z1 are from he same interval I1, I2 or I3, since oth-
erwise formula (5) is obvious. Let us distinguish several
cases.

– Assume x1 ∈ I1 and y1 ∉ I1, z1 ∈ ̸ I1. Then if y2 ≤ e2
and z2 ≤ e2, we get immediately

U1(U1(x, y), z) = U1(x,U1(y, z)) = x1.

If y2 > e2 or z2 > e2, we have

U1(U1(x, y), z) = U1(x,U1(y, z)) = a1.

In both of these cases (5) holds.
– Assume x1 ∈ I1 and y1 ∈ I1, z1 ∉ I1. Then if z2 ≤ e2

we get

U1(U1(x, y), z) = U1(x,U1(y, z)) = T̃1(x1, y1),

otherwise

U1(U1(x, y), z) = U1(x,U1(y, z)) = a1.

Also in these two cases (5) holds.
– Assume x1 ∈ I2, y1 ∈ I3, z1 ∈ I3. In this case we

have

U1(U1(x, y), z) = U1(x,U1(y, z)) = x1.

– Assume x1 ∈ I2, y1 ∈ I2, z1 ∈ I3. we get

U1(U1(x, y), z) = U1(x,U1(y, z)) = T̃2(x1, y1).

Any permutation of x, y, z gives the same result because of
the commutativity ofU1. This finishes the proof of associa-
tivity ofU6 in the first coordinate. Theproof of associativity
of U6 in the second coordinate follows the same idea and
therefore we have skipped this part of the proof.

Remark 3. In Proposition 2 we have constructed the uni-
normU6 whose neutral element, e, and annihilator, a, are
incomparable and such that a1 < e1 and e2 < a2. Similarly
it is possible to construct a uninorm with incomarable an-
nihilator â and neutral element ê such that ê1 < â1 and
â2 < ê2. It is enough to exchange the coordinates in (4).
We skip this construction.

Remark 4. If we restrict the uninormU6 form Proposition
2 just to the rectangle [a1, e1]×[e2, a2],weget the following
operation Ũ6 :

(︀
[a1, e1] × [e2, a2]

)︀2 → [a1, e1] × [e2, a2]
which is defined by the formula

Ũ6((x1, x2), (y1, y2)) = (T̃2(x1, y1), S̃2(x2, y2)).

Using the transformations φ2 and ψ2 we can transform Ũ6
to an operation U7 : [0, 1]4 → [0, 1] which is of the form

U7((x1, x2), (y1, y2)) = (T2(x1, y1), S2(x2, y2)).

U7 is a uninorm on [0, 1]2 with the neutral element (1, 0)
and the annihilator (0, 1). But this operation is also a null-
norm with the same annihilator (0, 1). This means that
we have constructed a proper nullnormwith a neutral ele-
ment. Aswe have alreadymentioned in Lemma 3, this type
of operation cannot be constructed on [0, 1]. In the rest of
this paper we will deal with nullnorms with a neutral ele-
ment.

3 Nullnorms with neutral element
In the rest of this paper we will assume that L = L1 × L2
is a bounded lattice wich is a direct product of bounded
lattices L1 and L2, i.e., we will assume that there exist in-
comparable elements b1, b2 ∈ L such that

b1 ∧ b2 = 0, b1 ∨ b2 = 1, (6)
(∀x ∈ L)(x = (x ∧ b1) ∨ (x ∧ b2)). (7)

Remark 5. The direct product of lattices L = L1 × L2 is a
lattice whose set of elements L can be expressed as the set
of all pairs L = {(x1, x2); x1 ∈ L1, x2 ∈ L2} and all lattice-
theoretical operations are defined coordinate-wise.

As an example of a lattice fulfilling (6) and (7) wemay con-
sider L2 = [0, 1]2 with lattice-theoretical operations de-
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fined coordinate-wise, which we have considered in the
foregoing section.

Example 2. Let Ln = [0, 1]n. Then (Ln , ≤n) is the lat-
ticewith lattice-theoretical operations defined coordinate-
wise. Set

b1 = (1, . . . , 1⏟  ⏞  
k×

, 0, . . . , 0), b2 = (0, . . . , 0, 1, . . . , 1⏟  ⏞  
(n−k)×

).

Then formulae (6) and (7) are fulfilled.

In the next proposition we learn how it is possible to con-
struct a nullnorm with a neutral element on a lattice (L, ≤)
fulfilling formulae (6) and (7). Particularly, we construct a
nullnorm whose neutral element is b1 and annihilator is
b2.

Proposition 3. Let (L,∧,∨, 0, 1) be the ordinal sum of two
bounded lattices. Letb1, b2 be incomparable elements such
that formulae (6) and (7) are valid for b1 and b2. For arbi-
trary x ∈ L denote

x̄ = x ∧ b1, x̂ = x ∧ b2. (8)

Further, let T : [0, b1]2 → [0, b1] be a t-norm and
S : [0, b2]2 → [0, b2] be a t-conorm. Then *: L2 → L, de-
fined by

x * y = T(x̄, ȳ) ∨ S(x̂, ŷ), (9)

is a proper uninorm (which is neither conjunctive nor dis-
junctive), and at the same time * is also a proper nullnorm.
The operation * hasb1 as neutral element andb2 as absorb-
ing element.

Proof. Since all operations involved in formula (9) are
commutative and monotone (increasing), also * is mono-
tone and increasing. We prove the associativity of *. First
realize that for arbitrary x, y ∈ L we have the following
equalities implied by (6)

a * y = (x * y) ∧ b1 = T(x̄, ȳ), (10)

̂︂x * y = (x * y) ∧ b2 = S(x̂, ŷ), (11)

since T(x̄, ȳ) ≤ b1 and S(x̂, ŷ) ≤ b2. Then for all x, y, z ∈ L
we get

(x * y) * z = T((x * y), z̄) ∨ S((̂x * y), ẑ)
= T(T(x̄, ȳ), z̄) ∨ S(S(x̂, ŷ), ẑ)
= T(x̄, T(ȳ, z̄)) ∨ S(x̂, S(ŷ, ẑ))

= T(x̄, (y * z)) ∨ S(x̂, (̂y * z))
= x * (y * z),

which completes the proof of the associativity of *.
Now we prove that b1 is the neutral element of * and b2 is
the annihilator of *. Formula (6) implies

b̄1 = b1, b̂1 = 0,

b̂2 = b2, b̄2 = 0.

Then for arbitrary x ∈ L we get

x * b1 = T(x̄, b̄1) ∨ S(x̂, b̂1)
= T(x̄, b1) ∨ S(x̂, 0) = x̄ ∨ x̂ = x,

x * b2 = T(x̄, b̄2) ∨ S(x̂, b̂2)
= T(x̄, 0) ∨ S(x̂, b2) = 0 ∨ b2 = b2.

This finishes the proof of the fact that * is a uninorm on L
with the neutral element b1 and annihilator b2.
Yet we have to prove that * is also a nullnorm on L, i.e., we
have to prove that

(∀x ≤ b2)(x * 0 = x),
(∀x ≥ b2)(x * 1 = x).

From fromulae (8) and (11) we have

x ≤ b2 ⇒ x * 0 = S(x, 0) = x.

If x ≥ b2 then x̂ = b2 and thence

x * 1 = T(x̄, b1) ∨ S(x̂, b2) = x̄ ∨ b2 = x,

and the proof is complete.

Example 3. Let L = [0, 1]n, n ≥ 2. For some 1 ≤ j < n we
choose j t-norms Ti : [0, 1]2 → [0, 1], i ∈ {1, 2, . . . , j},
and n− j t-conorms Sk : [0, 1]2 → [0, 1], k ∈ {1, 2, . . . , n−
j}. Letx = (x1, x2, . . . , xn) ∈ L andy = (y1, y2, . . . , yn) ∈ L
be arbitrary elements. Then the following operation

x * y =
(︀
T1(x1, y1), . . . , Tj(xj , yj),
S1(xj+1, yj+1), . . . , Sn−j(xn , yn)

)︀
is a uninorm and a nullnorm and the neutral element and
annihilator are

e = (1, . . . , 1⏟  ⏞  
j×

, 0 . . . , 0), a = (0, . . . , 0, 1, . . . , 1⏟  ⏞  
(n−j)×

),

respectively.

4 Conclusion
In this paper we have discussed possible positions of the
neutral element and the annihilator of uninorms on the
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lattice ([0, 1]2, ≤2). We have shown that arbitrary pair of
incomparable elements (e, a) can be chosen and we are
then able to construct a uninormwith the neutral element
equal to e and the annihilator equal to a. As a special case
we have e = (1, 0) and a = (0, 1). In this case the con-
structed uninorm is also a nullnorm. This means that on
[0, 1]2 there exist nullnorms with neutral element. In the
last sectionwe have shown that on the direct product of ar-
bitrary twobounded lattices it is possible to construct null-
norms with neutral element (or in other words nullnorms
which are also uninorms).
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