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Abstract: We will study uninorms on the unit square en-
dowed with the natural partial order defined coordinate-
wise. We will show that we can choose arbitrary pairs of
incomparable elements, (a, e) and construct a uninorm
whose neutral element is e and annihilator is a. As a spe-
cial case we construct uninorms which are at the same
time also nullnorms (or, expressed another way, we con-
struct proper nullnorms with neutral element). We will
also generalize this result to the direct product of two
bounded lattices. L.e., we will show that it is possible to
construct nullnorms with a neutral element on the direct
product of two bounded lattices.
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1 Introduction and Preliminaries

Associative, commutative and monotone (binary) opera-
tions on the unit interval, due to their associativity, can
be straightforwardly extended to n-ary operations for arbi-
trary n € N. This means they are special types of aggrega-
tion functions. As such they have proven their importance
in various fields of applications, e.g., neuron nets, fuzzy
decision making and fuzzy modelling. Studying their be-
haviour is also interesting from a theoretical point of view.
It is important for researchers to have many families of
such operations to hand. Associative, commutative and
monotone operations have recently been studied also on
bounded lattices (see, e.g., [2, 7, 10, 11]).
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1.1 Associative Commutative and Monotone
Operations on [0, 1]

Currently, we distinguish several types of associative com-
mutative and monotone (isotone) operations. In fact, we
will consider only increasing operations. We say that an
operation *: [0, 1]> — [0, 1] possesses:

(NE) aneutral element e € [0, 1] if for every x € [0, 1]
xX*e=e*x=x,

(AE) an absorbing element (called also annihilator) a €
[0, 1] if for every x € [0, 1]

(IE) anidempotent elementi c [0,1]ifi*i=1i

Lemmal. Let *: [0, 1]> — [0, 1] be an associative com-
mutative and monotone operation. Then * has an idempo-
tent element i which is also an absorbing element.

If * has a neutral element e then 0, 1 and e are idempotent
elements. Further, a = 0 * 1 is the absorbing element of *.

Schweizer and Sklar [13] introduced the notion of a tri-
angular norm (t-norm for brevity).

Definition 1 ([13]). An operation T: [0,1]*> — [0, 1]isa t-
norm if it is associative, commutative, monotone, and 1 is
its neutral element.

T-norms and t-conorms are dual to each other. If
T: [0, 1]*> — [0, 1] is a t-norm, then

Sx,y)=1-T(1-x,1-y)

is the dual t-conorm to T. For details on t-norms and t-
conorms see, e.g., [12].

Another type of operation was introduced by Dombi
in [8, 9] under the name aggregative operator. In current
terminology, aggregative operators are representable uni-
norms. They are defined via a continuous, strictly increas-
ing function g : [0, 1] — [-oo, co] with g(0) = —oo and
g(1) = oo by the following formula

Alx,y) = g H(g) + gy,
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and the value —oo + oo is defined either as —oo (conjuctive
case) or oo (disjuctive case).

General associative commutative and monotone oper-
ationson [0, 1] were studied also by Czogata and Drewniak
[5].

As a generalization of both t-norms and t-conorms
Yager and Rybalov [14] proposed the notion of uninorm.

Definition 2 ([14]). An operation U: [0,1]*> — [0, 1] is a
uninorm if it is associative, commutative, monotone, and if
it possesses a neutral element e € [0, 1].

We say that a uninorm U is proper if its neutral element
eclo, 1].

Every uninorm has an absorbing element. We distin-
guish two types of uninorms according to the value of ab-
sorbing element, describing them as conjunctive uninorms
if the absorbing element is 0, and disjunctive uninorms if
the absorbing element is 1.

Lemma?2. Let U: [0, 1]*> — [0, 1] be a uninorm whose neu-
tral element is e. Then its dual operation

U, y)=1-U(1-x,1-Y)

is a uninorm whose neutral element is 1 — e. Moreover, U is
conjunctive if and only if U? is disjunctive.

Nullnorms as operations occur when studying the func-
tional equation by Frank and Alsina

U, y)+V(x,y) =x+y,

where U is a special uninorm and therefore the other op-
eration, V, is a nullnorm.

Definition 3 ([3]). An operation N: [0,1]> — [0,1] is a
nullnorm if it is associative, commutative, monotone and
with an absorbing element a € [0, 1] and moreover

(vx<a) N(x,0)=x,
(vx=2a) N(x,1)=x.

We say that a nullnorm N is proper if its absorbing element
a €]o, 1[.

Lemma3. Let N: [0,1]?> — [0, 1] be a proper nullnorm.
Then N has no neutral element.

More detailed information on proper uninorms and proper
nullnorms one can found in [4].
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1.2 Associative, Commutative and
Monotone Operations on Bounded
Lattices

We will skip a detailed introduction to bounded lattices re-
ferring to the monograph [1]. Let us just recall that on every
lattice (L, <1 ) there exists a partial order <; and this order
induces two binary operations: meet, A, and join, V. Meet
of x and y is the greatest lower bound of x, y. Join of x and
y is the lowest upper bound of x, y.

On every bounded lattice (L, A, V,0,1) we can de-
fine t-norms, t-conorms and proper uninorms as associative
commutative and monotone operations having 1 (0, an el-
ement e € L, respectively) as neutral element. As exam-
ples of t-norms and t-conorms we present the following.

xAy ifx=1ory=1,
T, (x,y) = ]

0 otherwise
Tulx,y) = xAy,

xvy ifx=0o0ry=0,
ST(X’ )’) = .

1 otherwise,
SM(X’ )’) = XVYy.

Ty and T, are the greatest and the least t-norm, respec-
tively. Sy and S+ are the least and the greatest t-conorm,
respectively.

Remark 1. Let(L, A, Vv, 0, 1) be abounded lattice. Assume
that a € L, b € L are arbitrary elements such that a <; b
anda # b.Then ([a, b], A, ¥, a, b) isalso a bounded lattice
with the lattice-theoretical operations inherited from the
lattice (L, A, V, 0, 1).

As it was shown by Karacal and Mesiar in [11], on every
bounded lattice it is possible to construct a proper uni-
norm.

Similarly, we can also define proper nullnorms on gen-
eral bounded lattices.

Definition 4. Let (L, A, V, 0, 1) be a bounded lattice. An
operation N: L* — L is said to be a nullnorm if it is an
associative, commutative and monotone operation with an
absorbing element a € L such that

(vx<a) N(x,0)=x,
(vx=a) N(x,1)=x.
Ifae L\ {0, 1}, wesay that N is a proper nullnorm.
In the paper by Karagal et al. [10] it was shown that on ev-

ery bounded lattice it is possible to construct proper null-
norms.
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Remark 2. Properties of proper uninorms on a bounded
lattice may substantially differ from those of proper uni-
norms as operations on [0, 1]. Particularly, Deschrijver
in [7] showed that for interval-valued fuzzy sets, i.e., if
Ly = {(x,y) € [0,1]%);x < y}, then there exist proper
uninorms which are neither conjunctive nor disjunctive.
More precisely, he showed that for arbitrary element e =
(x, x) for x €]0, 1[ and arbitrary element a € Ly that is
incomparable with e (except for elements from intervals
1(0, 0), (0, 1)[and ](0, 1), (1, 1)) there exists a proper uni-
norm U whose neutral element is e and absorbing element
is a.

Example1. Let U;: [0,1]> — [0,1] and U>: [0, 1]* —
[0, 1] be uninorms with the same neutral element e = %

Let U; be conjunctive and U, be disjunctive and such that
Ui(x,y) < Ua(x,y)

for all (x, y) € [0, 1]2. Denote by Ly the lattice of interval-
valued fuzzy sets. Then U: L3, — Ly defined by

U((x1, x2), (1, ¥2)) = (U1(x1, y1), Ua(x2, ¥2))

is a proper uninorm with neutral element e = (%, %) which
is neither conjunctive nor disjunctive, since the absorbing

elementof Uisa = (0, 1).

2 Uninorms as operations on
[0, 1]°

First, we consider representable uninorms on U: [0, 1]* —
[0, 1]? where representability is meant in the sense of De-
schrijver [6], i.e., there exist uninorms U, : [0, 1]* — [0, 1]
and U,: [0, 1]> — [0, 1] such that

U((x1, x2), V1, ¥2)) = (Ur(x1, y1), Ua(x2,¥2)) -

Lemma 4. (a) Let (eq, e2) €10, 11 be arbitrarily chosen.
Assume that U : [0, 1]* — [0, 1] and U, : [0, 1]*> — [0, 1]
are conjunctive uninorms with neutral elements e, and e,
respectively. Then

Uz ((x1, x2), (Y1, ¥2)) = (Ur(x1, y1), Ua(x2, y2))

is a conjunctive uninorm on [0, 1]2 whose neutral element is
(e1, e2).

(b) Letes € [0, 1[ and Us: [0, 1]> — [0, 1] be a disjunctive
uninorm with neutral element es. Then

Uz ((x1, X2), (Y1, y2) = (Ur(x1, y1), Us(x2, ¥2))

is a uninorm on [0, 1]> whose neutral elementis (e1, e3) and
annihilator is (0, 1).
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This assertion is straightforward and therefore we have
skipped the proof.
Dually to Lemma 4 we have the following lemma.

Lemma5. (a) Let (e1, e>) € [0, 1[? be arbitrarily chosen.
Assume that Uy : [0, 1]> — [0, 1] and U,: [0, 1]*> — [0, 1]
are disjunctive uninorms with neutral elements e, and e,
respectively. Then

Us((x1, x2), (V1, ¥2)) = (Ur(xa, y1), Ua(x2, 2))

is a disjunctive uninorm on [0, 1]* whose neutral element is
(e1, e2).

(b) Lete; €10, 1] and U; : [0, 1]> — [0, 1] be a conjunctive
uninorm with neutral element e3. Then

Ug((x1, X2), (Y1, ¥2)) = (Ur(x1, y1), Us(x2, 1))

is a uninorm on [0, 1]> whose neutral element is (e, , e3) and
annihilator is (1, 0).

We have seen in Lemma 4 that there exists a conjunctive
representable uninorm with a neutral element equal to
(e1, e2), where e; > 0 and e, > 0. Now we show that there
exist conjunctive uninorms with arbitrary neutral element
e # (0, 0).

Definition 5. Let* : [0, 1]> — [0, 1] be a binary operation.
We say that an element x : [0,1]%, x # (0, 0), is a zero-
divisor of * if there exists an element y : [0, 1]?, v # (0, 0),
such thatx*y = (0, 0).

Proposition 1. Let e = (eq, e;) € [0, 1]? be such that e #
(0, 0). Further, let U; : [0,1]*> — [0,1] and U,: [0,1]*> —
[0, 1] be uninorms without zero-divisors and with neutral el-
ements equal to e; and e,, respectively. Assume that U, as
well as U, are conjunctive uninorms if e; > 0 and e, > 0,
respectively. Otherwise, if e = 0 or e, = 0, the respective
uninorm is a t-conorm. Denote

Ux,y) = (U1(x1,y1), Ua(x2,y2))
and 0 = (0, 0). Then

0 if(x1,x2) =0
or(yi,y2)=0, (1
U(x,y) otherwise,

Us((x1, x2), (y1,y2)) =

is a conjunctive uninorm with the neutral element equal to
e =(eq, ).

Proof. We distinguish two cases. First, if (e1, e>) €10, 1]?,
then Us is just a representable conjunctive uninorm whose
definition coincides with that of U; from Lemma 4.
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Second, assume that e; = 0 (we could treat the case when
e> = 0 similarly). Directly from formula (1) we have that
(0, 0) is the annihilator of Us. Commutativity and mono-
tonicity of U; and U, (as well as formula (1)) ensure com-
mutativity and monotonicity of Us. Now we prove that
Us is associative. Recall that Uy, U, are uninorms with-
out zero-divisors and, since we assume e; = 0, U; is a t-
conorm, i.e.,

(U1(x1, x2), Uz(y1,¥2)) =0 = (x1,x2) =001 (y1,y2) = 0.

Hence, for x = (x1,x2) € [0,1]1%, ¥ = (y1,y2) € [0, 1]%,
z = (z1,22) € [0,1]?> we have two possibilities — either
none of the elements X, y, z is equal to 0, or at least one of
them is equal to 0.

In the former case we get

Us(Us(x, V), 2) = (U1(U1(x1, 1), 21), U2(Ua(x2, ¥2), 22)) =
(Ui(x1, Ur(y1, 21)), Ua(x2, Ua(y2, 22))) = Us(x, Us(Y, Z))

using associativity of U; and Us,.
In the latter case (assume x = 0) we have

Us(Us(0,y), z) = Us(0, ) = 0 = Us(0, Us(y, 2))

directly from (1) and this finishes the proof of associativity
of U 5.

The fact that e = (eq, e5) is the neutral element of U; fol-
lows directly from the fact that e; and e, are the neutral
elements of U; and U,, respectively. O

Next we show that we can choose arbitrary incomparable
elementsa € [0, 1]? and e € [0, 1]? and there exists a uni-
norm on [0, 1]? with the annihilator a and the neutral ele-
ment e.

Fomm gy === === - ,,,,,,, a

€2

ai €1

Figure 1: A uninorm on [0, 1]? whose annihilator, a, and neutral
element, e, are incomparable

Proposition 2. Leta and e be incomparable elements such
that a; < e, and e, < a, (see Fig. 1). Let T;: [0,1]* —
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[0,1], T>: [0,1]*> — [0,1], T5: [0,1]> — [0, 1] be ar-
bitrary t-norms and S1: [0,1]> — [0,1], S»: [0,1]* —
[0,1], S5: [0, 1]> — [0, 1] be arbitrary t-conorms. Let ¢ :
[0,a1] — [0,1], ¢, : [a1,e1] — [0,1], 35 : [e1,1] —
[0, 1], l/)1 : [az, 1] — [O, 1], l/)2 : [ez,az] — [O, 1] and
Y3 : [0, e;] — [0, 1] denote the corresponding increasing
affine transformations. We further denote the endomorphic
transformations

5'1 =l/11103101/)1,
Sy=93' 0S80,
5'3 =l/)§1053ol,[)3.

Define functions U; : [0, 1]* — [0, 1]* and U,
[0, 1]* by

T1 =(P110 Ti0¢4,
Ty =93 0T 00,
Tg =(p§10 T3O(p3,

: [0, 1]* —

T1(X1,)/1) ifxi <as, y1<ay,
TZ(Xls)/l) ifx1 € la1, e1l, y1 € las, exl,
S3(x1,y1)  ifxizer, yize,

min{xi,y1} ifxy<eyx1zai,y1<a,

U,(x,y) = ory, <esyi=ay,xi<a,
orxi 2 e,y € lai, e,
oryy = ey, x1 €lay, eql,

a, ifxi<ai,yiz2a,y:> e
ory; <d, Xxi 2dag,Xx; > e,
)
T3(x2,y2) ifxa<e, yr<ey,
S20x2,y2) ifxz €lea, az], y3 €lez, azl,
SI(XZ’)/Z) ifx; > az, y: > a,
max{xy,y2} ifxz<esyr €les, arl,
Uy(x,y) = ory; < ey, x; €ley, azl,

orxizei,Xp<dzy2 > ay,

ory1 > e, Y2 <dp Xy > A,

a ifx;>axyi<e,yr<a
ory, > daz, x1 <e1, X2 £AQ.
3
Then U : [0, 1]* — [0, 112, given by
Ug(x,y) = (U1(x, ), Ua(x,Y)) , (4)

is a uninorm whose annihilator is a and neutral element is
e.

Proof. Formulae (2) and (3) imply immediately that U is
commutative and increasing. We show that a is the anni-
hilator. In the first coordinate, the unit interval is split into

Il = [O’ al[) IZ = [a19 el[y I3 = [ela 1]:
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and in the second coordinate, the unit interval is split into
J1 =10, ez], J2 =lez, azl, J3 =laz, 1].

Let x = a. Then we get U;(x,y) = Ui(a, y) = a; from the
last, the second and the last but two item of (2), respec-
tively, if y; € I, y1 € I, or y; € I5. Similarly, we get
U,(x,vy) = Us(a, y) = a, from the fifth, the second and the
last item of (3), respectively, if y, € J1, y» € J,0rys € Js.
This implies that a is the annihilator of 1.

Let x = e. Then we get U;(x,y) = Ui(e,y) = y; from the
fourth, the sixth and the third item of (2), respectively, if
yi €, y1 € h,ory; € I3. We get U,(x,y) = Us(e,y) = y»
from the first, the fourth and the sixth item of (3), respec-
tively, if y> € J1, y2 € J2, or y» € J3. This implies that e is
the neutral element of Us.

We show that U is associative. Let X, y, z € [0, 1]? are ar-
bitrary elements. First we are going to prove the following

U1 (U1(x,y), z) = Ui(x, Ui(y, 2)). (5)

We may assume that not all of the first coordinates,
X1, Y1, 21 are from he same interval I, I, or I3, since oth-
erwise formula (5) is obvious. Let us distinguish several
cases.

— Assumex; € Iy andy; ¢ I1,z1 ¢ I,. Thenify, < e,
and z; < e,, we get immediately

U, (U1(x,y), 2) = Ui(x, Ui (y, 2)) = x;1.
Ify, > e; or z, > e,, we have
U, (U1(x, V), z) = Ui(x, Us(y, 2)) = a;.

In both of these cases (5) holds.
— Assumex; € Iy andy; € I, z1 ¢ I. Thenifz, < e,
we get

Ui (U1 (x,Y), 2) = Ui (%, Us(y, 2)) = T1(x1, 1),
otherwise
U, (Ui(x,),2) = Ui(x, Us(y, 2)) = a;.

Also in these two cases (5) holds.
— Assume x; € I, y1 € I3, z1 € Is. In this case we
have

U; (Ui (x,V), z) = Usi(x, Ui (y, 2)) = x1.
— Assume x; € I, y1 € I, z; € I5. we get

U1 (Ui(x,Y),2) = Ui (x, Us(y, 2)) = T2(x1, y1).
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Any permutation of X, y, z gives the same result because of
the commutativity of U;. This finishes the proof of associa-
tivity of U in the first coordinate. The proof of associativity
of Ue in the second coordinate follows the same idea and
therefore we have skipped this part of the proof. O

Remark 3. In Proposition 2 we have constructed the uni-
norm Ug whose neutral element, e, and annihilator, a, are
incomparable and such that a; < e; and e, < a,. Similarly
it is possible to construct a uninorm with incomarable an-
nihilator a and neutral element é such that é; < @; and
a, < &. It is enough to exchange the coordinates in (4).
We skip this construction.

Remark 4. If we restrict the uninorm U form Proposition

2just to therectangle [a1, e1]x[e;, a;], we get the following
. ~ 2

operation Ug : ([a1,e1]x ez, a2])” — [a1, e1] x [e2, ay]

which is defined by the formula

ﬂ6((X1, x2), V1,¥2)) = (Tz(Xl, y1), Sz(Xz, y2)).

Using the transformations ¢, and y, we can transform U
to an operation U5 : [0, 1]* — [0, 1] which is of the form

U7 ((x1, x2), (Y1, ¥2)) = (T2(x1, y1), S2(x2, ¥2)).

U5 is a uninorm on [0, 1]?> with the neutral element (1, 0)
and the annihilator (0, 1). But this operation is also a null-
norm with the same annihilator (0, 1). This means that
we have constructed a proper nullnorm with a neutral ele-
ment. As we have already mentioned in Lemma 3, this type
of operation cannot be constructed on [0, 1]. In the rest of
this paper we will deal with nullnorms with a neutral ele-
ment.

3 Nullnorms with neutral element

In the rest of this paper we will assume that L = L; x L,
is a bounded lattice wich is a direct product of bounded
lattices L, and L, i.e., we will assume that there exist in-
comparable elements by, b, € L such that

biAb,=0, b;yvb,=1, (6)
(Vx e L)(x = (x Aby) vV (x A by)). @)

Remark 5. The direct product of lattices L = L; x L, isa
lattice whose set of elements L can be expressed as the set
of all pairs L = {(x1, x2); x1 € L1, x, € L2} and all lattice-
theoretical operations are defined coordinate-wise.

As an example of a lattice fulfilling (6) and (7) we may con-
sider L, = [0, 1]* with lattice-theoretical operations de-
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fined coordinate-wise, which we have considered in the
foregoing section.

Example2. Let L, = [0,1]". Then (Ly, <,) is the lat-
tice with lattice-theoretical operations defined coordinate-
wise. Set

b, =(1,...,1,0,...,0), by=(0,...,0,1,...,1).
N—— ——
kx (n-k)x

Then formulae (6) and (7) are fulfilled.

In the next proposition we learn how it is possible to con-
struct a nullnorm with a neutral element on a lattice (L, <)
fulfilling formulae (6) and (7). Particularly, we construct a
nullnorm whose neutral element is b; and annihilator is
b 2.

Proposition 3. Let (L, A, V, 0, 1) be the ordinal sum of two
bounded lattices. Let by, b, be incomparable elements such
that formulae (6) and (7) are valid for b, and b,. For arbi-
trary x € L denote

x=xAb1, X=xAb,. (8)

Further, let T: [0,b;]> — [0,by] be a tnorm and
S: [0,b5]> — [0, b,] be a t-conorm. Then *: L?> — L, de-
fined by

x*y=T(x,y)VS&,7), ©)

is a proper uninorm (which is neither conjunctive nor dis-
junctive), and at the same time * is also a proper nullnorm.
The operation * has b, as neutral element and b, as absorb-
ing element.

Proof. Since all operations involved in formula (9) are
commutative and monotone (increasing), also * is mono-
tone and increasing. We prove the associativity of *. First
realize that for arbitrary x,y € L we have the following
equalities implied by (6)

a*y=(x*y)ab; =T(x,y), (10)
X*y=(x*y) Ab, = S, 9), (11)

since T(x, y) < by and S(X, y) < b,. Then forall x,y,z € L
we get

-

(x*y)*z=T((x*y),2) vS((x*y),2)
= T(T(x,7),2) v S(S(%, ), 2)
=T, T(y,2)) v S(%, S(7, 2))

—

=T(x, (y*2)) v S(%, (y * 2)

=x*(y*z),
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which completes the proof of the associativity of *.

Now we prove that b, is the neutral element of * and b, is
the annihilator of *. Formula (6) implies

b, =0,

b, = 0.

Io_l = bly
l:;2 = bZ,
Then for arbitrary x € L we get

x*by = T(x, b1) v S(%, by)
=T(x,b1)VvS(kx,0)=xVZX=x,
x*b, = T(x,by) v SX, b,)
=T(x,0) Vv S(X,by) =0V b, =b,.

This finishes the proof of the fact that * is a uninorm on L
with the neutral element b; and annihilator b,.

Yet we have to prove that * is also a nullnorm on L, i.e., we
have to prove that

(Vx <bhy)(x*0 = x),
(Vx=2by)(x*1=x).

From fromulae (8) and (11) we have
x<b, = x*0=3S(x,0) = x.
If x = b, then x = b, and thence
x*1=T(,by)VvSEX,by))=xVvb; =x,
and the proof is complete. O

Example3. Let L = [0,1]",n > 2. Forsome 1 < j < nwe

choose j tnorms T; : [0,1]> — [0,1],i € {1,2,...,j},
and n-j t-conorms Sy : [0,1]*> — [0,1], k € {1,2,...,n~
jt.Letx = (x1,x2,...,xp) € Landy = (y1,¥2,...,¥n) €L

be arbitrary elements. Then the following operation

x*y = (Ti(x1,y1), ..., Ti(x;, ¥)),
Sl(X)'+l) )’j+1), ) Sn—j(an yn))

is a uninorm and a nullnorm and the neutral element and
annihilator are

e=(1,...,1,0...,0), a=(0,...,0,1,...,1),
—— N——
Jx (n—j)x
respectively.

4 Conclusion

In this paper we have discussed possible positions of the
neutral element and the annihilator of uninorms on the
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lattice ([0, 1]?, <,). We have shown that arbitrary pair of
incomparable elements (e, a) can be chosen and we are
then able to construct a uninorm with the neutral element
equal to e and the annihilator equal to a. As a special case
we have e = (1,0) and a = (0, 1). In this case the con-
structed uninorm is also a nullnorm. This means that on
[0, 1]? there exist nullnorms with neutral element. In the
last section we have shown that on the direct product of ar-
bitrary two bounded lattices it is possible to construct null-
norms with neutral element (or in other words nullnorms
which are also uninorms).
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