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Abstract: The Brusselatorwith different time scales, which
behaves in the classical slow-fast effect, is investigated,
and is characterized by the coupling of the quiescent and
spiking states. In order to reveal the generation mecha-
nism by using the slow-fast analysis method, the coordi-
nate transformation is introduced into the classical Brus-
selator, so that the transformed system can be divided into
the fast and slow subsystems. Furthermore, the stability
condition and bifurcation phenomenon of the fast subsys-
tem are analyzed, and the attraction domains of different
equilibria are presented by theoretical analysis and nu-
merical simulation respectively. Based on the transformed
system, it could be found that the generation mechanism
between the quiescent and spiking states is Fold bifurca-
tion and change of the attraction domain of the fast sub-
system. The results may also be helpful to the similar sys-
tem with multiple time scales.

Keywords: Brusselator; slow-fast effect; generation mech-
anism; coordinate transformation
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1 Introduction
The Brusselator is a theoretical model for a type of auto-
catalytic reaction, and its nonlinear dynamical behaviors
have attracted many scholars. A lot of works about this
oscillator, such as stability, analytical and numerical so-
lution, bifurcation, and control, etc, have been studied.
For example, the Hopf bifurcation and stability condition
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of periodic solution for the Brusselator were investigated
by using Hopf bifurcation theorem, normal form theory,
and center manifold theorem in [1]. Yu [2] had studied
the associated Hopf bifurcation and double-Hopf bifurca-
tions for the coupling of double Brusselators. The steady-
state bifurcation from the unique positive constant equi-
librium point, was investigated in detail [3]. The approx-
imate analytical solution of the steady-state non-linear
boundary value problem, was derived by using the Ho-
motopy perturbation method in [4]. Islam [5] studied a
meshfree technique for the numerical solution of the two-
dimensional reaction-diffusion Brusselator along with
Dirichlet and Neumann boundary conditions. Mittal [6]
had given a differential quadrature method for numeri-
cal study of a two-dimensional reaction-diffusion Brusse-
lator. Bashkirtseva [7] investigated the sensitivity analysis
of the Brusselator, subject to small stochastic and periodic
disturbances. Guruparan [8] characterized periodic orbits,
quasiperiodic orbits, chaotic orbits, hysteresis, and vibra-
tional resonance of the Brusselator. Vaidyanathan [9] used
Lyapunov stability theory to discuss the adaptive control
of the Brusselator so as to regulate its states to desired
steady-state values.

Here, it should be pointed out that the Brusselator is
a catalytic reaction with typical coupling of different time
scales, because the large gap between different reaction
stepswill result in the difference in time scale. Someworks
about the slow-fast effect could be referred to the famous
Belousov-Zhabotinsky reaction, CO oxidation on the plat-
inumgroupmetals,metal electrochemical system in sulfu-
ric acid solution, reaction-diffusion model, and so on [10–
15].

The dynamical systems with different time scales cou-
pled had attracted the attention of many scholars in dif-
ferent fields, such as electronic circuits, neuronal, chem-
ical kinetics, and population dynamics [16–21]. The slow-
fast effect, known as bursting, would happen in these sys-
tems, which could be characterized by a combination of
quiescent state (QS) and spiking state (SP) during each
evolution process. The early works were mainly involved
in the approximate analytical solution and numerical sim-
ulation of the slow-fast phenomenon, but they could not
accurately explain the mechanism of interaction between
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Figure 1: Periodic oscillation of Eq. (1) when B = 2 and A = 1. (a)
time history of u, (b) time history of v.

the fast and slow variables. The generation mechanism of
transition between the QS and SP had not been clearly re-
vealed until the slow-fast dynamical analysis method was
proposed by Rinzel [22]. Based on the method, various bi-
furcation phenomena had been found to be related with
the generation mechanism in the systems with two time
scales. For example, Izhikevich [23] had given the classifi-
cation of bursting by using bifurcation on the fast subsys-
tem. Shimizu [24] discussed the mixed-mode oscillations
of the BVP system with weak periodic perturbation. Chu-
makov [25] established a kinetic model of catalytic hydro-
gen oxidation and investigated the generated mechanism
of bursting. Simpson [26] analyzed bursting phenomenon
in a stochastic piecewise system, and discussed the influ-
ence of noise on the bursting oscillation. Shilnikov [27]
had summarized the qualitative methods on Hindmarsh-
Rose model, and presented the different burstings under

Hopf bifurcation. Lu [28] proposed a double-parameter
analysis method to reveal the complex behaviors of Chay
models. Bi [29, 30] investigated the periodic excited sys-
tems and non-smooth systems, and discussed the connec-
tion of bursting with bifurcations such as Fold, Hopf, and
non-smooth bifurcations. Li and Bi [31] proposed the en-
veloping slow-fast analysis that could be used to explain
the bursting phenomenon in the system with three time
scales.

Work about the Brusselator with different time scales,
has been found in [8, 32]. However, there is little analyti-
cal study on the slow-fast phenomenon or its generation
mechanism of a Brusselator due to the coupling of the
fast and slow subsystems. In this paper, we focus on the
slow-fast effect and generation mechanism of a Brussela-
tor with two time scales. The paper is organized as follows.
In Section 2, the classical Brusselator is givenand the slow-
fast phenomenon is numerically found under certain pa-
rameters. The transformed Brusselator and the slow-fast
phenomenon are presented in Section 3. In Section 4, the
bifurcation phenomenon and attraction domains of the
fast subsystem are investigated. Then the slow-fast phe-
nomenon and corresponding generation mechanism are
studied by using slow-fast analysis in Section 5. Finally,
the main conclusions of this paper are made.

2 The classical Brusselator and
slow-fast phenomenon

The Brusselator is a coupled differential equation written
as

u′ = A − (B + 1) u + u2v, (1a)

v′ = Bu − u2v, (1b)

where u(t) and v(t) are activator and inhibitor variables re-
spectively. A and B are external system parameters, which
will determine the system dynamics.

The variation of the parameters may alter the time
scales of the system and the shape of the cycle. For ex-
ample, for B = 2 and A = 1, the whole system is almost
based on single time scale, and the limit cycle is similar
to a simple harmonic vibration shown in Fig. 1. If the pa-
rameter A is fixed and parameter B increases, the system
will gradually exhibit dynamical behavior with two time
scales, whichmay lead the system to interactwith the slow
and fast process. For example, the fast-slow phenomenon
may appear in the system for B = 10. As shown in Fig. 2,
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Figure 2: Periodic oscillation of Eq. (1) when B = 10 and A = 1. (a)
time history of u, (b) time history of v, (c) phase diagram.

the instantaneous jumping from H1 to H2 forms the fast
procedure, and the othermovement is the slow procedure.

Therefore, under the conditionofB ≫ A, Eq. (1) is cou-
pled with two time scales, and the fast-slow phenomenon
will appear in the reaction.Up tonow, the classicalmethod
to reveal the transition mechanism between the fast and
slow process is the slow-fast analysis method. The nec-
essary condition of this method is that the whole system
should be divided into two subsystems, i.e. the fast subsys-
tem (FS) and slow subsystem (SS). The slow variables are
generally treated as the bifurcation parameters of FS, and
the bifurcation behaviors of FS can decide the transition
mechanism between the fast and slow process, associated
with the whole dynamical behaviour.

However, Eq. (1) coupled with two time scales cannot
be directly analyzed by the slow-fast analysis method, be-
cause the parameter lies both in Eq. (1a) and (1b). There-
fore, both of the two variables u(t) and v(t) behave in the
fast and slow process simultaneously. It can be seen from
Fig. 2, the jumping phenomenon from H1 to H2 is com-
posed of the rapid increase of variable u(t) and instanta-
neous decrease of the variable v(t). In other words, the
classical slow-fast analysismethod to explain the jumping
phenomenon, couldnot be usedhere directly, because one
could not separate the fast and slow variables from u(t)
and v(t).

3 The transformed Brusselator and
slow-fast phenomenon

Based on the above-mentioned analysis, the parameter
condition B ≫ A will cause the slow-fast phenomenon. In
order to facilitate the whole system into separated FS and
SS, we will introduce the coordinate transformation into
the original system.

Letting x = v and y = u + v, Eq. (1) becomes

x′ = B (y − x) − (y − x)2 x (2a)

y′ = A − (y − x) (2b)

Because the transformation is invertible, the transformed
Brusselator Eq. (2) is topologically equivalent to the origi-
nal classical system Eq. (1).

It should be stressed that the coordinate transforma-
tion successfully separates parameter B and A. Therefore,
the variable x and y denote FS and SS subsystems respec-
tively if B ≫ A and B ≫ 1. For example, when the same
parameters are selected as those in Fig. 2, the phase di-
agram and time history of Eq. (2) are plotted in Fig. 3. It
could be found that the variable x can quickly decrease
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from 31.8 to 0.32, while the variable y is nearly unchanged
in the procedure. That means the instantaneous jumping
behaviour appears only in the fast variable x, not in the
slow variable y. Therefore, the generation mechanism of
the slow-fast phenomenon in Eq. (2) can be analyzed by
the slow-fast analysis method.

In the following part, we will study the slow-fast be-
haviour in Eq. (2) whose parameters are consistent with
Eq. (1).

4 Stability and bifurcation analysis
of the fast subsystem in the
transformed Brusselator

In order to reveal the generation mechanism of the slow-
fast phenomenon, we will discuss the bifurcation and sta-
bility of the fast subsystem, inwhich the slow variable y is
considered only as the bifurcation parameter.

The equilibriums of the subsystem Eq. (2a) should
meet

B (y − x) − (y − x)2 x = 0, (3)

i.e.

x = y, x + B
x = y. (4)

The two equilibrium lines for B = 10 are shown in
Fig. 4, denoted by L1 and L2 respectively. By calculating
the eigenvalues, it could be concluded L1 is uncondition-
ally stable, while L2 is stable for 0 < x <

√
B and unstable

when x >
√
B. Accordingly, there exists Fold bifurcation

at the critical point LP
(︁√

B, 2
√
B
)︁
in subsystem (2a). Fur-

thermore, there are two stable equilibriums for y > 2
√
B,

and one stable equilibrium for y < 2
√
B.

Now we discuss the attraction domain of the two sta-
ble attractors of the subsystem (2a) under the variation of
parameter y > 2

√
B. Firstly, the analytical solution is pre-

sented. Letting y − x = s and ds = −dx, Eq. (2a) could be
transformed into∫︁

ds
Bs + s2 (s − y)

=
∫︁ [︂

1
Bs +

1
B (−s + y)
s2 − sy + B

]︂
ds

= 1
B ln |s| −

1
2B

∫︁
2s − y

s2 − sy + B ds +
y
2B

∫︁
1

s2 − sy + B ds

= 1
B ln |s| −

1
2B ln

⃒⃒⃒
s2 − sy + B

⃒⃒⃒
+ y
2B
√︀
y2 − 4B

ln

⃒⃒⃒⃒
⃒2s − y −

√︀
y2 − 4B

2s − y +
√︀
y2 − 4B

⃒⃒⃒⃒
⃒
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Figure 3: Periodic oscillation of Eq. (2) when B = 10 and A = 1. (a)
phase diagram, (b) time histories of x and y.

= 1
B ln |y − x| −

1
2B ln

⃒⃒⃒
x2 − xy + B

⃒⃒⃒
+ y
2B
√︀
y2 − 4B

ln

⃒⃒⃒⃒
⃒ y − 2x −

√︀
y2 − 4B

y − 2x +
√︀
y2 − 4B

⃒⃒⃒⃒
⃒ = −t + C (5)

where C is an integration constant. When y > 2
√
B there

are two stable attractors in subsystem (2a), i.e. x = y and
x = y−

√
y2−4B
2 . The region for y > 2

√
B can be divided into

three parts in the plane xoy, denoted by R1, R2 and R3 re-
spectively, which are shown in Fig. 4. The ranges for the
three parts are defined as

R1 : x >
√
B, 2

√
B < y < x + B

x ,

R2 : y > x + B
x ,

R3 : 0 < x <
√
B, 2

√
B < y < x + B

x . (6)
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Figure 4: The equilibrium lines and bifurcation diagram of the fast
subsystem (2a). (L1 and L2 are equilibrium lines, LP is the critical
point of Fold bifurcation, R1, R2 and R3 are three region divided by
equilibrium lines.).

In region R1, the following condition is met

y − 2x −
√︀
y2 − 4B < B

x − x −
√︀
y2 − 4B < 0.

The analytical solution of Eq. (2a) can be expressed as

1
B ln |y − x| −

(︃
1
2B + y

2B
√︀
y2 − 4B

)︃
ln
⃒⃒⃒
x2 − xy + B

⃒⃒⃒
+ y
B
√︀
y2 − 4B

ln

⃒⃒⃒⃒
⃒ y − 2x −

√︀
y2 − 4B

2

⃒⃒⃒⃒
⃒ = −t + C.

(7)

It is obvious that, in region R1 the following condition
holds unconditionally⃒⃒⃒⃒

⃒ y − 2x −
√︀
y2 − 4B

2

⃒⃒⃒⃒
⃒ ≠ 0.

If t →∞, it will lead to x = y, that means the initial points
starting from region R1 will be convergent into the stable
attractor x = y.

In region R2 the inequality

y − 2x +
√︀
y2 − 4B > B

x − x +

√︃(︂
x + b

x

)︂2
− 4B ≥ 0

is met. The analytical solution of Eq. (2a) can become

1
B ln (y − x) +

(︃
y

2B
√︀
y2 − 4B

− 1
2B

)︃
ln
⃒⃒⃒
x2 − xy + B

⃒⃒⃒
+ y
B
√︀
y2 − 4B

ln

⃒⃒⃒⃒
⃒ 2
y − 2x +

√︀
y2 − 4B

⃒⃒⃒⃒
⃒

= −t + C, (8)

where
2

y − 2x +
√︀
y2 − 4B

≠ 0.

When t →∞, the left side of Eq. (8) will approach minus
infinity, which results in x = y or x2 − xy + B = 0. Because
the attractor x = y is not in R2, the points starting from
region R2 will be attracted into the stable equilibrium x =
y−
√

y2−4B
2 , which is the left boundary of region R2.
In region R3 the inequality

y − 2x +
√︀
y2 − 4B > B

x − x +
√︀
y2 − 4B > 0

is satisfied, and the subsystem (2a) will be convergent into
the stable attractor x = −y−

√
y2−4B
2 . The analysis procedure

is similar to that for region R2.
From the above analysis, it could be concluded that

if y > 2
√
B the attraction domain of the equilibrium x =

y−
√

y2−4B
2 is x < y+

√
y2−4B
2 , and the attraction domain of an-

other equilibrium x = y is x > y+
√

y2−4B
2 . Furthermore, the

subsystem (2a) possesses only one stable attractor x = y
when y < 2

√
B, and the attraction domain for this single

attractor is x ∈ R+, where R+ is positive real number set.
The numerical simulation for the attraction domain is

plotted in Fig. 5, where the boundary of the attraction do-
main for different attractors is the right branch of curve
y = x + B

x (x > 0), i.e., the unstable equilibrium line lo-
cated on L2. It is obvious that the numerical result agrees
well with the above-mentioned theoretical one. The nu-
mericalmethod is selected as a variable ordermethod for a
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Figure 5: The numerical attraction domain of the subsystem (2a).
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stiff differential equation, i.e., the routine ODE15s in MAT-
LAB. Here the total computation time is 200 s, and then
one could determine the attraction property of every ini-
tial point. In the xoy plane, we restrict the initial point and
parameter as x ∈ (0.2, 35) and y ∈ (0.2, 35). The sample
steps of x and y are all selected as 0.2.

5 Generation mechanism of the
slow-fast effect

Based on the transformed Brusselator Eq. (2), we will
reveal the generation mechanism of the slow-fast phe-
nomenon by use of the slow-fast analysis method. Over-
lapping the bifurcation diagram Fig. 4 and the phase dia-
gram Fig. 3(a), one could obtain Fig. 6. Now we describe
one revolution of the system in detail. The trajectory start-
ing at point E moves almost along the stable equilibrium
manifold L2, resulting in QS. When the trajectory reaches
point F near the critical point LP of Fold bifurcation, it
will move to point G due to the attraction of stable equi-
librium manifold L1. The system will keep QS along L1
for a long time. At point H, the trajectory will go into the
attraction domain of stable equilibrium on L2, so that it
quickly jumps to point E and forms the instantaneous SP.
The whole periodic procedure forms the slow-fast effect of
the system.

It is obvious that there are two transitions between
different attractors in the system. The one from F to G is
caused by Fold bifurcation, and the other transition from
H to E is due to the change of attraction domains. Here it
is important to point out that the trajectory from G to H is
located between L1 and L2. The distance between L1 and
L2 is

x + B
x − x =

B
x .

With the increase of x, the distance between L1 and L2 will
become shorter and shorter, so that the attraction of L1will
become smaller and smaller. This maymake the trajectory
go across the unstable part of L2 and be attracted by the
stable part of L2. Therefore, the change of attraction do-
mains results in the transition from H to E.

6 Conclusions
TheBrusselator is a typical catalytic reaction,where the re-
action procedure may behave in different time scales. Un-
der certain conditions of parameters, the classical slow-
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Figure 6:Mechanism analysis of slow-fast effect. (a) overlapping of
portrait with bifurcation diagram, (b) local enlargement near point
H. (L1 and L2 are equilibrium lines, LP is the critical point of Fold
bifurcation, E, F, G and H are special points used to describe the
movement of system.).

fast effect appears in the system, which is characterized
by coupling of QS and SP. Because the original system is
not convenient to explain the transitions between QS and
SP, the coordinate transformation is introduced to estab-
lish an equivalent model of the original Brusselator. The
advantage of the transformed system is that the whole sys-
tem can be divided into the fast and slow subsystems.

The bifurcation and attraction domain of the fast sub-
system in the transformed system are analyzed in detail
to reveal the generation mechanism of the slow-fast phe-
nomenon. The slow-fast analysis method is used to reveal
the bifurcation mechanism of transitions between QS and
SP, where the slow variable is considered as the parame-
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ter of the fast subsystem. It has been found that the move-
ment along the stable equilibrium line forms QS, and the
jumping behavior represents SP. Fold bifurcation and the
change of attraction domain result in the transition be-
tween QS and SP. The theoretical analysis of bifurcation
and the attraction domain of the fast subsystem coincide
well with the numerical simulation. Thismethod of the co-
ordinate transformation may also be helpful to the similar
system with multiple time scales.
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