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Abstract:We investigate an unsteady incompressible lam-
inar micropolar flow in a semi-infinite porous pipe with
large injection or suction through a deforming pipe wall.
Using suitable similarity transformations, the governing
partial differential are transformed into a coupled non-
linear singular boundary value problem. For large injec-
tion, the asymptotic solutions are constructed using the
Lighthill method, which eliminates singularity of solution
in the high order derivative. For large suction, a series ex-
pansion matching method is used. Analytical solutions
are validated against the numerical solutions obtained by
Bvp4c.
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1 Introduction
Since Eringen [1, 2] proposed a mathematical model to
describe the non-Newtonian behaviour of liquids such as
polymers, colloidal suspensions, animal blood and liquid
crystals, there has been interest in micropolar fluids. In
particular, micropolar fluids flowing in porous channels
or pipes have received more attention due to their rele-
vance to a number of practical biological problems. For
example, Mekheimer and Elkot [3] presented a microp-
olar model for axisymmetric blood flow through an axi-
ally nonsymmetric but radially symmetric mild-stenosis-
tapered artery. Mekheimer et al. [4] investigated the effects
of an induced magnetic field on peristaltic transport of an
incompressible micropolar fluid in a symmetric channel.
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Furthermore, Subhardra Ramachandran et al. [5] usedVan
Dyke’s singular perturbation technique to study the heat
transfer of a micropolar fluid past a curved surface with
suction and injection. Anwar Kamal and Hussain [6] ex-
amined the steady, incompressible and laminar flowofmi-
cropolar fluids inside an infinite channel where the flow
was driven due to a surface velocity proportional to the
streamwise coordinates. Joneidi et al. [7] obtained similar-
ity equations for a micropolar fluid in a porous channel
and used the homotopy analysis method (HAM) to discuss
the velocity distribution. In addition, Ariman et al. [8] and
Lukaszewicz [9] gave reviews of micropolar fluid mechan-
ics and its applications.

The purpose of this paper is to extendprevious investi-
gations by presenting analytical solutions for the flow in-
side a deforming porous pipe with large injection or suc-
tion. Equations describing the unsteady flow of an incom-
pressible Newtonian fluid in a porous expanding chan-
nel are presented by White [10] as one of the new exact
Navier-Stokes solutions attributed to Dauenhauer andMa-
jdalani [11]. In their work [11], they numerically discussed
the influence of the expansion ratio and Reynolds num-
ber on the velocity andpressuredistribution. Furthermore,
Majdalani, Zhou andDawson [12] also obtained an asymp-
totic solution for the flow in a porous channel, with slowly
expanding or contractingwalls, by considering the perme-
ation Reynolds number and expansion ratio as two small
parameters. Boutros et al. [13, 14] also discussed the flow
through an expanding porous channel or pipe using the
Lie group method and obtained the analytical solution
with the perturbation method. Recently Si et al. [15] also
investigated the micropolar fluid in a porous deforming
channel and discussed the effects of the micropolar pa-
rameter and the expansion ratio on the velocity and mi-
crorotation distribution. As further research, Li, Lin and
Si [16] numerically analyzed the flow of a micropolar fluid
through a porous pipe with an expanding or contracting
wall.

In this paper, asymptotic solutions are constructed for
theflowof amicropolar fluid throughanexpandingor con-
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tracting porous pipe. For large injection, analytical solu-
tions are constructed using the Lighthill method, which
eliminates singularity of the solution in the high order
derivative [17–19];a series expansion matching method is
used for large suction. The accuracy of the analytical solu-
tions for each case is compared with its numerical results.

2 Preliminaries
Consider a micropolar fluid flowing through a pipe with
a vertical moving porous wall. Here we assume that one
end of the pipe is closed by a complicated solidmembrane
and the wall of the pipe moves in the radial direction and
expands or contracts uniformly at a time-dependent rate
ȧ(t). In order to neglect the influence of the opening at
the end, the length of the pipe is assumed to be semi-
infinite [20]. Under the porous wall stipulation, the fluid
is injected or aspirated uniformly and vertically through
the pipe wall with an absolute velocity vw, which is pro-
portional to the moving velocity at the wall surface. u =
(u, v, 0) and ω = (0, 0, N) are the velocity vector and mi-
crorotation vector, respectively. N is the component of mi-
crorotation in the direction vertical to (r, z) plane, and u, v
are the components of velocity in the direction of z and
r, respectively. The flow configuration and the coordinate
system are shown in Fig. 1.

Fig. 1. A model of a micropolar fluid through a porous expanding
pipe.

Under these assumptions, the governing equations
of the incompressible and homogeneous micropolar fluid
flowing with no body force are expressed as follows:

∇ · u = 0, (1)

ρ
(︂
∂u
∂t + u ·∇u

)︂
= −∇p + (µ + κ)∆u + κ∇ × ω, (2)

ρj
(︂
∂ω̄
∂t + (u ·∇)ω̄

)︂
= −2κω̄ + γ△ω̄ + κ∇ × u, (3)

where ρ and µ are the density and the dynamic viscosity,
and j, γ and κ are the micro-inertial coefficient, spin gra-
dient viscosity and vortex viscosity, respectively. Here γ is
assumed to be

γ =
(︁
µ + κ2

)︁
j. (4)

The corresponding boundary conditions are [11, 12, 15]

v = −vw = −Aȧ, u = 0, N = 0, at r = a(t),
∂u
∂r = 0, v = 0, N = 0, at r = 0,

(5)

where A is the measure of the permeability. Here we also
assume that there is a strong concentration of microele-
ments, and the microelements close to the wall are unable
to rotate [21, 22].

Introduce the stream function Ψ(r, z, t) such that

u = 1
r
∂Ψ
∂r , v = −

1
r
∂Ψ
∂z . (6)

In this paper, the stream function Ψ and the microro-
tation velocity N are assumed as follows:

Ψ = νzF(η, t), N = νa−3zη
1
2 G(η, t), (7)

where η = ( ra )
2 and ν = µ

ρ .
Similar to Dauenhauer andMajdalani [11], Uchida and

Aoki [20], and Boutros et al. [13, 14], we substitute Eqs. (6)
and (7) into governing equations and consider the similar-
ity solutions with respect to space and time, then the fol-
lowing ordinary equations can be obtained:

(1 + K)(ηf ′′′′ + 2f ′′′) + α2 (ηf
′′′ + 2f ′′) + Re2 (� ′′′ − f ′f ′′)

+ K4 (ηg
′′ + 2g′) = 0, (8)

(1 + K2 )(η
2g′′ + 2ηg′) − Kζ2 (ηg + 2ηf ′′) + α2 (η

2g′ + 2ηg)

+ Re4 (fg + 2ηfg′ − 2ηf ′g) = 0, (9)

where (f , g) = ( FRe ,
G
Re ), Re = avw

v is the permeation
Reynolds number, α = aȧ

ν is the expansion ratio, and
K = κ

µ and ζ =
a2
j are the micropolar parameters. In phys-

ical meaning, α is positive for expansion and negative for
contraction.

The corresponding boundary conditions can be writ-
ten as

f (1) = 1, f ′(1) = 0, g(1) = 0, f (0) = 0,

lim
η→0

η
1
2 f ′′ = 0,

lim
η→0

η
1
2 g = 0. (10)
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3 Perturbation analysis for this
problem

3.1 Solution for the large injection Reynolds
number

For large injection Reynolds numbers, the asymptotic so-
lution of (8) and (9), subject to the boundary conditions
(10), is obtained by the Lighthill method. One treats ε = 2

Re
as the perturbation parameter, the equations (8) and (9)
then become

ε(1 + K)(ηf ′′′ + f ′′) + εα2 (ηf ′′ + f ′) + εK4 (ηg′ + g)

− f ′2 + � ′′ = λ, (11)

ε(1 + K2 )(η
2g′′ + 2ηg′) − εKζ2 (ηg + 2ηf ′′)

+ εα2 (η2g′ + 2ηg) + 1
2(fg + 2ηfg

′ − 2ηf ′g) = 0, (12)

where λ is an integral constant. Firstly,we introduce a vari-
able transformation of η

η = ξ + εX1(ξ ) + ε2X2(ξ ) + O(ε3), (13)

where the functions X1, X2 are unknown and will be de-
termined in the following process. One assumes that the
functions f , g and the constant λ are expanded as

f (η) =
∞∑︁
i=0

εi fi(ξ ), g(η) =
∞∑︁
i=0

εigi(ξ ), λ =
∞∑︁
i=0

εiλi . (14)

Substituting (13)-(14) into (11)-(12) and collecting the
same powers of ε, one can obtain the leading solution

f0 f̈0 − ḟ0
2 = λ0, ξ ḟ0g0 − ξf0 ġ0 −

1
2 f0g0 = 0, (15)

and the first order solution

f0 f̈1 − 2ḟ0 ḟ1 + f̈0f1 = − (1 + K)(ξ
...
f0 + f̈0) −

α
2 (ξ f̈0 + ḟ0)

− K4 (ξ ġ0 + g0) + λ1 + 2λ0Ẋ1, (16)

2ξf0 ġ1 − 2ξ ḟ0g1 + f0g1 = − (2 + K)(ξ2 g̈0 + 2ξ ġ0)
+ Kζ (ξg0 + 2ξ f̈0)
− α(ξ2 ġ0 + 2ξg0)
− f1g0 − f0g0Ẋ1 − 2X1f0 ġ0
− 2ξf1 ġ0 + 2X1 ḟ0g0 + 2ξ ḟ1g0.

(17)

Here˙denotes the derivative with respect to ξ .

3.1.1 A. the transformed boundary conditions at the
wall of the pipe

We assume ξ̃ is the root of (13) at η = 1, then

ξ̃ = 1 − εX1(ξ̃ ) − ε2X2(ξ̃ ) + O(ε3)
= 1 − ε{X1(1) + Ẋ1(1)[−εX1(ξ̃ ) − ε2X2(ξ̃ )] + · · · }
− ε2{X2(1) + Ẋ1(1)[−εX1(ξ̃ ) − ε2X2(ξ̃ )] + · · · } + · · ·
= 1 − εX1(1) − ε2[X2(1) − Ẋ1(1)X1(1)] + O(ε3), (18)

thus the conditions at the wall can be obtained

f |η=1 = 1 ⇒ 1 = f |ξ=ξ̃ = f |ξ=1 + ḟ |ξ=1{−εX1(1)

− ε2[X2(1) − Ẋ1(1)X1(1)] + · · · } + · · ·
= f0|ξ=1 + ε(f1 − X1 ḟ0)|ξ=1 + O(ε2), (19)

f ′|η=1 = 0 ⇒ 0 = ḟ |ξ=ξ̃ = ḟ |ξ=1 + f̈ |ξ=1{−εX1(1)

− ε2[X2(1) − Ẋ1(1)X1(1)] + · · · } + · · ·
= ḟ0|ξ=1 + ε(ḟ1 − X1 f̈0)|ξ=1 + O(ε2), (20)

g|η=1 = 0 ⇒ 0 = g|ξ=ξ̃ = g|ξ=1 + ġ|ξ=1{−εX1(1)

− ε2[X2(1) − Ẋ1(1)X1(1)] + · · · } + · · ·
= g0|ξ=1 + ε(g1 − X1 ġ0)|ξ=1 + O(ε2). (21)

Hence, the boundary conditions of fi and gi at η = 1 are

f0|ξ=1 = 1, f1 − X1 ḟ0|ξ=1 = 0, · · · , (22)

ḟ0|ξ=1 = 0, ḟ1 − X1 f̈0|ξ=1 = 0, · · · , (23)

g0|ξ=1 = 0, g1 − X1 ġ0|ξ=1 = 0, · · · . (24)

3.1.2 B. the transformed boundary conditions at the
center of the pipe

One supposes that ξ̂ is the root of (13) at η = 0, then

ξ̂ = −εX1(ξ̂ ) − ε2X2(ξ̂ ) + O(ε3)
= −εX1(0) − ε2[X2(0) − Ẋ1(0)X1(0)] + O(ε3), (25)

thus we can induce

f |η=0 = 0 ⇒ 0 = G|ξ=ξ̂ = f |ξ=0 + Ġ|ξ=0{−εX1(0)

− ε2[X2(0) − Ẋ1(0)X1(0)] + · · · } + · · ·
= f0|ξ=0 + ε(f1 − X1 ḟ0)|ξ=0 + O(ε2). (26)

Hence, the boundary conditions of fi at η = 0 are

f0|ξ=0 = 0, (f1 − X1 ḟ0)|ξ=0 = 0, · · · . (27)
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Using (22) − (24) and (27), the solution for (15) can be ob-
tained

f0 = sin(π2 ξ ), g0 = 0, (28)

and then λ0 = − π
2

4 can be obtained. Substituting above
results into (16), (17) yields the equations for f1, g1

sin
(︁π
2 ξ

)︁
f̈1 − π cos

(︁π
2 ξ

)︁
ḟ1 −

π2
4 sin

(︁π
2 ξ

)︁
f1

= (1 + K)
[︂
π3
8 ξ cos

(︁π
2 ξ

)︁
+ π

2

4 sin
(︁π
2 ξ

)︁]︂
− α2

[︂
−π

2

4 ξ sin
(︁π
2 ξ

)︁
+ π2 cos

(︁π
2 ξ

)︁]︂
− π

2

2 Ẋ1 + λ1, (29)

and

ξ sin
(︁π
2 ξ

)︁
ġ1 −

π
2 ξ cos

(︁π
2 ξ

)︁
g1 +

1
2 sin

(︁π
2 ξ

)︁
g1

+ Kζπ
2

4 ξ sin
(︁π
2 ξ

)︁
= 0. (30)

Here it should be noted that direct use of the method
of variation of parameters will cause a singularity in the
third-order derivative of f1 [17–19]. In order to eliminate the
singularity and to simplify the equation of f1, we can set

(1 + K)
[︂
π3
8 ξ cos

(︁π
2 ξ

)︁
+ π

2

4 sin
(︁π
2 ξ

)︁]︂
− α2

[︂
−π

2

4 ξ sin
(︁π
2 ξ

)︁
+ π2 cos

(︁π
2 ξ

)︁]︂
− π

2

2 Ẋ1 + λ1 = 0.

(31)

Then we have

X1(ξ ) =
1 + K
2 ξ sin

(︁π
2 ξ

)︁
− α
2π ξ cos

(︁π
2 ξ

)︁
+ 2λ1
π2 ξ + Ĉ1,

(32)
where Ĉ1 is a constant. Thus, the equation for f1 becomes

sin
(︁π
2 ξ

)︁
f̈1 − π cos

(︁π
2 ξ

)︁
ḟ1 −

π2
4 sin

(︁π
2 ξ

)︁
f1 = 0. (33)

The solution of Eq. (33) is

f1(ξ ) = Ĉ2 cos
(︁π
2 ξ

)︁
+ Ĉ3

[︂
2
π sin

(︁π
2 ξ

)︁
− ξ cos

(︁π
2 ξ

)︁]︂
,

(34)
where Ĉ2, Ĉ3 are still integral constants. According to the
boundary conditions (22) − (24) and (27), Ĉ1 = 0, Ĉ2 = 0,
Ĉ3 = 0, λ1 = − (1+K)π

2

4 can be determined. Thus, f1, g1 can
be achieved as follows:

f1 = 0, g1 =
Kζπ2
4 ξ−

1
2 sin

(︁π
2 ξ

)︁ 1∫︁
ξ

t
1
2 csc

(︁π
2 t

)︁
dt. (35)

Finally, one obtains the asymptotic solutions of f , g in
terms of ξ

f (η) = sin
(︁π
2 ξ

)︁
,

g(η) = εKζπ
2

4 ξ−
1
2 sin

(︁π
2 ξ

)︁ 1∫︁
ξ

t
1
2 csc

(︁π
2 t

)︁
dt, (36)

where

η = ξ + ε[1 + K2 ξ sin(π2 ξ ) −
α
2π ξ cos(

π
2 ξ ) −

1 + K
2 ξ ]. (37)

Fig. ?? shows the profiles of f ′(η) and g(η) against η for
the asymptotic and numerical results. Tables ?? and ??
give asymptotic and numerical values of f ′′(1) and g′(1)
for some values of large injection Reynolds number and
expansion ratio α, respectively. The results agree well.
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Fig. 2. Variation of f ′(η) and g(η) as Re = 100, α = −5, K = 0.2,
ζ = 10.

3.2 Solution for large suction Reynolds
number

The boundary layer happens near the wall not only for the
velocity but also for the microrotation when there is large
suction. The solutions of (8) and (9), subject to the bound-
ary conditions (10), can be obtained for large suction by
using the method of matched asymptotic expansion. One
treats ε = − 2

Re as the perturbation parameter, the equa-
tions (8) and (9) then become

ε(1 + K)(ηf ′′′ + f ′′) + εα2 (ηf ′′ + f ′) + εK4 (ηg′ + g)

+ f ′2 − � ′′ = k, (38)

ε(2 + K)(η2g′′ + 2ηg′) − εKζ (ηg + 2ηf ′′) + εα(η2g′ + 2ηg)

− fg − 2ηfg′ + 2ηf ′g = 0, (39)

where k is a constant of integration,

k = ε(1 + K)σ + εαδ2 + εKω4 + δ2, (40)
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Table 1. Values of f ′′(1) and g′(1) for large injection Reynolds number (α = −5, K = 0.2, ζ = 10).

f ′′(1) g′(1)
Re Numerical Asymptotic Numerical Asymptotic
50 −2.6641619556581 −2.7339624379749 −0.2128340193109 −0.2077811452861

100 −2.5700001017056 −2.5955567129755 −0.1036184958045 −0.1012267118060
150 −2.5366158007420 −2.5517506351567 −0.0681380895087 −0.0669125722108
200 −2.5195961015861 −2.5302623043972 −0.0507066428440 −0.0499726805118
500 −2.4884675811385 −2.4922614078153 −0.0199682862609 −0.0198384008062

Table 2. A comparison of f ′′(1) and g′(1) for different α (Re = 100, K = 0.3, ζ = 10).

f ′′(1) g′(1)
α Numerical Asymptotic Numerical Asymptotic
−5 −2.569310686399770 −2.595556712975505 −0.155025023543228 −0.151840067709067
−2 −2.507901592906879 −2.517499337080236 −0.147379010820407 −0.149539460622566
2 −2.430977747070986 −2.418783550899264 −0.138027490934619 −0.146578283184495
5 −2.376702021744101 −2.348507888421025 −0.131584147099143 −0.144433235137893

and
δ = f ′(0) = δ0 + εδ1 + ε2δ2 + O(ε3),

σ = f ′′(0) = σ0 + εσ1 + ε2σ2 + O(ε3),
ω = g(0) = ω0 + εω1 + ε2ω2 + O(ε3),

(41)

where the coefficients δi, σi and ωi (i = 0, 1, 2, · · · ) are
constants determinedbymatchingwith the inner solution.

We assume that the forms of the outer solutions are

f = f0 + εf1 + ε2f2 + O(ε3), g = g0 + εg1 + ε2g2 + O(ε3).
(42)

Substituting (41) − (42) into (38) − (39), and equating the
same power of the coefficient ε, one obtains

ε0 : f ′20 − f0f ′′0 = δ20, (43)

f0g0 + 2ηf0g′0 − 2ηf ′0g0 = 0. (44)

ε1 : 2f ′0f ′1 − f ′′0 f1 − f0f ′′1 = −(1 + K)(ηf ′′′0 + f ′′0 )

− α2 (ηf
′′
0 + f ′0) −

K
4 (ηg

′
0 + g0)

+ 2δ0δ1 + (1 + K)σ0 +
αδ0
2 + Kω0

4 , (45)

2ηf ′0g1 − 2ηf0g′1 − f0g1 = −(2 + K)(η2g′′0 + 2ηg′0)

+ Kζ (ηg0 + 2ηf ′′0 ) − 2ηf ′1g0 − α(η2g′0 + 2ηg0)

+ 2ηf1g′0 + f1g0. (46)

ε2 : 2f ′0f ′2 − f ′′0 f2 − f0f ′′2 = −(1 + K)(ηf ′′′1 + f ′′1 ) −
α
2 (ηf

′′
1 + f ′1)

− K4 (ηg
′
1 + g1) + f1f ′′1 − f ′21 + 2δ0δ2 + δ21 + (1 + K)σ1

+ αδ12 + Kω1
4 , (47)

2ηf ′0g2 − 2ηf0g′2 − f0g2 = −(2 + K)(η2g′′1 + 2ηg′1)

+ Kζ (ηg1 + 2ηf ′′1 ) + f1g1 − α(η2g′1 + 2ηg1) + f2g0
+ 2ηf1g′1 − 2ηf ′1g1 − 2ηf ′2g0 + 2ηf2g′0. (48)

ε3 : 2f ′0f ′3 − f ′′0 f3 − f0f ′′3 = −(1 + K)(ηf ′′′2 + f ′′2 ) −
α
2 (ηf

′′
2 + f ′2)

− K4 (ηg
′
2 + g2) + f ′′1 f2 + f1f ′′2 − 2f ′1f ′2 + 2δ0δ3 + 2δ1δ2

+ (1 + K)σ2 +
αδ2
2 + Kω2

4 , (49)

2ηf ′0g3 − 2ηf0g′3 − f0g3 = −(2 + K)(η2g′′2 + 2ηg′2)

+ Kζ (ηg2 + 2ηf ′′2 ) − α(η2g′2 + 2ηg2) + f1g2 + f2g1 + f3g0
+ 2ηf1g′2 + 2ηf2g′1 − 2ηf ′1g2 − 2ηf ′2g1 − 2ηf ′3g0 + 2ηf3g′0.

(50)

· · · · · · .

The corresponding boundary conditions for the outer
solutions are

fi(0) = 0, lim
η→0

η
1
2 f ′′i = 0, lim

η→0
η

1
2 gi = 0, i = 0, 1, 2, · · · .

(51)
According to the boundary conditions (51), the solutions
for (43) and (44) can be obtained

f0 = δ0η, g0 = C̃0η
1
2 , (52)

where C̃0 is an integral constant. Because g0 means the
microrotation velocity of particles, its first-order derivative
should be bounded, thus g′0(0) →∞ leads to C̃0 = 0. Then
ω0 = g0(0) = 0, σ0 = f ′′0 (0) = 0. Substituting (52) into (45),
one obtains

2f ′1 − ηf ′′1 = 2δ1. (53)
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Then the solution of (53) that satisfies the boundary con-
ditions (51) is

f1 = δ1η + C̃1η3, (54)

where C̃1 is an integral constant, whichwill be determined
next. Substituting (52), (54) into (46), one obtains

g1 − 2ηg′1 = 0, (55)

whose solution is
g1 = C̃2η

1
2 , (56)

where C̃2 is an integration constant. Similarly, g′1(0) →∞
leads to C̃2 = 0. Then

f1 = δ1η + C̃1η3, g1 = 0. (57)

Thus one obtains σ1 = f ′′1 (0) = 0, ω1 = g1(0) = 0. Substi-
tuting Eqs. (51) and (57) into (47), one obtains

f2 = −
6(1 + K)C̃1

δ0
η2 + αC̃12δ0

(3η3 ln η − η3) + δ2η

+ 3C̃1
2

10δ0
η5 + C̃3η3, (58)

where C̃3 is an integral constant. Similarly, f ′′′2 (0) → ∞
leads to C̃1 = 0, thus

f1 = δ1η, f2 = δ2η + C̃3η3. (59)

Then one obtains σ2 = f ′′2 (0) = 0. Substituting (51), (57)
and (59) into (48), one obtains

g2 = C̃4η
1
2 . (60)

Similarly, g′2(0) → ∞ leads to C̃4 = 0. Then one obtains
ω2 = g2(0) = 0. Substituting (51), (57), (59) and (60) into
(49), one obtains

f3 = −
6(1 + K)C̃3

δ0
η2+ αC̃32δ0

η3(3 ln η−1)+δ3η+ C̃5η3, (61)

where C̃5 is an integration constant. Similarly, f ′′′3 (0) →∞
leads to C̃3 = 0, thus

f2 = δ2η, g2 = 0. (62)

In order to obtain the inner solution in the viscous
layer, we introduce a stretching transformation τ = (1 −
η)/ε. Substituting into Eqs. (11) and (12) yields

(1 + K)[−
...
f + ε(τ

...
f + f̈ )] + α2 [εf̈ − ε

2(τf̈ + ḟ )]

+ K4 [−ε
2 ġ + ε3(τġ + g)] + ḟ 2 − f f̈

= ε2δ2 + ε3[(1 + K)σ + αδ2 + Kω4 ], (63)

(2 + K)[ε2(τ2 g̈ + 2τġ) − ε(2τg̈ + 2ġ) + g̈]
− Kζ [−ε3τg + ε2g − 2ετf̈ + 2f̈ ]
+ α[−ε3(τ2 ġ + 2τg) + ε2(2τġ + 2g) − εġ] + 2f ġ
− 2ḟ g + ε(2τḟ g − fg − 2τf ġ) = 0. (64)

Here ˙ denotes the derivative with respect to τ. According
to the boundary conditions (10), we assume the inner so-
lutions near the wall to be

f (τ) = 1 +
∞∑︁
i=1

εiϕi(τ), g(τ) =
∞∑︁
i=1

εiψi(τ). (65)

Substituting (65) into (63) and (64) yields the following
equations

ε1 : (1 + K)
...
ϕ1 + ϕ̈1 = 0, (66)

(2 + K)ψ̈1 − 2Kζ ϕ̈1 + 2ψ̇1 = 0. (67)

ε2 : (1+K)(
...
ϕ2 − τ

...
ϕ1 − ϕ̈1)−

α
2 ϕ̈1 − ϕ̇1

2 + ϕ̈2 +ϕ1ϕ̈1 = −δ20,
(68)

(2 + K)(ψ̈2 − τψ̈1 − 2ψ̇1) − 2Kζ ϕ̈2 − αψ̇1 + 2ψ̇2

+ 2ϕ1ψ̇1 − 2ϕ̇1ψ1 − ψ1 = 0. (69)

· · · · · · .

The boundary conditions corresponding to the inner
solution are

ϕi(0) = 0, ϕ̇i(0) = 0, ψi(0) = 0, i = 1, 2, · · · . (70)

The solution of (66) satisfying the boundary conditions
(70) is

ϕ1 = D1(e−A0τ + A0τ − 1), (71)

where A0 = 1
1+K , and D1 is an integral constant. Then the

first two terms of the inner solution of f can be expressed
as

f (τ) = 1 + D1(e−A0τ + A0τ − 1)ε. (72)

The outer solution of f , expressed in terms of the inner
variable τ, is

f (η) = δ0 + (δ1 − δ0τ)ε + (δ2 − δ1τ)ε2 + · · · . (73)

As τ →∞,matching the inner solution (72) with (73) gives

δ0 = 1, δ1 =
1
A0

, D1 = −
1
A0

. (74)

The solution of (67) satisfying the boundary conditions
(70) is

ψ1 =
KB0ζ
B0 − A0

(e−A0τ − 1) + D2(e−B0τ − 1), (75)
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where B0 = 2
2+K , and D2 is an integral constant. Similarly,

as τ →∞ in (75), D2 can be determined:

D2 = −
KB0ζ
B0 − A0

. (76)

The solution of (68) satisfying the boundary conditions
(70) is

ϕ2 = −
(︂
α
2 + 2

A0

)︂
τe−A0τ −

(︂
α
A0

+ 4
A20
− D3
A0

)︂
e−A0τ

+
(︂
D3 −

α
2 −

2
A0

)︂
τ + 4

A20
+ α
A0
− D3
A0

, (77)

where D3 is an integral constant. Then the inner solution
of f can be expressed as

f = 1 − ε
A0

(e−A0τ + A0τ − 1) + ε2
[︂
−
(︂
α
2 + 2

A0

)︂
τe−A0τ

−
(︂
α
A0

+ 4
A20
− D3
A0

)︂
e−A0τ

+
(︂
D3 −

α
2 −

2
A0

)︂
τ + 4

A20
+ α
A0
− D3
A0

]︂
+ · · · . (78)

As τ → ∞, matching the inner solution with outer solu-
tion, one obtains

D3 =
1
A0

+ α2 , δ2 =
3
A20

+ α
2A0

. (79)

similarly, one can obtain

ψ2 =
ζ

K(2 + K)(4 + 3K) [(48K + 108K2 + 78K3 + 18K4

+ 8Kα + 10K2α + 3K3α)τe−A0τ − (24K + 46K2 + 25K3

+ 3K4 + 8Kα + 14K2α + 6K3α)τe−B0τ + (8Kα + 18K2α
+ 13K3α + 3K4α − 48 − 156K − 186K2 − 96K3

− 18K4)e−A0τ + (48 + 156K + 182K2 + 84K3 + 6K4

− 4K5 − 8Kα − 18K2α − 13K3α − 3K4α)e−B0τ

+ (4K2 + 12K3 + 12K4 + 4K5)e−(A0+B0)τ]. (80)
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Fig. 3. variation of f ′(η) and g(η) as Re = −100, α − 5, K = 0.2,
ζ = 10.

Hence, the complete solutions of (8) and (9) satisfying
the boundary conditions (10) for large suction can be ob-
tained as follows:

f = η + ε{(1 + K)η − e
η−1
ε(1+K) [α2 + 3(1 + K) − (2 + 2K + α2 )η]}

+ ε2{3(1 + K)2 + α(1 + K)2 − e
η−1
ε(1+K) [α(1 + K)2 + 3(1 + K)2]},

(81)

and

g = εζ{e
η−1
ε(1+K) [8(1 + K) + α − (α + 6K + 6)η]

+ 1 + K
2 + K e

2(η−1)
ε(2+K) [−10 − 3K − 2α + (6 + K + 2α)η]}

+ ε2ζ{e
η−1
ε(1+K)

(1 + K)(Kα − 6 − 6K)
K

+ e
2(η−1)
ε(2+K) [6 + 12K + 2K2

K + 4K(7 + 7K − K3)
(2 + K)(4 + 3K) − (1 + K)α]

+ 4K(1 + K)3
(2 + K)(4 + 3K) e

(4+3K)(η−1)
ε(1+K)(2+K) }. (82)

Fig. 3 shows the profiles of f ′(η) and g(η) against η
for the asymptotic and numerical results. Tables 3 and 4
give asymptotic and numerical values of f ′′(1) and g′(1) for
some values of large suction Reynolds number and expan-
sion ratio, respectively.

4 Conclusions
In this paper, we have proposed a model for the flow of
micropolar flow through an expanding porous pipe. Using
suitable similarity transformations, the governing equa-
tions are transformed into a coupled nonlinear singular
boundary value problem, and the analytical solutions are
compared with the numerical ones, showing good agree-
ment. Some conclusions can be drawn:

i) Analytical solutions can be obtained for large in-
jection or suction using the Lighthill method and series-
expansion matching method;

ii) The microrotation velocity also exists at the bound-
ary layer for large suction;

iii) The Lighthill method can also be used to solve sim-
ilar problems.
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Table 3. Values of f ′′(1) and g′(1) for large suction Reynolds number (α = −5, K = 0.2, ζ = 10)

f ′′(1) g′(1)
Re Numerical Asymptotic Numerical Asymptotic
−60 −26.029180587850 −26.083333333333 −1.9697087541999 −1.9620553359684
−90 −38.553222227512 −38.583333333333 −1.9168665563568 −1.9140974967062
−100 −42.723767379927 −42.750000000000 −1.9066699865053 −1.9045059288538
−125 −53.146883680302 −53.166666666667 −1.8885407560495 −1.8872411067194
−150 −63.567422760150 −63.583333333333 −1.8766007832311 −1.8757312252964

Table 4. The comparison of f ′′(1) and g′(1) for different α (Re = −100, K = 0.2, ζ = 10)

f ′′(1) g′(1)
α Numerical Asymptotic Numerical Asymptotic
−5 −42.7237673799268 −42.7500000000000 −1.90666998651 −1.90450592885
−2 −41.4054335101753 −41.5000000000000 −1.91280714642 −1.90450592885
2 −39.6395810279868 −39.8333333333333 −1.92210393045 −1.90450592885
5 −38.3082775719552 −38.5833333333333 −1.93007245250 −1.90450592885

References
[1] Eringen, A.C., Theory of Micropolar Fluids, J. Math. Mech.,

1966, 16, 1–18.
[2] Eringen, A.C., Theory of thermomicrofluids, J. Math. Anal.

Appl., 1972, 38, 480–496.
[3] Mekheimer, K.S., Elkot, M.A., Influence of magnetic field and

Hall currents on blood flow through stenotic artery. Appl.
Math. Mech. Eng. Ed., 2008, 29, 1093–1104.

[4] Mekheimer, K.S., Husseny, S.Z.A., Ali, A.T., Abo-Elkhair, R.E.et
al., Similarity Solution for Flow of a Micro-Polar Fluid Through
a Porous Medium. App. App. Math., 2011, 6, 2082–2093.

[5] Subhardra Ramachandran P., Mathur M.N., Ojha S.K., Heat
transfer in boundary layer flow of a micropolar fluid past a
curved surface with suction and injection, Int. J. Engng. Sci.,
1979, 17, 625–639.

[6] Anwar Kamal, M., Hussain, S., Steady flow of a micropolar
fluid in a channel/tube with an accelerating surface velocity, J.
Nat. Sci. Math., 1994, 34(1), 23–40, PK ISSN 0022-2941.

[7] Joneidi, A.A., Ganji, D.D., Babaelahi, M., Micropolar flow in a
porous channel with high mass transfer, Int. Commun. Heat.
Mass., 2009, 36, 1082–1088.

[8] Ariman T., Turk M.A., Sylvester N.D., Review Article: Appli-
cations of Microcontinuum fluid Mechanics, Int. J. Eng. Sci.,
1974, 12, 273–293.

[9] Lukaszewicz G., Micropolar fluids. Theory and Applications.
Modeling and Simulation in Science, Engineering and Technol-
ogy. Birkhauser Boston Inc, Boston, MA.1999.

[10] White, F., Viscous Fluid Flow, McGraw-Hill, New York, 1991,
135–136.

[11] Dauenhauer, E. C., Majdalani, J., Exact self-similarity solution
of the Navier–Stokes equations for a porous channel with
orthogonally moving walls, Phys. Fluids, 2003, 15, 1485–1496.

[12] Majdalani, J., Zhou, C., Dawson, C. A.,Two-dimensional vis-
cous flow between slowly expanding or contracting walls with
weak permeability, J. Biomech., 2002, 35, 1399–1403.

[13] Boutros Y.Z., Abd-el-Malek M.B., Badran N.A., Hassan H.S.,
Lie-group method for unsteady flows in a semi-infinite ex-
panding or contracting pipe with injection or suction through a
porous wall, J. Comput. Appl. Math. 2006, 197, 465–494.

[14] Boutros Y.Z., Abd-el-Malek M.B., Badran N.A., Hassan H.S.,
Lie-group method solution for two-dimensional viscous flow
between slowly expanding or contracting walls with weak
permeability, Appl. Math. Model. 2007, 31, 1092–1108.

[15] Si X.H., Zheng L.C., Zhang X.X., Chao Y., The flow of a micropo-
lar fluid through a porous channel with expanding or contract-
ing walls, Cent. Eur. J. Phys., 2011, 9, 825–834

[16] Li L., Lin P., Si X.H., Zheng L.C., submitted, 2015.
[17] Terrill R.M., Thomas P.W., On laminar flow through a uniformly

porous pipe, Appl. Sci. Res. 1969, 21, 37–67.
[18] Yuan S.W., Further investigation of laminar flow in channels

with porous walls ,J. Appl. Phy., 1956, 27, 267–269.
[19] Zhou C., Majdalani J.,Inner and outer solutions for the injec-

tion driven channel flow with Retractable walls, 33rd AIAA
Fluid Dynamics Conference and Exhibit, Fluid Dynamics and
Co-located Conferences, (23–26 June, 2003), Orlando, FL.
AIAA, 2003.

[20] Uchida S., Aoki H., Unsteady flows in a semi-infinite contract-
ing or expanding pipe,J. Fluid Mech., 1977, 82, 371–387.

[21] Rees D.A.S., Pop I., Free convection boundary-layer flow of a
micropolar fluid from a vertical flat plate, IMA. J. Appl. Math.,
1998, 61, 179–197.

[22] Guram G.S., Smith A.C., Stagnation flows of micropolar fluids
with strong and weak interactions , Comput. Math. Appl.,
1980, 6, 213–233.


	Perturbation solutions for a micropolar fluid flow in a semi-infinite expanding or contracting pipe with large injection or suction through porous wall
	1 Introduction
	2 Preliminaries
	3 Perturbation analysis for this problem
	3.1 Solution for the large injection Reynolds number
	3.1.1 A. the transformed boundary conditions at the wall of the pipe
	3.1.2 B. the transformed boundary conditions at the center of the pipe

	3.2 Solution for large suction Reynolds number

	4 Conclusions


