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Abstract: In this work, we provide an approximate solution
of a parabolic fractional degenerate problem emerging in
a spatial diffusion of biological population model using a
fractional variational iteration method (FVIM). Four test il-
lustrations are used to show the proficiency and accuracy
of the projected scheme. Comparisons between exact solu-
tions and numerical solutions are presented for different
values of fractional order a.
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1 Introduction

Fractional calculus is an integral branch of mathematics
for arbitrary derivatives and integrals. Fractional differen-
tial equations are vitally important due to their proved and
diverse uses in engineering and every part of science. Frac-
tional differential equations are the best for modeling vari-
ous processes in engineering and physical sciences. Since
many standard models with integer-order derivatives in-
volving nonlinear models, do not work sufficiently well
in many cases. At the outset of this century, there has
been an increase in the role of fractional calculus in count-
less arenas such as economics, mechanics, bioinformat-
ics, chemistry, electricity, control analysis, signal and im-
age processing, fluid flow, propagation of seismic waves
etc. Many fields of academics in various branches involve
unusual diffusion, control and vibration, random walk
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with continuous time, Brownian motion and fractional
Brownian motion, fractional kinetic model with neutron
point, power law, Riesz potential etc and hence fractional
calculus serves an important role in every part of science
and technology. Many researchers developed various nu-
merical methods to solve nonlinear phenomenon since
analytic solution do not exist in every situation. In order
to maintain precise and consistent solutions, many tech-
niques have been applied to find the solution of the differ-
ential equations with fractional order derivative. Some of
the neoteric numerical methods are finite element method,
finite difference method, fractional differential transform
method and the adomain decomposition method etc.

The Fractional variational iteration method (FVIM) is
one of these novel approaches to solve nonlinear phe-
nomenon of various fields. He [1-3] first proposed and
solved fractional differential equations [4] with the help of
VIM. Odibat et al. [5] used VIM to solve problems in fluid
mechanics. Yulita et al. [6] solved Zakharov—Kuznetsov
equations of fractional order. Inc [7] solved the space-
and time-fractional Burgers differential equations. Free-
born et al. [8] applied a nonlinear least square fitting to
extract the double -dispersion cole bioimpedance model.
Lu [9] applied a variational iteration method to obtain ap-
proximate solution of the Fornberg-Whitham equation.
Sakar et al. [10] and Prakash et al. [11] have made use of
the variational iteration method to find numerical solu-
tions of time-fractional Fornberg-Whitham equation and
fractional coupled Burger’s equation respectively. Shakeri
et al. [12] solved the two dimensional biological population
model for the standard case when a = 1 by a variational
iteration method. Recently, Srivastava et al. [13] studied
two dimensional time fractional-order biological popula-
tion model by Fractional reduced differential transform
method. The biological population model is also studied
by Cheng et al. [14] for the standard case when a = 1 by us-
ing the element-free kp-Ritz method and Kumar et al. [15]
applied the Homotopy Analysis method to solve the Bio-
logical Population model.

The basic goal of the present effort is to make use of the
Fractional Variational Iteration Method (FVIM) to find the
solution of a time-fractional degenerate partial differential
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equation of parabolic type arising in the diffusion of the
spatial type of biological model:

pt=pa+py +f(), t=20,x, yclR, )

subject to condition at initial stage p(x, y, 0), where p is
the density of the population and function f is the supply
of population (births and deaths in that region).

Biologists have a sustained and strong belief that im-
migration or dispersal are important factors for the regula-
tion of some specie’s population. Gurtin and Maccamy [16]
described the scattering of a race in a biological model
in zone B assuming the functions of spot X = (x,y) in B
and time t; where p(x, y, t) is the density of population,
v(x, y, t) is the velocity of diffusion and f(x, y, t) is the
cause of population.

The function p(x, y, t) indicates counting of charac-
ters on the field at location X and time t, per unit volume
and total number of individuals at the sub region R of the
region B can be found out by integrating over sub region
R at any time t. Function f(x, y, t) brings forth the ratio of
fellows that are brought inly at the positions X per unit vol-
ume by births and deaths. v(x, y, t) denotes the velocity of
diffusion from one position to other position in the flow
of population of those fellows which at any time t occupy
the place X. The functions p, v and f must satisfy the law
of population balance: for each sub region R of B at any
time ¢ as:

d* .
€ /pdv . /pv.ndA - [ sav. @
R

R oR

In this relation 7 is the normal unit vector outward side of
boundary of the region R. This law presents that the chang-
ing rate of population in the region R plus the rate at which
animals leave the boundary of R should be equal to the
rate at which animals are right away to region R. Gurtin
and Maccamy [16] proved it by assuming the conditions:

f=f), v=-kp)Vp, G)

where k(p) > 0 for p > 0. The ensuing nonlinear frac-
tional partial differential equation with the density of p is
attained as:

P?:¢(P)xx+¢(p)yy+f(p), tEOa X, )’GIR- (4)

Gurney et al. [17] applied a particular case of ¢(p)
for the field of population of animals. Movements in the
field are due to either grown-up creatures compelled out
by invaders or by youthful creatures just reaching matu-
rity moving out of their ancestral homes to establish repro-
duction province of their own. In these two cases, it can
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be inferred that these will be in a neighboring unoccupied
zone. In the model at hand, drive will take place almost
merely “down” the population density gradient, and this
model will be more applicable in a high density population
place than a low population density place. In this model,
they assumed a rectangular place, in which a cattle may
either dwell at its existing place or may change its position
from high density population to low density population.
The probability distribution in these two situations can be
categorised with the aid of the magnitude of the popula-
tion density gradient at the grid site concerned. This model
leads to (1) with ¢(p) = p?, i.e. the following equation:

p? :p)2(X+p)2/y+f(p)3 t> 0, X, y € IR, (5)

subject to the initial condition p(x, y, 0). Some properties
of equation (2) such as Holder estimates of its solutions are
studied by Y.G. Lu [18]. Two models of constitutive equa-
tions for f are the Malthusian law

f = up, (u = constant), (6)
and the Verhulst law
f=up-9p°, (u,~ = constant). @)

We study a more general form of f as f(p) = hp*(1 - rp?)
which yields

P{ = Dix + Dyy + hp° (1—rpb) , t20,x,yclIR, (8

where a, 8, h and r are real numbers. It can be noted that
the Malthusian law and Verhulst law are particular situ-
ations obtained when h = y, @« = 1,r = Oand h = u,
a=B=1,r= % respectively.

2 Preliminaries

2.1 Definition

A real function f(t), t > 0 is said to be in the space
Ca, a € R if there exists a real number p(> a), such that
f@t) = t°fi(t), where fi € C[0, 0] clearly C, C Cp if
B < a[19-21].

2.2 Definition

A function f(t), t > 0 is said to be in the space Cy, m ¢
N U {0}, if f™ e Cq [19-21].



DE GRUYTER OPEN

2.3 Definition

The left sided Riemann-Liouville fractional integral of or-
der u > 0, of a function f € Cq, @ 2 —1 is defined as [22, 23]

¢
*f(t) = f(1) dr - F(ll

t
u
r(u) e m 0/ £(r) (d7)

where Iof(t) = f(t).

2.4 Definition

The (left sided) Caputo fractional derivative of f,f <
c™,m e INU {0} [22, 23],

"),
D0 - { ()

—arm

m-1<u<m, meN
u=m.
Note that [20-24]

@ Iff( 0 = 5 [o (6= )" f(x, s)ds, a, t > 0.

(b) Dfu(x,t) = MU f() m -1 < a < m.

__ra )
(C) e F1+Ty’1y) tﬂ/ﬂl

2.5 Definition

The Mittag-Leffler function E,(z) with @ > 0 is defined
by the following series representation, valid in the whole
complex plane [24, 25]: Eq(2) = Y . F(1+an)’ a>0,z¢cC.

3 Fractional variational iteration
method for fractional order
biological population model

Consider the following two dimensional time fractional or-
der biological population model:

pf = Dix + Pyy + hp* (1—rpb), t20,x,ycR. (9

According to the FVIM, the correction functional for this
equation is as follows [3]:

DX, y, ) = pn +

Opn %P3
oT? ox2

I'l+a) J
—a;ﬁ ~h (p5 (1- rﬁﬁ))) @n®.  (10)

Now by variational theory A, must satisfy g%‘ =0and A+
1|=¢t = 0. From these equations, we obtain that A = -1 and
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a new correction functional emerges:

t

Pra(,y, t) = pulx, y, t) - F(1+(X /(

0

0°pn(x, y, )
oT%

azp% azp% a b a
o2 T oy? -h (pn(l—rpn)) (dr)”.
11)
We can build consecutive approximations p,, n > 0 by

using A, a common Lagrange’s multiplier, that can be
obtained by variational theory. The functions p, are re-
stricted variation i.e. §p, = 0 Consequently, first we elect
the Lagrange multiplier A, which can be obtained using in-
tegration by parts. In this way we can obtain sequences
Pns1(x,y,t),n = 0 of the solution and finally we can ob-
tain the solution as p(x, y, t) = limy—e pn(x, y, t).

4 Test Examples

In the present section, we use the projected technique on
some test examples.

Example 1. Consider the ensuing time fractional- order

biological population model ?)rf = aafz + "a;; + hp, which

can be obtained by putting a = 1,r = 0, b = 1 in (8),
subject to the given condition p(x, y, 0) = \/xy.
Now by the given initial condition:
pO(Xs Y, t) = \/XT/
piley, 6) = vy + — 1)
I'l+a)

ht* h? 2«
P06y, 0=V * [ [y 20

ht® h2t2a h3t3a
p3(x,y,t)—\/)Ty(1+F(1+a) +1"(1+20() +F(1+3a))

hta thZa h3t3a
1

a6y, 0) = r( +I"(1+o() +1"(1+20z) +I“(1+30()

hntan
* ra+ na)>
Py, 0) = lim pa(x,y, 0) = (Ea(ht"))y/xy,

which is the exact solution.

Fig. 1 demonstrates the comparison between exact so-
lution and approximate solution for different values of
fractional order a = 1, 3, 1, 1 when h = 1. Fig. 1(a) shows
the comparison when t = 0.1, Fig. 1(b) when t = 0.2 and
Fig. 1(c) when t = 0.3. Fig. 2 represents the graphical so-
lution for @ = 1 when t = 0.1, 0.2 and 0.3 respectively. It
can be observed from Fig. 1 that the exact and numerical



180 —— A.Prakash and M. Kumar DE GRUYTER OPEN

0.9
|
08 —— exact sol. .f'_"-'.- . 08 exact sol.
W .
* num. sol. Sy 4 num.sol
0.7] Pt 07
»
06 o
- \ . 0.6
zos o 203
i ~ A
204 6’ 204
0.3 é"" 03
0z2{ * 0.2
0.1( 0.1
0 . ‘ 0 ‘ . |
0 0.2 0.4 06 03 1 0 0.2 04 06 038 1
¥ y
(b) ()

Figure 1: Comparison between exact and approximate solution for different values of fractional order a for example 1.

@ (b)

Figure 2: 3D-plot for different values of t = 0.1, 0.2, 0.3 when a = 1 for example 1.

solutions are almost identical for different values of frac- _ o’ p*(x,y, 1) _ o’ p*(x,y, 1)

tional order a. Table 1 shows the comparison of absolute ox2 0y?

error between the exact solution and the tenth approxi- _p(x,, r)) (d0)"

mate solution for different value of fractional order @ when

t =0.1,0.2 and 0.3 respectively. _ ( 1+ t* ) (Sin())mh())
I'l+a)

Example 2. Consider the ensuing time fractional order bi- e 24

ological population model 22 = 2°2”
gical pop o = ox?

+ 98 4 p whichcan ~ P200Y,)=(1+ M+a T+ 2a)) sin(x) sinh(y)

oy?

be obtained by putting h = 1,a = 1,r = 0, b = 1in (8), £ (2
subject to given condition p(x, y, 0) = /sin(x) sinh(y). P36y, 0 = <1 * I'l+a) " Ir1+2a)

Now by the given initial condition: {3a
\/%
. ‘ + T30 s 30{)) sin(x) sinh(y)
po(x, y, t) = /sin(x) sinh(y) . - -
t t t
( 0 = pa 0 1 ? %p(x,y,T) p"(x’y’t)_(1+1"(1+a)+F(1+2a)+F(1+3a)
plx’y’ —POX,)’, F(1+a)/
0

ot . L) sin(x) sinh(y)

* I'(1+na)
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Figure 3: Comparison between exact and approximate solution for different values of fractional order a for example 2.
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Figure 4: 3D-plot for different values of t = 0.1, 0.2, 0.3 when a = 1 for example 2.

plx,y,t) = Jlim pn(x,y, t) = (Eq«(t*))/sin(x) sinh(y),

which is the exact solution.

Fig. 3 demonstrates the comparison between exact so-
lution and approximate solution for different values of
fractional order a = 1, 2, 1, 1 Fig. 3(a) shows the compari-
sonwhen t = 0.1, Fig. 3(b) when ¢ = 0.2 and Fig. 3(c) when
t = 0.3. Fig. 4 represents graphical solution for a = 1 when
t = 0.1,0.2 and 0.3 respectively. It can be observed from
Fig. 3 that the exact and numerical solutions are almost
identical for different values of fractional order a. Table 2.
shows the comparison of absolute error between the exact
solution and the tenth approximate solution for different
value of fractional order a« when t = 0.1,0.2 and 0.3 re-
spectively.

Example 3. Consider the ensuing time fractional- order
biological population model 22 = 2E- + aa;; +p(1-Ap)
which can be obtained by puttingh =1,a=1,r=A,b=1

in (8) subject to given condition

VA(x+y)
plx,y,0)=e 7 . Now by the given initial condition:

VAx+y)
polx,y,t)=e 22

t
1
pl(x,y’t)=p0_ (
F(1+a)0/

o%po  0°p§  9°pd

oT®  ox? oy?
-po(1- Apo)) (dn)*
t* VAx+y)
=(1+ m)e 22
t* tZa V)
paxy, ) = (1 "Ta+a)  Ta+ m))e s
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Figure 5: Comparison between exact and approximate solution for different values of fractional order a for example 3.
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Figure 6: 3D-plot for different values of t = 0.1, 0.2, 0.3 when a = 1 for example 3.

ta tZa

+ + tion for « = 1 when t = 0.1, 0.2 and 0.3 respectively. It
I'l+a) I'(1+2a)

can be observed from Fig. 5 that the exact and numerical

p3(X, Y, t) = (1

. 3 )e% solutions are almost identical for different values of frac-
I'(l1+3a) tional order a. Table 3. shows the comparison of absolute
( n=(1+ tx iy 2 . 3« error between the exact solution and the tenth approxi-
PnlX,y, = I'l+a) 1+I2a) TI(1+3a) mate solution for different value of fractional order « when
ha VAGxsy) t =0.1, 0.2 and 0.3 respectively.
= |e 22
I'(1+na)

Example 4. Consider the ensuing linear time fractional-

. . . ab‘( ()2 2 aZ 2 8
order biological population model 5% = 55+ a;é -p(F+
1) which can be obtained by putting h = 1,a = 1,r =
5, b = 1(8) subject to given condition p(x, y, 0) = e,

Now by the given initial condition:

. « VAx+y)
px,y,t) = nh_>n°1°pn(x, y,t) = (Eq«(t"))e 2v2

which is the exact solution.

Fig. 5 demonstrates the comparison between exact so-
lution and approximate solution for different values of
fractional order a = 1, 2, 1, 1 when A = 1 Fig. 5(a) shows
the comparison when t = 0.1, Fig. 5(b) when ¢ = 0.2 and
Fig. 5(c) when t = 0.3. Fig. 6 represents graphical solu-

pO(Xy Y, t) = egﬂ
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Figure 7: Comparison between exact and approximate solution for different values of fractional order a for example 4.

@ (b)

Figure 8: 3D-plot for different values of t = 0.1, 0.2, 0.3 when a = 1 for example 4.

o%p,  O’p2  O’p? which is the exact solution.
pi(x,y,t) = po - Td+a) / < ot o2 | 9y Fig. 7 demonstrates the comparison between the ex-
0 act solution and the approximate solution for different val-
+Po < Po . >>( ar)" ues of fractional order & = 1, 2, 3, 2 when A = 1 Fig. 7(a)
9 shows the comparison when ¢ = 0.1, Fig. 7(b) when t = 0.2
( ) o and Fig. 7(c) when t = 0.3. Fig. 8 represents graphical solu-
r (1 +a) tion fora = 1 when t = 0.1, 0.2 and 0.3 respectively. It can
2 xoy be observed from Fig. 7 that the exact and numerical solu-
pa(x.y, 0) = (1 F(1 +a) F(l + 2a)> e’ tions are almost identical for different values of fractional
2« 3¢ v  order a. Table 4 shows the comparison of absolute error
Py, t (1 F(1 +q) F(1 +2a) T(1+ 30()) between the exact solution and the approximate solution
2 B for different value of fractional order @ when t = 0.1, 0.2
pnlx,y, 8) = (1 F(l + ) p(l +2a) TI(1+3a) and 0.3 respectively.
o G
F (1 + na)

Xy

Py, 1) = lim pu(x,y, ) = (Ea (-t*)) €7,
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5 Conclusion

In this paper, two dimensional time fractional-order bio-
logical population model is investigated, using the Frac-
tional variational iteration method (FVIM). The numeri-
cal results are in excellent agreement with exact solutions.
Numerical results shows that FVIM is a powerful and re-
liable algorithm for solving the approximate solution of
the two dimensional time fractional-order biological pop-
ulation model as sequences of the approximate solution
converge to the exact solution rapidly. The main advan-
tage of this technique over other methods is that this tech-
nique does not require discretization of variables, pertur-
bation and any other restrictive assumptions. Therefore
FVIM is easy to implement and computationally very at-
tractive over other methods.
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