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Abstract: In this paper, we study the oscillation of so-
lutions to a non-linear fractional differential equation
with damping term. The fractional derivative is defined
in the sense of the modified Riemann-Liouville deriva-
tive. By using a variable transformation, a generalized Ric-
cati transformation, inequalities, and integration average
technique we establish new oscillation criteria for the frac-
tional differential equation. Several illustrative examples
are also given.

Keywords: oscillation; oscillation criteria; fractional
derivative; modified Riemann-Lioville derivative; damp-
ing term

PACS: 02.30.Hg, 02.30.Sa, 02.60.Lj, 02.90.+p

1 Introduction

Fractional differential equations are generalizations of
classical differential equations of integer order and have
recently proved to be valuable tools in the modelling of
many phenomena in various fields of science and engi-
neering. Apart from diverse areas of mathematics, frac-
tional differential equations arise in rheology, viscoelas-
ticity, chemical physics, electrical networks, fluid flows,
control, dynamical processes in self-similar and porous
structures, etc.; see, for example, [1-6]. Fractional deriva-
tives have appeared in lots of work where they are used for
better descriptions of material properties. Mathematical
modelling based on enhanced rheological models natu-
rally leads to differential equations of fractional order and
to the necessity of the formulation of initial conditions to
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such equations.This growth in use has been caused by the
intensive development of the theory of fractional calculus
itself and its applications. The books on the subject of frac-
tional integrals and fractional derivatives by Diethelm [7],
Miller and Ross [8], Podlubny [9] and Kilbas et al. [10] sum-
marise and organise much of the field of fractional cal-
culus including many of the theories and applications of
fractional differential equations. Many papers have stud-
ied some aspects of fractional differential equations. Most
have focused on the existence of, methods for defining
or stability of the solutions (or positive solutions) to non-
linear initial (or boundary) value problems for fractional
differential equations (or systems) using nonlinear analy-
sis techniques (fixed-point theorems, Leray-Schauder the-
ory). We refer to [11-21] and the references cited therein.

Recently, research on the oscillation of various equa-
tions including differential equations, difference equa-
tions and dynamic equations on time scales, has been a
hot topic the literature. A lot of effort has been commit-
ted to establishing new oscillation criteria for these equa-
tions; see the monographs [22, 23]. In these investigations,
we notice that very little attention has been paid to the os-
cillation of fractional differential equations.

In 2006, a definition for a fractional derivative called
the modified Riemann-Liouville derivative, was suggested
by Jumarie [24] and its application have subsequently been
studied by many researchers [25-28].

Recently, Qin and Zheng [29] established oscillation
criteria for linear fractional differential equations with
damping term of the form:

D (a(t) Df (r(t)Dix (1)) +p (t) D (r (£) Dix (1))
+q()x()=0 t=ty>0,0<ac<1,

where Df (-) denotes the modified Riemann-Liouville
derivative with respect to variable ¢.

Now, in this paper, we are concerned with the oscilla-
tion of fractional differential equations with damping term
in the form of:

D (a(t) D (r() Dix (1)) +p () D (r(8) Dix (1))
+q(O)f(x() =0, t>t>0, 0O<a<l, 6y
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where: D{(-) denotes the modified Riemann-Liouville
derivative with respect to the variable t; the function
a € C*([to,),R.); 1 € C*([to,),R:); p,q €
C([to, =°), R+); the function of f belongs to C(R, R);
f(x)/x =k >O0forall x # 0and C* denotes a continuous
derivative of order a.

Some of the key properties of Jumarie’s modified
Riemann-Liouville derivative of order a are listed as fol-
lows:

Dif (¢) = {

D{ (f () g (1) = g () D{f (£) + f (1) Dfg (t) G

g & [ ft, & a)dé, 0<a<1
(a-n)
(f(")(t)) ,lsn<asn+1

DY [8(0] - fs[g (01 Dig (0 = Diflg 0] (8 ©)" @
aB F(B + 1) B-a
D= rEei-at 2

where f(t, &, &) = (t - §)™* (f (§) - £ (0)).

As usual, a solution x (t) of (1) is called oscillatory if
it has arbitrarily large zeros, otherwise it is called non-
oscillatory. Equation (1) is called oscillatory if all its solu-
tions are oscillatory.

In the rest of this paper, we denote for the sake of con-
venience:

E=tTQ+a) & =t} /T1+a);i=0,1,2,3,4,5;
at) = a@;r(H) = FEp®) = pE: a0 = 3
31(8,8) = [; (1AG)a()ds; 61(tt) = 81(£ &)

526,60 = J§ (310580 /7(9)) dss 2 (¢, t) = 826, 60
A (&) =exp(f; (p(s)/a(s)ds)).

Let hy, hy, H € C([é0, o), R) satisfy

H(£’£)=O’ H(5’5)>0’ ‘f>52§0 (6)

H has continuous partial derivatives oH (¢, s) /0¢ and
0H (¢, s)/0s on [&, o) such that

HES 6.9 VAES) &
s =-hy (§,5)VH(E,s), &>s52&.

This paper is organized next as follows: in Section 2, we
establish new oscillation criteria for (1) using the Riccati
transformation, inequalities and the integration average
technique and in Section 3, we present some examples
that apply the results established. Finally, we give a con-
clusion.

(8)
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2 Oscillatory criteria

Lemma 1. Assume x (t) is an eventually positive solution of
(1), and

oo

1
/mds = oo (9)
o

oo

at*!
/ T+ a)r(t)dt -

to

(10)

)

A B
{/?(()(/A(T)ZI(T)T/A(S)C](S) dsdtd{ =o0. (11)

Then, there exist a sufficiently large T such that
Df (r(t)Dx(t)) > 0 on [T, o) and either D{x(t) > O
on [T, oo) or limse, x (t) = 0.

Proof. Suppose x (t) is an eventually positive solution of
(1).Leta(t)=a(®),r(t) =7(&) ., x() =X (&), p () =P ().
q(t) = q(¢) where & = t*/T' (1 + a). Then by using (5),
we obtain D{¢ (¢) = 1, and furthermore, by use of the first
equality in (4), we have

faty=Di{a(®)=a ()D& =a (§). (12)

Similarly we have D¢r(t) = ¥ (&), D&x(t) = X (&),
Dép(t) = p' (&), D%q(t) = G (£). So, (1) can be trans-
formed into the following form:

a0 (0¥ ©)] +p0 (o7 ©)
AOFEE) =0, £24>0.

Then X (¢) is an eventually positive solution of (13), and
there exists &; > & such that X () > 0 on [¢7, 0). So,
f (X (&) > 0 and we have

(13)

RGEIGIUGEON A @ (Fox ©) | |
P ©aE) (FOF )
- A { (o ©) | |

5@ (FOF©) |-
Therefore, we get

@O (FOF (s))'] '=

—AG)GOfX@E)<0, §=284. (4)
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Then, A(&)a(é) (F(&)X (.f))/ is strictly decreasing on
[£1,09), thus we know that (F(£)% (£)) is eventually of
one sign. For & > ¢ is sufficiently large, we claim
(7(&) X (.{))/ > 0 on [£;, o). Otherwise, assume that there
exists a sufficiently large & > & such that (7 (&) ¥ ({))l <
0 on [&3,00).Thus, 7(&)X (&) is strictly decreasing on
[&5, =), and we get that

¢ , ,
, , A a iz X
FOX ©-7E)X ) - [ LOLOTOTE) 4
&
’ 6 1
<A@ @) (O ) [ 1omme
&
Therefore, we get
FEOX @) sF(E)X (5)
¢
“A@aE) (X ) [ rmams ©
&

By (9), we have limg., 7 (§) X (£) = —oo. So there exists a
sufficiently large &, > &3 such that X (£) < 0, & € [&4, 00).
Then, we have

3 I3
km—ﬂm=/f@m=/“”
&,
3

&

<FEIX @) [ 5

7(s)

and so,

ta—l

3
XQSH&WRM/—JL——dt (16)
19

I(1+a)r(t)

By (10), we deduce that 1im.5_>m X (&) = —eo, which con-
tradicts the fact that X (§) is an eventually positive solu-
tion of (13). Thus, (7 ()X (¢§)) > 0 on [£;, o), and then
D (r(t)Dfx(t)) > Oon [ty, o). So, Dfx () = % (¢)iseven-
tually of one sign. Now we assume X (£) < 0 on [&5, o)
where &5 > &, is sufficiently large. Since X () > 0, we have
limgs., X (§) = B 2 0. We claim 8 = 0.0Otherwise, assume

B > 0.Then X (&) = B on [&5,00), f(x (&) = k.x (&) > M for
M ¢ R, and by (14) we have

100 (07 ©)] -Aiorae o

<-A) M.
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Substituting ¢ with s in (17), and integrating it with respect
to s from & to oo yields

/[A(s)a(s) r(s)x(s))] ds<—M/A(s)q(s)ds
4

-A©aE) (FOX ©)

< lim [a@a® (FOF ) | - M/A@q@ﬁ

< —M/A(s)?;(s) ds (18)

which means

(F&x @) >m AS)q(s)ds  (19)

1
A a) !

substituting ¢ with 7 in (19), and integrating it with respect
to 7 from & to o yields

Z?s)x(s ds>M/ /A(s )G (s)dsdr

oo

;gﬂﬂﬂﬂ#@ﬁ@»M/
3

A(s)qg(s)dsdrt

X|e

X ©>-lImFOX ©O+M [ L [A©a©)dsdr
¢ 4

—ﬂafm>M/‘ A()3(s). dsdr,

1
roim ) 0
4 4
where » = A (1) a (1). That is,
) < M q(s)dsdr (21)

0] 2 [ron

substituting ¢ with {'in (21), and integrating it with respect
to ¢ from &5 to & yields

£
/ X (s)ds < -M
&

£
HG—M&V—M/ 7
&5

A(s)q(s)dsdrd{

T— .
=~
S
N

A(s)q(s)dsdrd(

=2
~—y

X |-
J\«\g
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& o oo
- - 1 1 -
< x@)-M [ 105 [ L [A©70dsdrar.

¢
By (11), we have lim., X (§) = —oo, which causes a contra-
diction. So, the proof is complete. O

Lemma 2. Assume that x (t) is an eventually positive solu-
tion of (1) such that

D (r(t)yDfx(t)) >0, Dfx(t)>0 (22)

on [t1, o), where t; > t, is sufficiently large. Then, for t >
t1, we have

A (&) 81 (t, t1) a (t) D (r (t) DEx (1))

(23)

x(t)2A(&) 6, (t, t1)a(t) D (r(t)Dix(8)).  (24)
Proof. Assume that x is an eventually positive solution of
(1). So, by (14), we obtain that A (£)a (&) (F(§) X (8)) is
strictly decreasing on [¢7, o) . Then,

FEOX (©)2FOX () -FEDX (&)
_ j A(s)a(s) (F()X ()

Awae
&
’ 5 1
2403 (FOX®) [ 1575

&

=A@ a@FEX )81 &) (25)

and so,

r(O) Dix(6) 2 A(€) 81 (t, t)a () DY (r(6) Dix(0)
multiplying both sides of (26) by 1/r (t), we obtain
A(&) 6, (t, t1)a(t) D} (r(t) Dix (t)) .

(26)

DEx ()2 =0
On the other hand, we have
¢ ¢
)?(5)2)?(5)—5((51)=/i'(S)d5=/%)(s)dS
& 31

Using (26), we obtain

2 5
X(8) = / (s)a(s) “iéfs)) )y,
x@za@aE) (FOX (5)) 615?5){1)

&

“A©hEn2O (Y ). @
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That is
x(t)=A(&)6:(t, t)a(t)Df (r () Dix (b)) -

So, the proof is complete. O

Lemma 3. [30]: Assume that A and B are nonnegative real

numbers. Then,
AMBM - At <a-1)B? (28)

forallA > 1.

Theorem 4. Assume that (9)-(11) hold and f (x) [x 2k > 0
for all x # 0. If there exists ¢ € C*([to, o), R+) such that
for any sufficiently large T = &y, there exist a, b, c with T <
a < c¢ < b satisfying

b
%/H(b’s)m () (5)d(s)ds
+m/H(S’a)kA(s)¢(S)ZI(S)ds

b ~
?(S) ¢ (S) Q% (b’ S) ds

> Hb, O / 151 (s, &) (29)

[ FS)B(s)
THE o / 16, (s, &) 21 (&> D ds,

where k € R., &z({) ), Qi (s, = hi(s,§) -
(P ©/1$6) VEGD ©ES) - hEs) -

((;b (s)/ ¢(s)) v/ H (&, 5s); then, (1) is oscillatory or satis-

fies limyso, x (¢) = O.

Proof. Suppose the contrary that x (t) is non-oscillatory
solution of (1). Then without loss of generality, we may as-
sume that there is a solution x (t) of (1) such that x (¢) > 0
on [t1, o0), where t; is sufficiently large. By Lemma 1, we
have Df (r(t)Dfx(t)) > 0, t € [t,00), where t; > t;
is sufficiently large, and either D{x (t) > O on [t;, =) or
limyse x (t) = 0. If we take Dfx (t) > O on [t3, o). Define
the following generalized Riccati function:

A& a®)Df (r(t) Dix (1) .

w(t) = NG

o (@) (30)

For t € [t;, o0), we have
A (&) a(t)Df (r () DEx (1))
x(t)
A (&) a(t)Df (r () DEx (1))
x(t) )

Diw (t) = D{¢ (1)

+¢(f)Di’{
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So, Using f (x (t)) /x (t) = k,
w(t)
Do - D8 (0 0 Diw () < D¢ (1) FY0) kA(§)q ) (1)
N @ (&) x (t) Df (A (§) a () D7 (r (1) Dix (t))) X0 r(t)
x2 (t) Now, let w (t) = @ (¢) . Then we have D%w (t) = @' (¢) and
_b(0) Dix()A(§)a (zt) Di(r (t) Dfx (1)) D¢ (t) = ¢’ (£). Thus (32) is transformed into
x2 (1)
P IEL 7 ©:L860-m©10p©
[DfA (&) a () Df (r(H) Dix (1)) ) (33)
b R o O
. b(t [A(&)Df (a()Df (r(H)Dix(1)))] We can choose a, b, ¢ arbitrary in [£5, 00) with b > ¢ >
¢ x(t) a. Substituting ¢ with s, we multiply both sides of (33) by
~ Dix(t)A (&) a(t) D (r(t) Dix (1)) H (¢, s) and integrating it with respect to s from c to ¢ for
) X2 (t) ¢ € [c, b), then we get that
a0 -Dip 0 40 /H(s s)kA(s)q(s)¢(s)ds<—/H(s ' (5)ds
(t
[A"(§) D¥éa (t) Df (r (t) Dix (1))] 8
+¢ (1) 0 /H(.f s)¢()"(s)d / (&, )51(5 ,§) ~ W (s)
PPNLIOLAGCLAGGCLAID)) pETE
x(f) using the method of integration by parts
_h(® Dix (t)A () a(t) Df (r(t) Dix(8)) (31) ¢
- .
O /H(f,s)kA(S)ZI(S)&’(S)dSSH(f’C)d)(C)
If we use Df¢ = 1 and (23), we obtain p)
] w (t) P HE " 12 2
Dfw (t) < Df ¢(t)¢(t) _/KS) @(s)+ = (8) Q2 (¢, s)} ds
[A (&) 204 (t) Df ( (6) Dix (t))] ‘.
+¢(f) X© 9,
« [ F0 9,
v (O [A(§) D (a(t) D (r () Dix(t)))] ;
t
PR 81(t, t2) (t))(( ) where 9 = ’(s()‘i’;sz and therefore,
PO "
and so, / H (& 5)KA(5)d(5) (5) ds
Diw () < DY (t) L0 : £
¢ i 9,
PG ICEAUCERIO) 0w [FaEE 6
x (t) ¢
(ot [Df (a () DF (r (6 DEx ()] Lettigg &> b in (34) and dividing both sides by H (£, c) ,
x (t) we obtain,
61(t, ) o b
-t t
¢()¢2(t)r(t)w © ﬁ/H(b,s)kA(s)c}(s)d)(s)ds
DR W _AQIOf )P0 b
0] x(8) b
81 (¢, t y 1 9
- B O O 7, o / 3% b.9)ds. 9
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On the other hand, substituting ¢ with s, multiplying both
sides of (33) by H (s, ¢) and integrating it with respect to s
from ¢ to c for & € (a, c], we deduce that

/H(S, EKA(5)q(s) P (s)ds < ~H(c,§) @ (c)

[ F(S)B(s) o
+£/4& Gl 52)0 1(s,&€)ds. (36)

Letting & - a* in (36) and dividing both sides of it by
H (c, ¢) and we obtain

m /H(S’ a) kA (s) (s) p (s)ds < -@ (c)

F9)$) g2

"H (c a) / 48, (s, &) G7)

s,a)ds.

A combination of (35) and (37) yields the inequality

b
Tos | HE9KAE©TE b ds

+ﬁ/H(s,a)kA(s)a(s)&(s)ds

FOBE) 02 5. 9 ds

1
B H(b’ C) / 451 (s, fz) (38)

F(5) 9 (s)
+H(c,a)/4c‘>‘1(s fz)Q 1

which contradicts (29). Thus, the proof is complete. O

Theorem 5. Under the conditions of Theorem 4, if for any
sufficiently large 1 = &,

3
timsup [ [H (5 DkAE T dE - Jais, l)] ds >0,
I (39)

&
timsup [ [H E9AETE DO - 03, s)] ds >0,

1
(40)
then (1) is oscillatory.

Proof. For any sufficiently large T > &, let a = T. If we
choose I = a in (39), then there exists ¢ > a such that

C

/[H(s,a)kA (s)c}(s)&a(s)—go% (s,a)| ds>0. (41)
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If we choose | = ¢ > a in (40), then there exists b > ¢ such
that

b
/[H(b,s)kA (s)@(s)ci)(s)—%Q% (b,s)| ds>0. (42)

Finally, we combine (41) and (42), to obtain (29). Thus, the
proof is complete from Theorem 4. O

If we choose H (¢, s) = ({—s)’1 ,§=252¢&),whereA > 1lisa
constant in Theorem 4 and Theorem 5, then we obtain the
following corollaries.

Corollary 1. Under the conditions of Theorem 4, if for any
sufficiently large T = &y, there exist a, b,c with T < a < ¢ <
b satisfying

b

[ -9 kA ©7©p ©)ds

+
(b-oJ
'(s) ’
<}l+ 7 (s—a)) ds (43)

Aa/cz(s_ y-2

>
(c-a)
L1 3'(s)
v _ A2 r S b- )
+(b_C)AC/4( s) ( ¢()( s)
then (1) is oscillatory.

Corollary 2. Under the conditions of Theorem 5, if for any
sufficiently large 1 = &,

¢
imsup [ [6-1'kA©76)3 )

RO
TR ))] 20

Jim sup / (-9 KA ©)a©) b

l

—g (& -s)"? (/l ‘é’)((s) (& - s)) } ds>0,  (44)
then (1) is oscillatory.
Theorem 6. If(9)-(11) hold, ¢ is defined as in Teorem 4 and
7 kA (5)3(5)$ (5) ?(S)[a(s)r d (45)
$)G(S)p(S) - ——————=—| ds = oo,
! 4815, )% (®)

&
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Then every solution of (1) is oscillatory or satisfies
limyse x (t) = O.

Proof. Suppose the contrary that x (t) is a non-oscillatory
solution of (1). Then without loss of generality, we may as-
sume that there is a solution x (t) of (1) such that x () > 0
on [t1, o0), where t; is sufficiently large. By Lemma 1, we
have Df (r (t)Dfx(£)) > 0, t € [t,00), where t; > t
is sufficiently large, and either D{x (t) > O on [t,, o) or
limyseo x (t) = 0. Now we assume that Dfx(f) > O on
[t2,0).Let w (t), @ (&) be defined as in Theorem 1. Thus,
we obtain (33). So,

" RSN 51 61(8,48) i
<-kA
w (§) g o) - YO Q) W (§)

AG™
G v

RGICGH
45,600

1/2 o 1/2
1 (OO ©
W) 2(81(5 fz)) ¢(£)]

RGICIGHK

=-kA@)qE) P &)+

Gas

< -kA [ S N > &
BHGIIGE 451(5 o © 3
and thus,
-, 2
el
kA(8)a () ¢ () - s-w (§). (46)

48, (& 6)0 (&)

Substituting & with s in (46) and integrating it with respect
to s from &, to &, then we get that

j KA(S)3(5) P (s) - 1W

4 461(s, &) P (5)
SW(&H)-W(§)sW(§) <o (47)

which contradicts (45). So, the proof is complete. O

Theorem 7. Assume (9)-(11) hold, and there exists a func-
tion G € C([éo, o), R) such that G (¢, &) = 0, for & = &,
G(§,s) >0, for§ > s = §, and G has a non-positive contin-
uous partial derivative G (¢, s) . If ¢ is defined as in Theo-
rem 4 and

¢
hmsqu({ %) /G({,s){w—

o

%g}ds oo, (48)

#(s)[¢' )] _ N
A and @ = kA (s) G (s) ¢ (s) Then every

solution of (1) is oscillatory or satisfies lim;.. x (t) = 0.

where g =
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Proof. Suppose the contrary that x (t) is a non-oscillatory
solution of (1). Then without loss of generality, we may as-
sume that there is a solution x () of (1) such that x (¢) > 0
on [t;, o0), where t; is sufficiently large. By Lemma 1, we
have Df (r (t)Dfx(t)) > 0, t € [t;,00), where t; > t;
is sufficiently large, and either D{x (t) > 0 on [t;, o) or
limyseo x () = 0. Now we assume that Dfx(f) > O on
[t2,00). Let w (t), @ (&) be defined as in Theorem 4. Thus
we have (46). So,

0-2<-W(©, {26

Substituting ¢ with s in (49), multiplying both sides by
G (¢, s) and then integrating it with respect to s from &; to
¢, we get that

(49)

¢ ¢
/G({,s){w—%}dss—/G({,s)Vv'(s)ds (50)

& &
and thus,
£
[o@9{o-2}as<-c 0w
13
+G(§,82)W(s2)
£
+/G; (&, 5)W(s)As
13
<G (&, )W ().
Then,
£
[o¢o{o-2}assccmwiE 6D
3
and
3 &
/G(f,s){m—%} =/G(§,s){w—%}d5
o &
¢
+/G($,s){w—%}ds
62 {2
<05, W(E)+ 66 0) [ [o- 2] as.
{0

So,
hmsqu({ %) /G({ s){ 1 }ds

sw(fz)+/'w—ig‘ds<m
%o
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which contradicts (48). So the proof is complete.

3 Applications of the results

Example 1. Consider the nonlinear fractional differential
equation with damping term

r(3/2
D [/*D}D}x (0] + ( \/; ) DD o

+tx (t) (1 +sin? (x(t))) -0,t22. (52

This corresponds to () withto = 2;a = 3;a (t) = tY/4;r (6) =
L;p(t) =T (3/2) [Vt q(t) = t " and f (x) = x + xsin’ x.
So, f(x)/x =x (1 + sin? x) [x=1=k;& =2"2/T (3/2);
a§) = \J&r(3/2); b = £ a® = (rG2)"
Furthermore, A(§) = exp ((1" (3/2))_1/2 fg: 5’3/2ds) =
exp ((F (3/2))_1/2 [2{51/2 - 2.{‘1/2}) which implies 1 <
Aé) < (exp (2 r (3/2)]71/2) {61/2). On the other hand,

¢
51 (&, &) = / (1/A(s)a(s)) ds
&

;
> [1(3/2)] " exp (21 (3/2)] .{51/2)/%%
&

=2[r(3/2)] P exp (—2 [r(3/2)]" 551/2)
(V)

which implies limg ., 81(¢,&) = oo, and so, (9) holds.

Then, there exists a sufficiently large T > &, such that

81(&,&) > 1on|[T, o). In (10),

oo oo oo

at®? 1
/mdt=/®ds=/ds=oo. (53)
%o

to o

In (11),

oo

=T ) ~
!7(()/A(T)&(T)/A(S)Q(S)dsd‘rd(

T

= oo, (54)
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O  Letting ¢ (£) = £ in (45),

481 (s, &) P (s)

A(s)s |:SF (i)}z - 451(51,{2)5] ds

A(s) [r

7(5) [#9)]° ] .

8*\8

[kA ()q(s)P(s) -

o
T

;)]2 45, (15,52)} %ds
)Y " 45, (13,52)] %ds ©5)
)

-2
r(3 ] - 1l
2 461(5,{2) S

So, (52) is oscillatory by Theorem 6.

Example 2. Consider the nonlinear fractional differential
equation with damping term

D" [t2/9D§/3D5/3x(t)} + 2D DR x (¢)

+x(t)+x°(6)=0, t=2. (56)

This corresponds to (1) with to = 2; a = 3; a(t) = 2%,
r() = 1;p@) = t?3qt) = 1and f(x) = x + x°. So,
fOO/x=x(1+x*)/x=21=1k & = 223 r (5/3);a(é) =
€r(5/3))":7® = LpE = (r(5/3)) 3 = L.
Furthermore, A(§) = exp ((F (5/3))_4/3 f;; 5‘4/3ds) =
exp ((F (5/3‘»))74/3 {3661/3 —3{’1/3}) which implies 1 <

A(é) < (exp (3 r (5/3)]_4/3) .{5”3). On the other hand,

¢

61(8,6) = / (1/A(s)a(s)) ds

&
¢

> [T (5/3)}71/3 exp (‘3 [r (5/3)]4‘/3 561/3) /5—1/3d5

&

= (312) [ (5/3)] P exp (-3 [T (5/3)] " &)
% (;;'2/3 _522/3)

which implies lim .. 51 (&, &) = oo and so (9) holds. Then,
there exists a sufficiently large T > &, suchthat &, (¢, &) > 1
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on [T, o). In (10),

r ate! 71 T
/mdt=/®ds=/ds=oo. (57)
to & I

In (11),

oo

1 T 1 T -
J?(O/A(T)a(T)/A(s)q(s)dsdrd(

> 1 (5/3)] P exp (<31 (513)] " &)

x / / 13 / dsdrd(.
o ¢ T

= o0

(58)

Letting ¢ (§) = 1 and A = 2 in (44), for any sufficiently large
1, we have

¢

. ot
gll sup / [(s )
1

~r

KNSV OV
4(s )] (/1+ é(s)(s l))}ds

¢
. 210
zggsup/[(s )] 4(2)}ds
1
¢

1 _n2_ _
—ggsup/[(s )] 1} ds = oo
!
¢

imsup [ [£-9'0
!
1697 (120 ¢ ) }ds
¢
. 2
zggsupl/[({—s) —1} ds = oo.

So (44) holds, and then we deduce that (56) is oscillatory by
Corollary 2.

4 Conclusion

In this paper, we are concerned with the oscillation of solu-
tions to nonlinear fractional differential equations with a
damping term. Based on the variable transformation used
in £, the fractional differential equations are converted
into another differential equation of integer order. Then,

Oscillation criteria for nonlinear fractional differential equation with damping term = 127

some new oscillation criteria for the equations are estab-
lished by using inequalities, the integration average tech-
nique and the Riccati transformation. Consequently, it can
be seen that this approach can also be applied to the oscil-
lation of other fractional differential equations involving
the modified Riemann-Liouville derivative.
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