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Abstract: In this paper, we study the oscillation of so-
lutions to a non-linear fractional di�erential equation
with damping term. The fractional derivative is de�ned
in the sense of the modi�ed Riemann-Liouville deriva-
tive. By using a variable transformation, a generalized Ric-
cati transformation, inequalities, and integration average
techniquewe establish newoscillation criteria for the frac-
tional di�erential equation. Several illustrative examples
are also given.
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1 Introduction
Fractional di�erential equations are generalizations of
classical di�erential equations of integer order and have
recently proved to be valuable tools in the modelling of
many phenomena in various �elds of science and engi-
neering. Apart from diverse areas of mathematics, frac-
tional di�erential equations arise in rheology, viscoelas-
ticity, chemical physics, electrical networks, �uid �ows,
control, dynamical processes in self-similar and porous
structures, etc.; see, for example, [1–6]. Fractional deriva-
tives have appeared in lots of work where they are used for
better descriptions of material properties. Mathematical
modelling based on enhanced rheological models natu-
rally leads to di�erential equations of fractional order and
to the necessity of the formulation of initial conditions to
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such equations.This growth in use has been caused by the
intensive development of the theory of fractional calculus
itself and its applications. The books on the subject of frac-
tional integrals and fractional derivatives by Diethelm [7],
Miller and Ross [8], Podlubny [9] andKilbas et al. [10] sum-
marise and organise much of the �eld of fractional cal-
culus including many of the theories and applications of
fractional di�erential equations. Many papers have stud-
ied some aspects of fractional di�erential equations. Most
have focused on the existence of, methods for de�ning
or stability of the solutions (or positive solutions) to non-
linear initial (or boundary) value problems for fractional
di�erential equations (or systems) using nonlinear analy-
sis techniques (�xed-point theorems, Leray-Schauder the-
ory). We refer to [11–21] and the references cited therein.

Recently, research on the oscillation of various equa-
tions including di�erential equations, di�erence equa-
tions and dynamic equations on time scales, has been a
hot topic the literature. A lot of e�ort has been commit-
ted to establishing new oscillation criteria for these equa-
tions; see themonographs [22, 23]. In these investigations,
we notice that very little attention has been paid to the os-
cillation of fractional di�erential equations.

In 2006, a de�nition for a fractional derivative called
the modi�ed Riemann-Liouville derivative, was suggested
by Jumarie [24] and its applicationhave subsequently been
studied by many researchers [25–28].

Recently, Qin and Zheng [29] established oscillation
criteria for linear fractional di�erential equations with
damping term of the form:

Dαt
(
a (t)Dαt

(
r (t)Dαt x (t)

))
+ p (t)Dαt

(
r (t)Dαt x (t)

)
+ q (t) x (t) = 0 t ≥ t0 > 0, 0 < α < 1,

where Dαt (·) denotes the modi�ed Riemann-Liouville
derivative with respect to variable t.

Now, in this paper, we are concerned with the oscilla-
tion of fractional di�erential equationswith damping term
in the form of:

Dαt
(
a (t)Dαt

(
r (t)Dαt x (t)

))
+ p (t)Dαt

(
r (t)Dαt x (t)

)
+ q (t) f (x (t)) = 0, t ≥ t0 > 0, 0 < α < 1, (1)
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where: Dαt (·) denotes the modi�ed Riemann-Liouville
derivative with respect to the variable t; the function
a ∈ Cα ([t0, ∞) , R+); r ∈ C2α ([t0, ∞) , R+); p, q ∈
C ([t0, ∞) , R+); the function of f belongs to C (R, R);
f (x) /x ≥ k > 0 for all x 6= 0 and Cα denotes a continuous
derivative of order α.

Some of the key properties of Jumarie’s modi�ed
Riemann-Liouville derivative of order α are listed as fol-
lows:

Dαt f (t) =


1

Γ(1−α)
d
dt
∫ t
0 f (t, ξ , α)dξ , 0 < α < 1(

f (n) (t)
)(α−n)

, 1 ≤ n ≤ α ≤ n + 1
(2)

Dαt (f (t) g (t)) = g (t)Dαt f (t) + f (t)Dαt g (t) (3)

Dαt f [g (t)] = f ′g [g (t)]Dαt g (t) = Dαt f [g (t)]
(
g′ (t)

)α
(4)

Dαt tβ =
Γ (β + 1)

Γ (β + 1 − α)
tβ−α , (5)

where f (t, ξ , α) = (t − ξ )−α (f (ξ ) − f (0)).
As usual, a solution x (t) of (1) is called oscillatory if

it has arbitrarily large zeros, otherwise it is called non-
oscillatory. Equation (1) is called oscillatory if all its solu-
tions are oscillatory.

In the rest of this paper, we denote for the sake of con-
venience:

ξ = tα/Γ (1 + α); ξi = tαi /Γ (1 + α); i = 0, 1, 2, 3, 4, 5;
a (t) = ã (ξ ); r (t) = r̃ (ξ ); p (t) = p̃ (ξ ); q (t) = q̃ (ξ );
δ̃1 (ξ , ξi) =

∫ ξ
ξi

(
1/A (s) ã (s)

)
ds; δ1 (t, ti) = δ̃1 (ξ , ξi);

δ̃2 (ξ , ξi) =
∫ ξ
ξi

(
δ̃1 (s, ξi) / r̃ (s)

)
ds; δ2 (t, ti) = δ̃2 (ξ , ξi);

A (ξ ) = exp(
∫ ξ
ξ0

(
p̃ (s) /ã (s) ds

)
).

Let h1, h2, H ∈ C ([ξ0, ∞) , R) satisfy

H (ξ , ξ ) = 0, H (ξ , s) > 0, ξ > s ≥ ξ0 (6)

H has continuous partial derivatives ∂H (ξ , s) /∂ξ and
∂H (ξ , s) /∂s on [ξ0, ∞) such that

∂H (ξ , s)
∂ξ = −h1 (ξ , s)

√
H (ξ , s) (7)

∂H (ξ , s)
∂s = −h2 (ξ , s)

√
H (ξ , s), ξ > s ≥ ξ0. (8)

This paper is organized next as follows: in Section 2, we
establish new oscillation criteria for (1) using the Riccati
transformation, inequalities and the integration average
technique and in Section 3, we present some examples
that apply the results established. Finally, we give a con-
clusion.

2 Oscillatory criteria
Lemma 1. Assume x (t) is an eventually positive solution of
(1), and

∞∫
ξ0

1
A (s) ã (s)

ds = ∞ (9)

∞∫
t0

αtα−1
Γ (1 + α) r (t)

dt = ∞ (10)

∞∫
ξ0

1
r̃ (ζ )

∞∫
ζ

1
A (τ) ã (τ)

∞∫
τ

A (s) q̃ (s) dsdτdζ = ∞. (11)

Then, there exist a su�ciently large T such that
Dαt
(
r (t)Dαt x (t)

)
> 0 on [T, ∞) and either Dαt x (t) > 0

on [T, ∞) or limt→∞ x (t) = 0.

Proof. Suppose x (t) is an eventually positive solution of
(1). Let a (t) = ã (ξ ) , r (t) = r̃ (ξ ) , x (t) = x̃ (ξ ) , p (t) = p̃ (ξ ) ,
q (t) = q̃ (ξ ) where ξ = tα/Γ (1 + α) . Then by using (5),
we obtain Dαt ξ (t) = 1, and furthermore, by use of the �rst
equality in (4), we have

Dαt a (t) = Dαt ã (ξ ) = ã′ (ξ )Dαt ξ (t) = ã′ (ξ ) . (12)

Similarly we have Dαt r (t) = r̃′ (ξ ) , Dαt x (t) = x̃′ (ξ ) ,
Dαt p (t) = p̃′ (ξ ) , Dαt q (t) = q̃′ (ξ ) . So, (1) can be trans-
formed into the following form:[

ã (ξ )
(
r̃ (ξ ) x̃′ (ξ )

)′]′
+ p̃ (ξ )

(
r̃ (ξ ) x̃′ (ξ )

)′
+q̃ (ξ ) f (x̃ (ξ )) = 0, ξ ≥ ξ0 > 0. (13)

Then x̃ (ξ ) is an eventually positive solution of (13), and
there exists ξ1 > ξ0 such that x̃ (ξ ) > 0 on [ξ1, ∞) . So,
f (x̃ (ξ )) > 0 and we have[
A (ξ ) ã (ξ )

(
r̃ (ξ ) x̃′ (ξ )

)′]′
= A (ξ )

[
ã (ξ )

(
r̃ (ξ ) x̃′ (ξ )

)′]′
+ A′ (ξ ) ã (ξ )

(
r̃ (ξ ) x̃′ (ξ )

)′
= A (ξ )

{[
ã (ξ )

(
r̃ (ξ ) x̃′ (ξ )

)′]′
+ p̃ (ξ )

(
r̃ (ξ ) x̃′ (ξ )

)′}
.

Therefore, we get

[A (ξ ) ã (ξ )
(
r̃ (ξ ) x̃′ (ξ )

)′]′
=

− A (ξ ) q̃ (ξ ) f (x̃ (ξ )) < 0, ξ ≥ ξ1. (14)
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Then, A (ξ ) ã (ξ )
(
r̃ (ξ ) x̃′ (ξ )

)′ is strictly decreasing on
[ξ1, ∞) , thus we know that

(
r̃ (ξ ) x̃′ (ξ )

)′ is eventually of
one sign. For ξ2 > ξ1 is su�ciently large, we claim(
r̃ (ξ ) x̃′ (ξ )

)′ > 0 on [ξ2, ∞). Otherwise, assume that there
exists a su�ciently large ξ3 > ξ2 such that

(
r̃ (ξ ) x̃′ (ξ )

)′ <
0 on [ξ3, ∞) .Thus, r̃ (ξ ) x̃′ (ξ ) is strictly decreasing on
[ξ3, ∞), and we get that

r̃ (ξ ) x̃′ (ξ ) − r̃ (ξ3) x̃′ (ξ3) =
ξ∫

ξ3

A (s) ã (s)
(
r̃ (s) x̃′ (s)

)′
A (s) ã (s)

ds

≤ A (ξ3) ã (ξ3)
(
r̃ (ξ3) x̃′ (ξ3)

)′ ξ∫
ξ3

1
A (s) ã (s)

ds.

Therefore, we get

r̃ (ξ ) x̃′ (ξ ) ≤ r̃ (ξ3) x̃′ (ξ3)

+ A (ξ3) ã (ξ3)
(
r̃ (ξ3) x̃′ (ξ3)

)′ ξ∫
ξ3

1
A (s) ã (s)

ds. (15)

By (9), we have limξ→∞ r̃ (ξ ) x̃′ (ξ ) = −∞. So there exists a
su�ciently large ξ4 > ξ3 such that x̃′ (ξ ) < 0, ξ ∈ [ξ4, ∞) .
Then, we have

x̃ (ξ ) − x̃ (ξ4) =
ξ∫

ξ4

x̃′ (s) ds =
ξ∫

ξ4

r̃ (s)
r̃ (s)

x̃′ (s) ds

≤ r̃ (ξ4) x̃′ (ξ4)
ξ∫

ξ4

1
r̃ (s)

ds

and so,

x̃ (ξ ) ≤ r̃ (ξ4) x̃′ (ξ4)
ξ∫

ξ4

αtα−1
Γ(1 + α)r (t)

dt. (16)

By (10), we deduce that limξ→∞ x̃ (ξ ) = −∞, which con-
tradicts the fact that x̃ (ξ ) is an eventually positive solu-
tion of (13). Thus,

(
r̃ (ξ ) x̃′ (ξ )

)′ > 0 on [ξ2, ∞) , and then
Dαt
(
r (t)Dαt x (t)

)
> 0 on [t2, ∞) . So, Dαt x (t) = x̃′ (ξ ) is even-

tually of one sign. Now we assume x̃′ (ξ ) < 0 on [ξ5, ∞)
where ξ5 > ξ4 is su�ciently large. Since x̃ (ξ ) > 0, we have
limξ→∞ x̃ (ξ ) = β ≥ 0. We claim β = 0.Otherwise, assume
β > 0.Then x̃ (ξ ) ≥ β on [ξ5, ∞) , f (x (ξ )) ≥ k.x (ξ ) > M for
M ∈ R+ and by (14) we have[

A (ξ ) ã (ξ )
(
r̃ (ξ ) x̃′ (ξ )

)′]′
= −A (ξ ) q̃ (ξ ) f (x̃ (ξ )) (17)

≤ −A (ξ ) q̃ (ξ )M.

Substituting ξ with s in (17), and integrating it with respect
to s from ξ to ∞ yields

∞∫
ξ

[
A (s) ã (s)

(
r̃ (s) x̃′ (s)

)′]′
ds ≤ −M

∞∫
ξ

A (s) q̃ (s) ds.

− A (ξ ) ã (ξ )
(
r̃ (ξ ) x̃′ (ξ )

)′
≤ − lim

ξ→∞

[
A (ξ ) ã (ξ )

(
r̃ (ξ ) x̃′ (ξ )

)′]
−M

∞∫
ξ

A (s) q̃ (s) ds

< −M
∞∫
ξ

A (s) q̃ (s) ds (18)

which means

(
r̃ (ξ ) x̃′ (ξ )

)′
> M 1

A (ξ ) ã (ξ )

∞∫
ξ

A (s) q̃ (s) ds (19)

substituting ξ with τ in (19), and integrating it with respect
to τ from ξ to ∞ yields

∞∫
ξ

(
r̃ (s) x̃′ (s)

)′
ds > M

∞∫
ξ

1
κ

∞∫
ξ

A (s) q̃ (s) dsdτ

lim
ξ→∞

r̃ (ξ ) x̃′ (ξ ) − r̃ (ξ ) x̃′ (ξ ) > M
∞∫
ξ

1
κ

∞∫
ξ

A (s) q̃ (s) dsdτ

−r̃ (ξ ) x̃′ (ξ ) > − lim
ξ→∞

r̃ (ξ ) x̃′ (ξ ) +M
∞∫
ξ

1
κ

∞∫
ξ

A (s) q̃ (s) dsdτ

−r̃ (ξ ) x̃′ (ξ ) > M
∞∫
ξ

1
A (τ) ã (τ)

∞∫
ξ

A (s) q̃ (s) , dsdτ, (20)

where κ = A (τ) ã (τ). That is,

x̃′ (ξ ) < −M 1
r̃ (ξ )

∞∫
ξ

1
κ

∞∫
ξ

A (s) q̃ (s) dsdτ (21)

substituting ξ with ζ in (21), and integrating it with respect
to ζ from ξ5 to ξ yields

ξ∫
ξ5

x̃′ (s) ds < −M
ξ∫

ξ5

1
r̃ (ζ )

∞∫
ξ

1
κ

∞∫
ξ

A (s) q̃ (s) dsdτdζ

x̃ (ξ ) − x̃ (ξ5) < −M
ξ∫

ξ5

1
r̃ (ζ )

∞∫
ξ

1
κ

∞∫
ξ

A (s) q̃ (s) dsdτdζ
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x̃ (ξ ) < x̃ (ξ5) −M
ξ∫

ξ5

1
r̃ (ζ )

∞∫
ξ

1
κ

∞∫
ξ

A (s) q̃ (s) dsdτdζ .

By (11), we have limt→∞ x̃ (ξ ) = −∞, which causes a contra-
diction. So, the proof is complete.

Lemma 2. Assume that x (t) is an eventually positive solu-
tion of (1) such that

Dαt
(
r (t)Dαt x (t)

)
> 0, Dαt x (t) > 0 (22)

on [t1, ∞) , where t1 > t0 is su�ciently large. Then, for t ≥
t1, we have

Dαt x (t) ≥
A (ξ ) δ1 (t, t1) a (t)Dαt

(
r (t)Dαt x (t)

)
r (t)

(23)

x (t) ≥ A (ξ ) δ2 (t, t1) a (t)Dαt
(
r (t)Dαt x (t)

)
. (24)

Proof. Assume that x is an eventually positive solution of
(1). So, by (14), we obtain that A (ξ ) ã (ξ )

(
r̃ (ξ ) x̃′ (ξ )

)′ is
strictly decreasing on [ξ1, ∞) . Then,

r̃ (ξ ) x̃′ (ξ ) ≥ r̃ (ξ ) x̃′ (ξ ) − r̃ (ξ1) x̃′ (ξ1)

=
ξ∫

ξ1

A (s) ã (s)
(
r̃ (s) x̃′ (s)

)′
A (s) ã (s)

ds

≥ A (ξ ) ã (ξ )
(
r̃ (ξ ) x̃′ (ξ )

)′ ξ∫
ξ1

1
A (s) ã (s)

ds

= A (ξ ) ã (ξ ) (r̃ (ξ ) x̃′ (ξ ))′ δ̃1 (ξ , ξ1) (25)

and so,

r (t)Dαt x (t) ≥ A (ξ ) δ1 (t, t1) a (t)Dαt
(
r (t)Dαt x (t)

)
(26)

multiplying both sides of (26) by 1/r (t), we obtain

Dαt x (t) ≥
A (ξ ) δ1 (t, t1) a (t)Dαt

(
r (t)Dαt x (t)

)
r (t)

.

On the other hand, we have

x̃ (ξ ) ≥ x̃ (ξ ) − x̃ (ξ1) =
ξ∫

ξ1

x̃′ (s) ds =
ξ∫

ξ1

r̃ (s) x′ (s)
r̃ (s)

ds.

Using (26), we obtain

x̃ (ξ ) ≥
ξ∫

ξ1

A (s) ã (s)
(
r̃ (s) x̃′ (s)

)′ δ̃1 (s, ξ1)
r̃ (s)

ds,

x̃ (ξ ) ≥ A (ξ ) ã (ξ )
(
r̃ (ξ ) x̃′ (ξ )

)′ ξ∫
ξ1

δ̃1 (s, ξ1)
r̃ (s)

ds

= A (ξ ) δ̃2 (ξ , ξ1) ã (ξ )
(
r̃ (ξ ) x̃′ (ξ )

)′
. (27)

That is

x (t) ≥ A (ξ ) δ2 (t, t1) a (t)Dαt
(
r (t)Dαt x (t)

)
.

So, the proof is complete.

Lemma 3. [30]: Assume that A and B are nonnegative real
numbers. Then,

λABλ−1 − Aλ ≤ (λ − 1) Bλ (28)

for all λ > 1.

Theorem 4. Assume that (9)-(11) hold and f (x) /x ≥ k > 0
for all x 6= 0. If there exists ϕ ∈ Cα ([t0, ∞) , R+) such that
for any su�ciently large T ≥ ξ0, there exist a, b, c with T ≤
a < c < b satisfying

1
H (b, c)

b∫
c

H (b, s) kA (s) ϕ̃ (s) q̃ (s) ds

+ 1
H (c, a)

c∫
a

H (s, a) kA (s) ϕ̃ (s) q̃ (s) ds

> 1
H (b, c)

b∫
c

r̃ (s) ϕ̃ (s)
4δ1 (s, ξ2)

Q2
2 (b, s) ds (29)

+ 1
H (c, a)

c∫
a

r̃ (s) ϕ̃ (s)
4δ1 (s, ξ2)

Q2
1 (s, a) ds,

where k ∈ R+, ϕ̃ (ξ ) = ϕ (t) , Q1 (s, ξ ) = h1 (s, ξ ) −(
ϕ̃′ (s) /ϕ̃ (s)

)√
H (s, ξ ), Q2 (ξ , s) = h2 (ξ , s) −(

ϕ̃′ (s) /ϕ̃ (s)
)√

H (ξ , s); then, (1) is oscillatory or satis-
�es limt→∞ x (t) = 0.

Proof. Suppose the contrary that x (t) is non-oscillatory
solution of (1). Then without loss of generality, we may as-
sume that there is a solution x (t) of (1) such that x (t) > 0
on [t1, ∞) , where t1 is su�ciently large. By Lemma 1, we
have Dαt

(
r (t)Dαt x (t)

)
> 0, t ∈ [t2, ∞) , where t2 > t1

is su�ciently large, and either Dαt x (t) > 0 on [t2, ∞) or
limt→∞ x (t) = 0. If we take Dαt x (t) > 0 on [t2, ∞) . De�ne
the following generalized Riccati function:

ω (t) = ϕ (t)
A (ξ ) a (t)Dαt

(
r (t)Dαt x (t)

)
x (t)

. (30)

For t ∈ [t2, ∞) , we have

Dαt ω (t) = Dαt ϕ (t)
A (ξ ) a (t)Dαt

(
r (t)Dαt x (t)

)
x (t)

+ ϕ (t)Dαt

{
A (ξ ) a (t)Dαt

(
r (t)Dαt x (t)

)
x (t)

}
.
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So,

Dαt ω (t) = Dαt ϕ (t) ω (t)
ϕ (t)

+
ϕ (t) x (t)Dαt

(
A (ξ ) a (t)Dαt (r (t)Dαt x (t))

)
x2 (t)

− ϕ (t)
Dαt x (t)A (ξ ) a (t)Dαt (r (t)Dαt x (t))

x2 (t)

= Dαt ϕ (t) ω (t)
ϕ (t)

+ ϕ (t)
[
Dαt A (ξ ) a (t)Dαt

(
r (t)Dαt x (t)

)]
x (t)

+ ϕ (t)
[
A (ξ )Dαt

(
a (t)Dαt

(
r (t)Dαt x (t)

))]
x (t)

− ϕ (t)
Dαt x (t)A (ξ ) a (t)Dαt

(
r (t)Dαt x (t)

)
x2 (t)

Dαt ω (t) = Dαt ϕ (t) ω (t)
ϕ (t)

+ ϕ (t)
[
A′ (ξ )Dαt ξa (t)Dαt

(
r (t)Dαt x (t)

)]
x (t)

+ ϕ (t)
[
A (ξ )Dαt

(
a (t)Dαt

(
r (t)Dαt x (t)

))]
x (t)

− ϕ (t)
Dαt x (t)A (ξ ) a (t)Dαt

(
r (t)Dαt x (t)

)
x2 (t)

. (31)

If we use Dαt ξ = 1 and (23), we obtain

Dαt ω (t) ≤ Dαt ϕ (t) ω (t)
ϕ (t)

+ ϕ (t)

[
A (ξ ) p(t)a(t)a (t)D

α
t
(
r (t)Dαt x (t)

)]
x (t)

+ ϕ (t)
[
A (ξ )Dαt

(
a (t)Dαt

(
r (t)Dαt x (t)

))]
x (t)

− ϕ (t) δ1 (t, t2)ϕ2 (t) r (t)
ω2 (t)

and so,

Dαt ω (t) ≤ Dαt ϕ (t) ω (t)
ϕ (t)

+ ϕ (t)
A (ξ )

[
p (t)Dαt

(
r (t)Dαt x (t)

)]
x (t)

+ ϕ (t)
A (ξ )

[
Dαt
(
a (t)Dαt

(
r (t)Dαt x (t)

))]
x (t)

− ϕ (t) δ1 (t, t2)ϕ2 (t) r (t)
ω2 (t)

= Dαt ϕ (t) ω (t)
ϕ (t)

− A (ξ ) q (t) f (x (t))ϕ (t)
x (t)

− δ1 (t, t2)ϕ (t) r (t)
ω2 (t) .

Using f (x (t)) /x (t) ≥ k,

Dαt ω (t) ≤ Dαt ϕ (t) ω (t)
ϕ (t)

− kA (ξ ) q (t)ϕ (t)

− δ1 (t, t2)ϕ (t) r (t)
ω2 (t) . (32)

Now, let ω (t) = ω̃ (ξ ) . Then we have Dαt ω (t) = ω̃′ (ξ ) and
Dαt ϕ (t) = ϕ̃′ (ξ ) . Thus (32) is transformed into

ω̃′ (ξ ) ≤
ϕ′ (ξ )
ϕ (ξ )

ω̃ (ξ ) − kA (ξ ) q̃ (ξ ) ϕ̃ (ξ )

− δ̃1 (ξ , ξ2)
ϕ̃ (ξ ) r̃ (ξ )

ω̃2 (ξ ) , ξ ≥ ξ2. (33)

We can choose a, b, c arbitrary in [ξ2, ∞) with b > c >
a. Substituting ξ with s, we multiply both sides of (33) by
H (ξ , s) and integrating it with respect to s from c to ξ for
ξ ∈ [c, b) , then we get that

ξ∫
c

H (ξ , s) kA (s) q̃ (s) ϕ̃ (s) ds ≤ −
ξ∫
c

H (ξ , s) ω̃′ (s) ds

+
ξ∫
c

H (ξ , s)
ϕ̃′ (s)
ϕ̃ (s)

ω̃ (s) ds −
ξ∫
c

H (ξ , s)
δ̃1 (s, ξ2)
ϕ̃ (s) r̃ (s)

ω̃2 (s)

using the method of integration by parts
ξ∫
c

H (ξ , s) kA (s) q̃ (s) ϕ̃ (s) ds ≤ H (ξ , c) ω̃ (c)

−
ξ∫
c

[(
H (ξ , s)
ϑ

)1/2
ω̃ (s) + 1

2 (ϑ)1/2 Q2 (ξ , s)

]2
ds

+
ξ∫
c

ϑ
4Q

2
2 (ξ , s) ds,

where ϑ = r̃(s)ϕ̃(s)
δ̃1(s,ξ2)

and therefore,

ξ∫
c

H (ξ , s) kA (s) q̃ (s) ϕ̃ (s) ds

≤ H (ξ , c) ω̃ (c) +
ξ∫
c

ϑ
4Q

2
2 (ξ , s) ds. (34)

Letting ξ → b− in (34) and dividing both sides by H (ξ , c) ,
we obtain,

1
H (b, c)

b∫
c

H (b, s) kA (s) q̃ (s) ϕ̃ (s) ds

≤ ω̃ (c) + 1
H (b, c)

b∫
c

ϑ
4Q

2
2 (b, s) ds. (35)
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On the other hand, substituting ξ with s, multiplying both
sides of (33) by H (s, ξ ) and integrating it with respect to s
from ξ to c for ξ ∈ (a, c] , we deduce that

c∫
ξ

H (s, ξ ) kA (s) q̃ (s) ϕ̃ (s) ds ≤ −H (c, ξ ) ω̃ (c)

+
c∫
ξ

r̃ (s) ϕ̃ (s)
4δ̃1 (s, ξ2)

Q2
1 (s, ξ ) ds. (36)

Letting ξ → a+ in (36) and dividing both sides of it by
H (c, ξ ) and we obtain

1
H (c, a)

c∫
a

H (s, a) kA (s) q̃ (s) ϕ̃ (s) ds ≤ −ω̃ (c)

+ 1
H (c, a)

c∫
a

r̃ (s) ϕ̃ (s)
4δ̃1 (s, ξ2)

Q2
1 (s, a) ds. (37)

A combination of (35) and (37) yields the inequality

1
H (b, c)

b∫
c

H (b, s) kA (s) q̃ (s) ϕ̃ (s) ds

+ 1
H (c, a)

c∫
a

H (s, a) kA (s) q̃ (s) ϕ̃ (s) ds

≤ 1
H (b, c)

b∫
c

r̃ (s) ϕ̃ (s)
4δ̃1 (s, ξ2)

Q2
2 (b, s) ds (38)

+ 1
H (c, a)

c∫
a

r̃ (s) ϕ̃ (s)
4δ̃1 (s, ξ2)

Q2
1 (s, a)

which contradicts (29). Thus, the proof is complete.

Theorem 5. Under the conditions of Theorem 4, if for any
su�ciently large l ≥ ξ0,

lim
ξ→∞

sup
ξ∫
l

[
H (s, l) kA (s) q̃ (s) ϕ̃ (s) − ϑ4Q

2
1 (s, l)

]
ds > 0,

(39)

lim
ξ→∞

sup
ξ∫
l

[
H (ξ , s) kA (s) q̃ (s) ϕ̃ (s) − ϑ4Q

2
2 (ξ , s)

]
ds > 0,

(40)
then (1) is oscillatory.

Proof. For any su�ciently large T ≥ ξ0, let a = T . If we
choose l = a in (39), then there exists c > a such that

c∫
a

[
H (s, a) kA (s) q̃ (s) ϕ̃ (s) − ϑ4Q

2
1 (s, a)

]
ds > 0. (41)

If we choose l = c > a in (40), then there exists b > c such
that

b∫
c

[
H (b, s) kA (s) q̃ (s) ϕ̃ (s) − ϑ4Q

2
2 (b, s)

]
ds > 0. (42)

Finally, we combine (41) and (42), to obtain (29). Thus, the
proof is complete from Theorem 4.

If we choose H (ξ , s) = (ξ − s)λ , ξ ≥ s ≥ ξ0, where λ > 1 is a
constant in Theorem 4 and Theorem 5, then we obtain the
following corollaries.

Corollary 1. Under the conditions of Theorem 4, if for any
su�ciently large T ≥ ξ0, there exist a, b, c with T ≤ a < c <
b satisfying

1
(c − a)λ

c∫
a

(s − a)λ kA (s) q̃ (s) ϕ̃ (s) ds

+ 1
(b − c)λ

b∫
c

(b − s)λ kA (s) q̃ (s) ϕ̃ (s) ds

> 1
(c − a)λ

c∫
a

ϑ
4 (s − a)λ−2

(
λ + ϕ̃

′ (s)
ϕ̃ (s)

(s − a)
)2

ds (43)

+ 1
(b − c)λ

b∫
c

ϑ
4 (b − s)λ−2

(
λ − ϕ̃

′ (s)
ϕ̃ (s)

(b − s)
)2

ds

then (1) is oscillatory.

Corollary 2. Under the conditions of Theorem 5, if for any
su�ciently large l ≥ ξ0,

lim
ξ→∞

sup
ξ∫
l

[
(s − l)λ kA (s) q̃ (s) ϕ̃ (s)

− ϑ4 (s − l)λ−2
(
λ + ϕ̃

′ (s)
ϕ̃ (s)

(s − l)
)2]

ds > 0,

lim
ξ→∞

sup
ξ∫
l

[
(ξ − s)λ kA (s) q̃ (s) ϕ̃ (s)

− ϑ4 (ξ − s)λ−2
(
λ − ϕ̃

′ (s)
ϕ̃ (s)

(ξ − s)
)2]

ds > 0, (44)

then (1) is oscillatory.

Theorem 6. If (9)-(11) hold, ϕ is de�nedas in Teorem4and

∞∫
ξ0

kA (s) q̃ (s) ϕ̃ (s) −
r̃ (s)

[
ϕ̃′ (s)

]2
4δ̃1 (s, ξ2) ϕ̃ (s)

 ds = ∞. (45)
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Then every solution of (1) is oscillatory or satis�es
limt→∞ x (t) = 0.

Proof. Suppose the contrary that x (t) is a non-oscillatory
solution of (1). Then without loss of generality, we may as-
sume that there is a solution x (t) of (1) such that x (t) > 0
on [t1, ∞) , where t1 is su�ciently large. By Lemma 1, we
have Dαt

(
r (t)Dαt x (t)

)
> 0, t ∈ [t2, ∞) , where t2 > t1

is su�ciently large, and either Dαt x (t) > 0 on [t2, ∞) or
limt→∞ x (t) = 0. Now we assume that Dαt x (t) > 0 on
[t2, ∞) .Let ω (t) , ω̃ (ξ ) be de�ned as in Theorem 1. Thus,
we obtain (33). So,

w̃′ (ξ ) ≤ −kA (ξ ) q̃ (ξ ) ϕ̃ (ξ ) −
δ̃1 (ξ , ξ2)
r̃ (ξ ) ϕ̃ (ξ )

w̃2 (ξ )

+ ϕ̃
′ (ξ )
ϕ̃ (ξ )

w̃ (ξ )

= −kA (ξ ) q̃ (ξ ) ϕ̃ (ξ ) + 1
4
r̃ (ξ )

[
ϕ̃′ (ξ )

]2
δ̃1 (ξ , ξ2) ϕ̃ (ξ )

−
[(

δ̃1 (ξ , ξ2)
r̃ (ξ ) ϕ̃ (ξ )

)1/2

w̃ (ξ ) − 1
2

(
r̃ (ξ ) ϕ̃ (ξ )
δ̃1 (ξ , ξ2)

)1/2 ϕ̃′ (ξ )
ϕ̃ (ξ )

]2

≤ −kA (ξ ) q̃ (ξ ) ϕ̃ (ξ ) + 1
4
r̃ (ξ )

[
ϕ̃′ (ξ )

]2
δ̃1 (ξ , ξ2) ϕ̃ (ξ )

, ξ ≥ ξ2

and thus,

kA (ξ ) q̃ (ξ ) ϕ̃ (ξ ) − 1
4
r̃ (ξ )

[
ϕ̃′ (ξ )

]2
δ̃1 (ξ , ξ2) ϕ̃ (ξ )

≤ −w̃′ (ξ ) . (46)

Substituting ξ with s in (46) and integrating it with respect
to s from ξ2 to ξ , then we get that

ξ∫
ξ2

kA (s) q̃ (s) ϕ̃ (s) − 1
4
r̃ (s)

[
ϕ̃′ (s)

]2
δ̃1 (s, ξ2) ϕ̃ (s)

 ds
≤ w̃ (ξ2) − w̃ (ξ ) ≤ w̃ (ξ2) < ∞ (47)

which contradicts (45). So, the proof is complete.

Theorem 7. Assume (9)-(11) hold, and there exists a func-
tion G ∈ C ([ξ0, ∞) ,R) such that G (ξ , ξ ) = 0, for ξ ≥ ξ0,
G (ξ , s) > 0, for ξ > s ≥ ξ0, and G has a non-positive contin-
uous partial derivative G

′

s (ξ , s) . If ϕ̃ is de�ned as in Theo-
rem 4 and

lim
ξ→∞

sup 1
G (ξ , ξ0)


ξ∫

ξ0

G (ξ , s)
{
ϖ − 1

4ϱ
}
ds

 = ∞, (48)

where ϱ = r̃(s)[ϕ̃′(s)]2
δ̃1(s,ξ2)ϕ̃(s)

and ϖ = kA (s) q̃ (s) ϕ̃ (s) Then every
solution of (1) is oscillatory or satis�es limt→∞ x (t) = 0.

Proof. Suppose the contrary that x (t) is a non-oscillatory
solution of (1). Then without loss of generality, we may as-
sume that there is a solution x (t) of (1) such that x (t) > 0
on [t1, ∞) , where t1 is su�ciently large. By Lemma 1, we
have Dαt

(
r (t)Dαt x (t)

)
> 0, t ∈ [t2, ∞) , where t2 > t1

is su�ciently large, and either Dαt x (t) > 0 on [t2, ∞) or
limt→∞ x (t) = 0. Now we assume that Dαt x (t) > 0 on
[t2, ∞) . Let ω (t) , ω̃ (ξ ) be de�ned as in Theorem 4. Thus
we have (46). So,

ϖ − ϱ4 ≤ −w̃
′ (ξ ) , ξ ≥ ξ2. (49)

Substituting ξ with s in (49), multiplying both sides by
G (ξ , s) and then integrating it with respect to s from ξ2 to
ξ , we get that

ξ∫
ξ2

G (ξ , s)
{
ϖ − ϱ4

}
ds ≤ −

ξ∫
ξ2

G (ξ , s) w̃′ (s) ds (50)

and thus,
ξ∫

ξ2

G (ξ , s)
{
ϖ − ϱ4

}
ds ≤ −G (ξ , ξ ) w̃ (ξ )

+ G (ξ , ξ2) w̃ (ξ2)

+
ξ∫

ξ2

G
′

s (ξ , s) w̃ (s) ∆s

≤ G (ξ , ξ2) w̃ (ξ2) .

Then,
ξ∫

ξ2

G (ξ , s)
{
ϖ − ϱ4

}
ds ≤ G (ξ , ξ0) w̃ (ξ2) (51)

and
ξ∫

ξ0

G (ξ , s)
{
ϖ − ϱ4

}
ds =

ξ2∫
ξ0

G (ξ , s)
{
ϖ − ϱ4

}
ds

+
ξ∫

ξ2

G (ξ , s)
{
ϖ − ϱ4

}
ds

≤ G (ξ , ξ0) w̃ (ξ2) + G (ξ , ξ0)
ξ2∫
ξ0

∣∣∣ϖ − ϱ4 ∣∣∣ ds.
So,

lim
ξ→∞

sup 1
G (ξ , ξ0)


ξ∫

ξ0

G (ξ , s)
{
ϖ − 1

4ϱ
}
ds


≤ w̃ (ξ2) +

ξ2∫
ξ0

∣∣∣∣ϖ − 1
4ϱ
∣∣∣∣ ds < ∞
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which contradicts (48). So the proof is complete.

3 Applications of the results
Example 1. Consider the nonlinear fractional di�erential
equation with damping term

D1/2
t

[
t1/4D1/2

t D1/2
t x (t)

]
+
Γ
(
3/2
)

√
t

D1/2
t D1/2

t x (t)

+t−1x (t)
(
1 + sin2 (x (t))

)
= 0, t ≥ 2. (52)

This corresponds to (1)with t0 = 2; α = 1
2 ; a (t) = t

1/4; r (t) =
1; p (t) = Γ

(
3/2
)
/
√
t; q (t) = t−1 and f (x) = x + x sin2 x.

So, f (x) /x = x
(
1 + sin2 x

)
/x ≥ 1 = k; ξ0 = 21/2/Γ

(
3/2
)
;

ã (ξ ) =
√
ξΓ
(
3/2
)
; p̃ (ξ ) = ξ−1; q̃ (ξ ) =

(
ξΓ
(
3/2
))−2.

Furthermore, A (ξ ) = exp
((
Γ
(
3/2
))−1/2 ∫ ξ

ξ0 s
−3/2ds

)
=

exp
((
Γ
(
3/2
))−1/2 [2ξ−1/20 − 2ξ−1/2

])
which implies 1 <

A (ξ ) ≤
(
exp

(
2
[
Γ
(
3/2
)]−1/2) ξ−1/20

)
. On the other hand,

δ̃1 (ξ , ξ2) =
ξ∫

ξ2

(
1/A (s) ã (s)

)
ds

≥
[
Γ
(
3/2
)]−1/2 exp(−2 [Γ (3/2)]−1/2 ξ−1/20

) ξ∫
ξ2

1√
s
ds

= 2
[
Γ
(
3/2
)]−1/2 exp(−2 [Γ (3/2)]−1/2 ξ−1/20

)
×
(√

ξ −
√
ξ2
)

which implies limξ→∞ δ̃1 (ξ , ξ2) = ∞, and so, (9) holds.
Then, there exists a su�ciently large T > ξ2 such that
δ̃1 (ξ , ξ2) > 1 on [T, ∞). In (10),

∞∫
t0

αtα−1
Γ (1 + α) r (t)

dt =
∞∫
ξ0

1
r (s)

ds =
∞∫
ξ0

ds = ∞. (53)

In (11),
∞∫
ξ0

1
r̃ (ζ )

∞∫
ζ

1
A (τ) ã (τ)

∞∫
τ

A (s) q̃ (s) dsdτdζ

≥
[
Γ
(
3/2
)]−5/2 exp(−2 [Γ (3/2)]−1/2 ξ−1/20

)
×

∞∫
ξ0

∞∫
ζ

1√
τ

∞∫
τ

s−2dsdτdζ

= ∞. (54)

Letting ϕ (ξ ) = ξ in (45),

∞∫
ξ0

kA (s) q̃ (s) ϕ̃ (s) −
r̃ (s)

[
ϕ̃′ (s)

]2
4δ̃1 (s, ξ2) ϕ̃ (s)

 ds
=

∞∫
ξ0

[
A (s) s

[
sΓ
(
3
2

)]−2
− 1
4δ̃1 (s, ξ2) s

]
ds

=
T∫

ξ0

[
A (s)

[
Γ
(
3
2

)]−2
− 1
4δ̃1 (s, ξ2)

]
1
s ds

+
∞∫
T

[
A (s)

[
Γ
(
3
2

)]−2
− 1
4δ̃1 (s, ξ2)

]
1
s ds (55)

≥
T∫

u0

[
A (s)

[
Γ
(
3
2

)]−2
− 1
4δ̃1 (s, ξ2)

]
1
s ds

+
∞∫
T

([
Γ
(
3
2

)]−2
− 1
4

)
1
s ds

= ∞.

So, (52) is oscillatory by Theorem 6.

Example 2. Consider the nonlinear fractional di�erential
equation with damping term

D2/3
t

[
t2/9D2/3

t D2/3
t x (t)

]
+ t−2/3D2/3

t D2/3
t x (t)

+x (t) + x5 (t) = 0, t ≥ 2. (56)

This corresponds to (1) with t0 = 2; α = 2
3 ; a (t) = t2/9;

r (t) = 1; p (t) = t−2/3; q (t) = 1 and f (x) = x + x5. So,
f (x) /x = x

(
1 + x4

)
/x ≥ 1 = k; ξ0 = 22/3/Γ

(
5/3
)
; ã (ξ ) =(

ξΓ
(
5/3
))1/3; r̃ (ξ ) = 1; p̃ (ξ ) =

(
ξΓ
(
5/3
))−1; q̃ (ξ ) = 1.

Furthermore, A (ξ ) = exp
((
Γ
(
5/3
))−4/3 ∫ ξ

ξ0 s
−4/3ds

)
=

exp
((
Γ
(
5/3
))−4/3 [3ξ−1/30 − 3ξ−1/3

])
which implies 1 <

A (ξ ) ≤
(
exp

(
3
[
Γ
(
5/3
)]−4/3) ξ−1/30

)
. On the other hand,

δ̃1 (ξ , ξ2) =
ξ∫

ξ2

(
1/A (s) ã (s)

)
ds

≥
[
Γ
(
5/3
)]−1/3 exp(−3 [Γ (5/3)]−4/3 ξ−1/30

) ξ∫
ξ2

s−1/3ds

=
(
3/2
) [
Γ
(
5/3
)]−1/3 exp(−3 [Γ (5/3)]−4/3 ξ−1/30

)
×
(
ξ2/3 − ξ2/32

)
which implies limξ→∞ δ̃1 (ξ , ξ2) = ∞ and so (9) holds. Then,
there exists a su�ciently large T > ξ2 such that δ̃1 (ξ , ξ2) > 1
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on [T, ∞) . In (10),
∞∫
t0

αtα−1
Γ (1 + α) r (t)

dt =
∞∫
ξ0

1
r (s)

ds =
∞∫
ξ0

ds = ∞. (57)

In (11),
∞∫
ξ0

1
r̃ (ζ )

∞∫
ζ

1
A (τ) ã (τ)

∞∫
τ

A (s) q̃ (s) dsdτdζ

≥
[
Γ
(
5/3
)]−1/3 exp(−3 [Γ (5/3)]−4/3 ξ−1/30

)
×

∞∫
ξ0

∞∫
ζ

τ−1/3
∞∫
τ

dsdτdζ . (58)

= ∞

Letting ϕ (ξ ) = 1 and λ = 2 in (44), for any su�ciently large
l, we have

lim
ξ→∞

sup
ξ∫
l

[
(s − l)λ ϖ

− ϑ4 (s − l)λ−2
(
λ + ϕ̃

′ (s)
ϕ̃ (s)

(s − l)
)2]

ds

≥ lim
ξ→∞

sup
ξ∫
l

[
(s − l)2 − 1

4 (2)2
]
ds

= lim
ξ→∞

sup
ξ∫
l

[
(s − l)2 − 1

]
ds = ∞

lim
ξ→∞

sup
ξ∫
l

[
(ξ − s)λ ϖ

− ϑ4 (ξ − s)λ−2
(
λ − ϕ̃

′ (s)
ϕ̃ (s)

(ξ − s)
)2]

ds

≥ lim
ξ→∞

sup
ξ∫
l

[
(ξ − s)2 − 1

]
ds = ∞.

So (44) holds, and then we deduce that (56) is oscillatory by
Corollary 2.

4 Conclusion
In this paper,we are concernedwith the oscillation of solu-
tions to nonlinear fractional di�erential equations with a
damping term. Based on the variable transformation used
in ξ , the fractional di�erential equations are converted
into another di�erential equation of integer order. Then,

some new oscillation criteria for the equations are estab-
lished by using inequalities, the integration average tech-
nique and the Riccati transformation. Consequently, it can
be seen that this approach can also be applied to the oscil-
lation of other fractional di�erential equations involving
the modi�ed Riemann-Liouville derivative.
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