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Abstract: We obtain the full Hamiltonian structure for
a parametric coupled KdV system. The coupled system
arises from four different real basic lagrangians. The as-
sociated Hamiltonian functionals and the corresponding
Poisson structures follow from the geometry of a con-
strained phase space by using the Dirac approach for con-
strained systems. The overall algebraic structure for the
system is given in terms of two pencils of Poisson struc-
tures with associated Hamiltonians depending on the pa-
rameter of the Poisson pencils. The algebraic construction
we present admits the most general space of observables
related to the coupled system. We then construct two mas-
ter lagrangians for the coupled system whose field equa-
tions are the e-parametric Gardner equations obtained
from the coupled KdV system through a Gardner transfor-
mation. In the weak limit € - 0 the lagrangians reduce to
the ones of the coupled KdV system while, after a suitable
redefinition of the fields, in the strong limit € - oo we ob-
tain the lagrangians of the coupled modified KdV system.
The Hamiltonian structures of the coupled KdV system fol-
low from the Hamiltonian structures of the master system
by taking the two limits € > 0 and € - o<.
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1 Introduction

Coupled Korteweg-de Vries (KdV) systems describe sev-
eral physical interactions of interest. Hirota and Satsuma
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[1] proposed a model that describes interactions of two
long waves with different dispersion relations. Gear and
Grimshaw [2, 3] considered a coupled KdV system to de-
scribe linearly-stable internal waves in a stratified fluid.

More recently Lou, Tong, Hu and Tang [4] proposed
models which may be used in the description of atmo-
spheric and oceanic phenomena. Coupled KdV systems
were also analyzed in [5-7]. An important area of interest
of high energy physics related to coupled systems is pro-
vided by the supersymmetric extensions of KdV equations
[8-14] and more generally by operator and Clifford valued
extensions of KAV equation [15, 16].

In this work we consider a parametric coupled KdV
system. For some values of the parameter, A < 0, the sys-
tem corresponds to the complexification of KdV equation.
For A = O the system corresponds to one of the Hirota-
Satsuma coupled KdV systems, while for A > 0 the system
is equivalent to two decoupled KdV equations. We analyze
the Hamiltonian formulation and the associated Poisson
bracket structure of the system. Although some properties
of the complexification of KdV arise directly from the anal-
ogous ones on the solutions of the KdV equation there are
new properties, in particular, the full Hamiltonian struc-
ture, which does not have an analogous on the original real
equation. In fact, the complexification approach gives rise
only to holomorphic observables on phase space. The full
Hamiltonian structure of the complex system give rise to
self-adjoint Hamiltonian functionals, whose Hamiltonian
flow are the complex KdV equations, and it provides the
full structure of observables on phase space, not only the
holomorphic ones.

The goal of this paper is to analyze the different Pois-
son structures associated with the coupled KdV system in
order to determine which of them are compatible, in the
sense that a linear combination of them is also a Poisson
structure. This goal is important from the point of view of
the integrability of the system. Moreover, it may also be an
important first step in order to understand the quantiza-
tion of the system in the sense of quantization deformation
of Poisson structures [17].

The approach we will follow in our analysis is to con-
struct a family of lagrangians from which the coupled KdV
system is obtained by taking independent variations of
the associated functional action with respect to the fields
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defining the lagrangian function. It turns out that these la-
grangians are singular ones. This implies that the Hamilto-
nian construction, via a Legendre transformation is formu-
lated on a constrained phase space. In all the cases we will
consider the constraints turn out to be primary constraints
and of the second class. The unconstrained phase space is
equipped with a Poisson bracket structure, however since
there are second class constraints we must obtain the Pois-
son bracket structure on the constrained submanifold of
the phase space. This Poisson bracket is provided by the
Dirac brackets [18]. It satisfies all the properties of a Pois-
son bracket, in particular the Jacobi identity. In this way
starting from a lagrangian for the system we can construct
a Poisson bracket structure, together with a Hamiltonian
functional. This approach was followed for the KdV equa-
tion in [19, 20]. It provides a geometrical picture on phase
space of the Hamiltonian structure of the integrable sys-
tem. The other way to proceed is to find a Hamiltonian op-
erator together with a Hamiltonian functional. Afterwards
we may construct a Poisson bracket structure provided the
Hamiltonian operator satisfies a differential restriction [21]
ensuring that the Jacobi identity is satisfied. In this ap-
proach the set of allowed observables is only a subset of
the space of observables of the more general formulation
in terms of the constrained phase space approach.

In Section 2 we introduce the parametric coupled KdV
system we wish to analyze. In Section 3 we obtain two la-
grangian densities. The functional Gateaux derivatives of
the corresponding actions give rise to the parametrically
coupled KdV system. By a Legendre transformation we ob-
tain the corresponding hamiltonians and associated Pois-
son structures. In Section 4 we introduce a Miura trans-
formation which allows the construction of two additional
lagrangian densities with the corresponding Hamiltonian
and Poisson structures. In Section 5 we study the compat-
ibility of the Poisson structures obtained in Sections 3 and
4. We obtain a pencil of Poisson bracket structures each
of them associated to a Hamiltonian functional. In partic-
ular this implies compatibility between some of the Pois-
son structures. In Section 6 we construct a duality relation
among the Hamiltonian structures. We construct two mas-
ter lagrangians for the parametric coupled system whose
field equations are the Gardner equations obtained from
the coupled KdV system though a e-parametric Gardner
transformation. In the weak limit ¢ - 0 the lagrangians
reduce to the ones of the coupled KdV system while, af-
ter a suitable redefinition of the fields, in the strong limit
€ > oo we obtain the lagrangians of the coupled modi-
fied KdV system. The Hamiltonian structures of the cou-
pled KdV system follow from the Hamiltonian structures
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of the master system by taking the two limits € - 0 and
€ > oo,

2 The parametric coupled KdV
system

We consider a coupled Korteweg-de Vries (KdV) sys-
tem,formulated in terms of two real differentiable func-
tions u(x, t) and v(x, t), given by the following partial dif-
ferential equations:

Ut + Uy + Uyxx + AV =0 (1)

Vi + UxV + Vil + Vixx = 0, 2

where A is a real parameter.
Here and in the sequel u and v belong to the real
Schwartz space defined by

o 01
> = i P~ _w=0:
(o {weC (R)/Xlirirelcx <" O,p,qzo}.

By a redefinition of v given by v > ﬁ
values of A > O tobe +1 and A < O to be —1. The systems for
A =+1,1 = -1and A = 0 are not equivalent. The A = -1
case corresponds to the complexification of KdV equation.

The case A = +1 corresponds to two decoupled KdV
equations.

The system (1),(2) for A = —1 describes a two-layer lig-
uid model studied in references [2-4, 22]. It is a very in-
teresting evolution system. It is known to have solutions
developing singularities on a finite time [23]. Also, a class
of solitonic solutions was reported in [24] via the Hirota
approach [25].

The system (1),(2) (introduced in [26]) for A = O corre-
sponds to the ninth Hirota-Satsuma [1] coupled KdV sys-
tem given in [6] (for the particular value of k = 0) (see also
[5]) and is also included in the interesting study which re-
lates integrable hierarchies with polynomial Lie algebras
[71.

A Béacklund transformation, the permutability theo-
rem, the Gardner transformation as well as the Gardner
equations for the coupled KdV system (1), (2), were ob-
tained in [27]. Also a class of multisolitonic solutions, a
class of periodic solutions and a regular static solution,
which can be interpreted as a non-trivial background of
the theory, were found in [27].

we may reduce the
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3 Poisson structures

In this and in the following section we will show that there
exists four basic Hamiltonians and four associated basic
Poisson structures for the coupled KdV system we are con-
sidering. We will use the method of Dirac for constrained
systems to deduce them. The Hamiltonian as defined in
quantum physics must be a selfadjoint operator conjugate
to the time, hence our four Hamiltonians will be four real
functionals in terms of the real fields which define them.

We rewrite (1) and (2) in terms of the Casimir potentials
w and y given by

u(x, t)
vix,t) =

wx(x, t)

yx(x, t)

and we obtain

Wyt + Plw, )/] = 0, Plw, J/] = WxWxx + Wxxxx + A)’x)/xx

yxt + Q[W, )/] = 0, Q[W, )/] = WxxYx + YxxWx + Vxxxx-

We use the Helmholtz procedure to obtain a lagrangian
density from the field equations. We notice that the ma-
trix constructed from the Gateaux derivatives of P and AQ
is self-adjoint. We then get

1

1

Ly = —5wxwt+/(wP[uw, uyl +yAQ[uw, uyl) du
0

which explicitly gives
1 1 1 A A A
L1 = _EWXWt - gWx3 + ZWXXZ - EWXYXZ - nyy[ + i}/xxz,
for A #0.
We define the functional action L;(w,y) =
Jde ' dx £y

By taking independent variations of L; with respect to
w and to y we obtain the field equations

6Ly o BLi_g

w by
which are the same as equations (1), (2). Here 2. and 5%
denote the Gateaux functional derivative defined by

iF(w) im F(w + €h) - F(w)_
ow €50 €

We now introduce a second functional action L,(w,y) =
i dt [*7 dx £, where

1
1 1
Lo =—SWxye= SWeyx+ / (yPluw, uyl + wQluw, uyl) du
0
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which explicitly gives

L——lw —lw —lw2 - YxW _Ay
2= 5 xYt 3 tyx 5 xYx = YxWxxx 6)/x

for any A.

By taking independent variations of L, with respect to
w and y we obtain the same field equations.

We will now construct the Hamiltonian structure as-
sociated to each of the lagrangians £; ;i = 1, 2. We start
by considering the lagrangian £;. We introduce the con-
jugate momenta associated to w and y, we denote them p
and q respectively, we have

_9L 1 _9%i_ A
dwe . 2™ o 4Ty T Tx
We define
1 A
¢1zp+§wx , ¢2=q+§yx.

Hence ¢; = ¢, = 0. ¢ and ¢, do not have any w; nor any
y: dependence, they are constraints on the phase space. It
turns out that these are the only constraints on the phase
space.

The Hamiltonian may be obtain directly from £; by
performing a Legendre transformation,

Hy =pwe+qy: — L.
We obtain

1 A A

Hi= gWx - EW)Z(X + EWX)G% - EY)%X

and the corresponding Hamiltonian is H; = f_:" dx ;.
We introduce a Poisson structure on the phase space

defined by

{w), p®)},; = 8-
{y(0, 90},
with all other brackets between these variables being zero.

We then have that ¢4, ¢, are second class constraints.
In fact,

5/)

b=
=

|
bl

)

{9100, 910}, = Sxlx-%)
{$100, $:(0},, = 0
{200, (0} 8x(x = %).
The lagrangian system is degenerate (singular), such sys-

tem can be hamiltonized only by the use of Dirac’s theory
of constraints [28, 29].
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Since we have a constrained phase space we must in-
troduce the Dirac brackets corresponding to a Lie bracket
structure on the constrained submanifold of phase space.
For the second and third order degenerate lagrangians
considered in this paper, one first needs to look for some
kind of order reduction and then use the Dirac’s the-
ory of constraints to hamiltonize the system [19, 30, 31].
Equivalently, one can formulated the Dirac theory of con-
straints for higher order lagrangians using the above Pois-
son bracket structure and the relations

{OIw(x), o7 p(R)} = 10T {w(x), ()} .

The Dirac brackets between two functionals F and G on
phase space is defined as

{F’ G}DB = {F’ G}PB (3)

_ <<{F gbi(x')}PB Cy(x, x") {4’1'("”)’ G}pB>x'>

X

where <>, denotes integration on x from —oo to +eo.
The indices i,j = 1,2 and the Cy(x, x") are the compo-
nents of the inverse of the matrix whose components are

{$i(x), §j(x"} -

This matrix becomes

0,6(x —x") 0
0 20,6(x -x")

and its inverse, satisfying

(

[ Ci(x,%) Cpnl’,%)

0 Adx8(x - x7)

1.

0x6(x - x") 0 ]

Culx’,%) Cxni’,%

B 6(x - Xx) 0
B 0 S5(x -%)

is given by

T B

0 1 fxl 8(s - x")ds

It turns out, after some calculations, that

{u(), u®},, = -9x6(x - %),
{V00, ¥(R)} 5 =~ 7 028~ )
{u(x), v(fc)}DB =0.
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We notice that this Poisson bracket is not well defined for
A = 0. We have already assumed A + 0.

From them we obtain the Hamilton equations, which
are of course the same as (1), (2):

us = {u, Hi}pg = —Ulx — Uxxx — AVVx
V¢ = {V, Hl}DB = —UxV — VxU — Vxxx.

(4)

We notice that adding any function of the constraints to
H; does not change the result, since the Dirac bracket of
the constraints with any other local function of the phase
space variables is zero.

Moreover, we may obtain directly the Dirac bracket of
any two functionals F(u, v) and G(u, v) from (3) using the
above bracket relations for u and v. We notice that the
observables F and G in (3) may be functionals of w, y, p
and g, not only of u and v. In this sense the phase space
approach for singular lagrangians provides the most gen-
eral space of observables. The same comment will be valid
for the phase space construction using the action L, and
LY, L% in the following sections.

The lagrangians £; and £, do not differ by a gauge
term, despite that both of these lead to same equations of
motion. Thus £, represents an alternative lagrangian rep-
resentation of the system. First, there can arise ambiguities
in the association of symmetries with constants of the mo-
tion. Secondly, the same classical system, via alternative
lagrangian description, can give rise to entirely different
quantum mechanical systems. These points have been de-
veloped in the context of classical mechanics [32, 33]. The
Noether theorem assures that associated to a differentiable
symmetry of the lagrangian one has a conserved quantity.
A symmetry of the action is also a symmetry of the field
equations. However there may be symmetries of the field
equations which are not symmetries of the action. In [27]
we obtained an infinite sequence of polynomial local con-
served quantities for equations (1) and (2). Most of them
are not symmetries of the action L1 nor of L.

We now consider the action L, and its associated
Hamiltonian structure. In this case we denote the conju-
gate momenta to w and y by p and g respectively. We have

1 oo 1
b= ZJ’X » 4= 5 Wx-

The constraints become in this case

-~ . 1 -~ .1
¢1=p+§yx=0 , q,'>2=q+§wx=0.

The corresponding Poisson brackets between ¢; and
¢;,i,j=1,2, are given by
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{#100.6:00} =0 . {$200.:6)} =0,

PB

{6100, 200} = 0:80¢-x).

PB

The corresponding construction of the Dirac brackets
yields

{(u),u®},,=0 , {vx),v(®},, =0,
{u), v(D} pp = —0x6(x - %).

The Hamiltonian H, = f_:c’ dx H;, is given by the Hamilto-
nian density

1 A
I, = EW)Z()/X + YxWxxx + gy?(

The Hamilton equations

u() = {uC), Ha} ), > ve(0 = {v(), Ha}

now using the corresponding Dirac brackets yields the
same fields equations (1),(2) for any A. We have thus con-
structed two Hamiltonian functionals and associated Pois-
son bracket structures. These two Hamiltonian structures
arise directly from the basic actions L, and L,. We will now
construct two additional Hamiltonian structures by con-
sidering the Miura transformation.

The Hamiltonians H; and H,, HY and HY in the fol-
lowing section, were presented in [34].

4 The Miura transformation

We consider the Miura transformation
_ 1,2 A2
U=px—zU° — 4V
_ 1
V=Vx— 3UV.

®)

The corresponding modified KdV system (MKAVS) is given
by

e + Moo — s U Mx = 3V = Spuvvy = 0
(6)

2 2
Ve + Voo — sV — Bv2v - duvpy = 0.

These equations may be obtained from two actions, which
we will denote LY = [[dt['"dxc}l and LY =
i dt [ dx Y.

The lagrangian densities £, formulated for A # 0,
and L%” , formulated for any A, expressed in terms of o, p
where u = oy, v = py are given by
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ot = —100—4 —100 _A
1 = 5 tOx zptpx 5 OxOxx szpxxx
1 4 A 4. A 5
MR RO I v I @
and
1 1
Lg[ = _jatpx - §0xpt — OxxxPx
1 A
+ E0x3px+ﬁpx30'x (8)

respectively. We will now construct the Hamiltonian struc-
ture associated to LY.

We denote by a and f§ the conjugate momenta associ-
ated to o and p respectively. We have

go 841, B_&LQ”__&
- 6o, 2°° - bpr 2P

These are constraints on the phase space.
The Hamiltonian HY corresponding to this lagrangian
density £¥ is given by

HM = v —u?

+o0
HY = / HM dx,

where u and v are given in terms of y and v by the Miura
transformation. 3¢}/ was obtained starting with the la-
grangian £Y and performing the Legendre transforma-
tion. After some calculations it turns out that it can be
rewritten in terms of the original variables u and v. How-
ever when evaluating the Dirac brackets one must use its
expressions in terms of the Casimir potentials. £} is of
course formulated in terms of the Casimir potentials. At
this point it may be interesting to determine if it is possible
to obtain a formulation of the problem directly in terms of
original variables [35].

The construction of the Dirac brackets follows in the
usual way. We end up with the following Poisson structure
on the constrained submanifold,

(), u®},, = -0x6(x-%)
V0,V®}py = —70:80c- D)
{y(x),v()?)}DB = 0.

From these Poisson bracket structure we obtain for the
original u and v fields
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{u00, u®} py = dunblx—2) + Suxbx -~ 9)

+ %uax(S(x -X)

V0O, V®} py = 9Bl 1)+ 5B - )

+ ;—Au()x&(x -X)
{u00, v}, =

which defines the Poisson structure on the original fields
inherited from the Poisson structure on the constrained
submanifold on the phase space associated to the modi-
fied KdV system. This Poisson bracket is not well defined
for A # 0. We have already assumed A # 0.

From the Dirac brackets of u and v we may obtain di-
rectly the Hamiltonian field equations

%vxa(x _R)+ %va)ﬁ(x ~%)

ur = {u, H’lv’}DB = —Ulx — Upxx — AVVy
)
ve={v, H'} ), = —Viorr — (uv),
which, as it should be, coincide with system (1), (2).

We have then obtained the Poisson structure associ-
ated to the Hamiltonian H}. Notice that the Hamiltonian
formulation includes all the effects of the constraints. The
point is that by using the Dirac brackets the second class
constraints commute with any other obervable. It is inter-
esting to remark that the Miura-like transformation, more
precisely the Gardner transformation allows to obtain an
infinite sequence of local polynomial conserved quantities
[27].

We now proceed to obtain a second Poisson structure
starting from the Lagrangian £3.

The Hamiltonian obtained via a Legendre transforma-
tion is given by HY = [ (-uv) dx where u and v are func-
tions of u and v according to the Miura transformation. We
use as before u = oy, v = px.

We denote by & and [3 the conjugate momenta associ-
ated to o and p respectively.

The constraints on phase space become now

N 1
& = -3px
po- o
The Dirac brackets are
{H(X)yy(f()}DB = 0
{ve),v(®)},, = 0
{(H0), v®)} ), = -9x8(x-2%).
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We then obtain, for any A,

. A ~ 21 .
{ux), u(x)}DB = Zyvb(x-X)+ ?vax(S(x -X)

3
{v(x),v()?)}DB %vxé(x—)?) + %va,ﬁ(x—)?)
[0, v}

OxxxO(x = X) + %uxfs(x -X)

' %uach(x _%).

This is the Poisson bracket structure inherited from the
second Poisson structure on the modified phase space.
One may directly verify that the corresponding Hamilton
equations exactly coincide with equations (1), (2). We have
then constructed four basic lagrangians and associated
Hamiltonian functionals together with four basic Poisson
structures.

5 Two pencils of Poisson structures
for the coupled system

In this section we show the existence of two pencils of Pois-
son structures for the system (1) and (2). The strategy will
be to introduce two parametric lagrangian densities £;
and L{f . For the value of the parameter k = 1, £ reduces
to the lagrangian density £, while for k = 0 it reduces to
the lagrangian density £, in Section 3. Similarly for k = 1,
LM reduces to £} and for k = 0 it reduces to £3 in Sec-
tion 4. We then find the associated Poisson structures for
the parametric Hamiltonians constructed via a Legendre
transformation. Each Poisson structure is k dependent. By
choosing suitable values of k we will show that the sum
of the Poisson structures in Section 3 also determines a
Poisson structure. In the same way the sum of the Poisson
structures in Section 4 determines a Poisson structure. In
this way we will show the existence ot two Poisson pencils.

We now introduce the parametric lagrangian density
L, Where k is a real parameter, associated to the two basic
actions L and L.

We define the lagrangian density

Lr=kLi+(1-k) L),

The field equations obtained from this lagrangian density
are equivalent to (1) and (2) in the following cases: If A < O
forany k. If A = 0, for k # 1. If A > O for k # ﬁﬂ and k #
1_—1/\. From now on we will exclude these particular values
of k. The corresponding Hamiltonian density constructed
through the Legendre transformation is given by

Hx=pwi+qy:— Ly =kH1+ (1 -k)H,
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and the primary constraints by

¢$1 = gwx‘*(l_k))/x"’p:() (10)
_ Ak (1-k _
b2 = Syxt 5 witq=0. 11)

These are the only constraints on phase space.
The Poisson brackets on the unconstrained phase
space are

kox8(x - %)
Akd(x - %)
(1 - k) 0x6(x - %).

{¢1(X), ¢1(>?)}PB
{200, $2(0}
(6100, 9@},

Hence they are second class constraints.

We will denote by {}¥ , the Dirac bracket correspond-
ing to the parameter k.

The Dirac brackets are then given by

sy k Ak N
{ut),u®)},, = maXS(x -%)

. k "
{v(0), v(x)}gB = maX5(X )

N 1-k .
{u(X)’ V(X)}II()B = m (—ax5 (X - X)) ,

where the denominator is different from zero for the values
of k we are considering. They define the Poisson structure
for the Hamiltonian Hy = [~ 3 dx.

The associated Hamilton equations coincide with the
coupled equations (1), (2). It is interesting to notice that
the above Poisson structure is a linear combination of the
Dirac brackets associated to Hamiltonians H; and H,. In
the present notation H, corresponds to k = 0.

We then have

-Ak
{F,G}pp = s ae

1
o 1 0 Glpp

1-

+ 72{

A2 +(1-Kk) Glos

where F, G are any functionals of u and v and {F, G},
{F, G}9 are the Poisson brackets defined in Section 3. In
particular for any A different from one and zero, and k =
14, We obtain

{F,G}pp = {F, G} + {F, G} ).

Consequently, since {F, G} [)B is a Poisson bracket, then
the two basic Poisson brackets for every A # 0,1 are
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then compatible. In fact, if the sum determines a Pois-
son bracket the any linear combination of them also de-
termines a Poisson bracket.

We also notice that for any k and A =
above Poisson bracket structure, one gets

-1, using the

{u() + v, u® - v}, =0,  (12)
{u() + iv(0, u® + v}, = (13)
2 5
- max5(x - X).

We emphasize that only (13) arises from the complexifica-
tion of the corresponding Poisson structure for real KdV.
The relation (12) follows in our approach from first prin-
ciples. It is not imposed by hand. The existence of a local
real Hamiltonian H; for each k is a non-trivial feature of
the system (1), (2) and is not an algebraic consequence of
the complexification of the real KdV equation.

We may now consider the case A = 0. The Poisson
bracket for any k # 1 becomes

k 1 1 -2k
{F, G}zfm{a Gy + u—‘{F G}op (14)

in particular for k = % the two coefficients are equal, hence
the Poisson brackets for k = 3 and k = 0 are compatible.

We have thus constructed a pencil of Poisson struc-
tures with an associated local real Hamiltonian H;, =
JZ He

We now introduce, as we have already done with £,
and £, a parametric lagrangian density Lf = kLM +
(1 - k)LY. The associated hamiltonian density is given by

= kHM + (1 - k)FY in terms of the other two basic
hamiltonian densities. The constraints on phase space are
given by

_ (1-k)
b1 a+20X+ 3

b = B— (12k)x

px=0

0

these constraints are the only ones on the phase space. The
Poisson brackets on the unconstrained phase space are

{9100, 910}
{200, (0},
{¢1(X), ¢z()?)}PB

Hence they are second class constraints.

kox6(x - X)
/lkaxﬁ(x - )?)
(1 - k) ox6(x — %).



102 — A.Restuccia and A. Sotomayor

The Dirac brackets are then given by

Ak
A2 +(1-k)?

<am6(x -X)+ %uxé(x -X)+ %uach(x - )?))

{u0), u®)}y, = -

ok (1-k
(V@ = T i

(axxx(S(x -X)+ %uxé(x -X)+ %uax(S(x - 5())

Ak 1 2
- — ([ Svib(x - R) + Svoub(x - 2))
Ak +(1-Kk)° (3 3

oy ok
WO V®y =~ T

N 1 " 2 N
<6xxx6 (x-%) + §uxiS(x -X)+ §uaxli(x - x))

(1-k 1 oy )
' A2+ (1-K)? (?V"a(x —X)+ §Vax6(x—x)> )

(15)

It follows from the construction that the Hamilton equa-
tions in terms of the corresponding Poisson structure,

k k
ue = {u(X),Hf?)} , Ve= {V(X),HkM)}
DB DB
are equivalent to the coupled KdV system (1),(2).
Asin the previous case the pencil of Poisson structures

can be rewritten in terms of the basic Poisson structures
which corresponds to k = 1 and k = 0 in (14):

-Ak

F,Gyk - A g Gyt
{ }DB —Ak2+(1—k)2{ }DB
1-k o
% _¢F,6YY,,
—Ak2+(1—k)2{ Jos

where {F, G} and {F, G}J, are the Poisson structures
defined in Section 4.

We notice that this decomposition is the same as in
previous case, however the basic Poisson structure are dif-
ferent.

In particular for k = {44, A # 0, 1, the {, }f)B is the
sum of the {, }},; and {, }", basic Poisson structures. For
A =0and k # 1 the same relation (14) holds for the Poisson
bracket we are now considering. These are then compati-
ble Poisson structures.

We notice that by construction ¢, and ¢, as well as
any functional of them, in all the cases we have consid-
ered, are Casimirs of the Poisson structure defined in terms
of the Dirac brackets. In fact,
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{F’¢1)}DB =0
{F’¢2)}DB =0

for any functional F on phase space. This is a general prop-
erty of the Dirac bracket.

It is a non-trivial feature that for each real k, the
parameter of the pencil of Poisson structures, there are
Hamiltonians H; and HkM which give rise to the coupled
KdV system when the corresponding Poisson structure is
used.

6 Duality among the Hamiltonian
structures

In this section we show the existence of two e-deformed
Hamiltonians and their corresponding e-deformed Pois-
son structures. In the limit € > O they reduced to the
Hamiltonians and Poisson structures obtained in Sec-
tion 3. In the limit € - oo they reduce to the Hamiltoni-
ans and Poisson structures obtained in Section 4. The e-
deformation for the coupled KdV system is analogous to
the duality transformation in quantum field theory. One
formulation can be analyzed in perturbation theory for
small values of the coupling constant €, the weak coupling
limit, while the dual formulation can be analyzed pertur-
batively as an expansion in %, the strong coupling limit.

The Hamiltonian, constraints and Poisson structures
we will present in this section are obtained following the
same approach we have developed in previous sections.
We will only provide the results.

The associated Gardner transformation and Gardner
equations for the system (1), (2) are given by [27]

U=T+Er— %ez (r2 + Asz) (16)
V=S+ESy— %ezrs (17)
and
Tt + Tyxx + ITx + ASSx
—%ez [(rz + /lsz) Ix + 2/1rssx} =0 (18)
St + Syxx + I'Sx + STy
—%62 [(r2 + Asz) Sx + 2rsrx} =0. (19)

Any solution of the Gardner equations define through
Gardner transformation a solution of the system (1), (2).
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It follows as in the case of KdV equation and the cor-
responding Gardner transformation [36] that if we take the
limit € - 0 we obtain from (16), (17)

(20)
(21)

u=r
v=s
and from (18), (19) after replacing (20), (21) we get the orig-

inal KdV coupled system (1), (2).
On the other hand, if we redefine

=er (22)
V=es (23)
and rewrite (16), (17) we get
K1 1,0
U=+ px- oK 6)lv (24)
v 1
V= otV SV (25)
Taking the limit € > oo we have
Geu- L2 1,0
U=px=gn ~ g (26)
V=vy-— % uv 27

which are exactly equations given by (5).

If we proceed in the same way with (18), (19) we obtain
the modified KdV system equations (6). That means that if
U, v satisfies the MKdV then i, ¥ satisfies equations (1), (2).

This result is analogous to the one known for the KdV
equation and its Miura transformation.

We go now one step forward, beyond this relation be-
tween field equations, and prove that there exists a mas-
ter lagrangian form which by taking variations with re-
spect to r and s we obtain the e-parametric Gardner equa-
tions (18), (19). Moreover, we will construct two different
lagrangians with such property and the associated Hamil-
tonian structures. The corresponding e-parametric Pois-
son structures are compatible. In the limit € - 0 the e-
parametric Hamiltonian structures reduce to the compati-
ble Hamiltonian structures obtained in Section 3 and with
the € - oo limit, after suitable redefinition of fields, we ob-
tain the two compatible Hamiltonian structures obtained
in Section 4. There is a duality relation between the Hamil-
tonian structure of the parametric coupled KdV system (1),
(2) and the modified parametric system (MKdV) (6). In the
weak limit € > 0 we get one Hamiltonian structure and in
the strong limit € > oo we get the modified Hamiltonian
structure.
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By freezing the field v to zero we obtain from (1), (2) the
KdV equation and the same occurs with the e-parameter
Hamiltonian structure of system (1), (2). It reduces to a e-
parametric Hamiltonian structure of KdV equation (which
to our knowledge had not been constructed before).

In particular, the Poisson structure of the KdV system
(1), (2) is a e-deformation of the Poisson structure of MKdV
system which is equivalent to the Virasoro algebra.

We now proceed to the construction of the master
Gardner lagrangians.

We introduce the fields w(x, t), y(x, t) through

r = Wy ’ s=yX'

The first master Gardner lagrangian density, which works
for A # 0, is given by

1 1 1 A
Lo1= — =Wyxwg-— g(Wx)3 + E(Wxx)z - EWX()/x)Z

2
_ A + 4( )2

ZYX)/t 5 Yxx
1, 1 4 A 2, 2] L €2 a0 4
ge E(WX) E(WX) )| + 77A (x)
and the second master Gardner lagrangian density is
given, for any A, by

1 1 1 A
Lea= - ZWxye— EWtJ/x - E(WX)ZyX = YxWxxx — g()’xﬁ

2
1 1
+ Eez(wxfyx + 1—8€2A(yx)3wx.

If we take the limit € - O of the above expressions, we
obtain lagrangians densities £, and £, respectively given
in Section 3.

If we redefine

o=ew p=¢€y
L =€e’Le ., LW =€Le
and take the limit € - oo we get
lim £,(0,p) = £1'(0,p)
gi%ToLIgZ(O_’ P) = L12|/I(0’ P)-

The Hamiltonian structure associated to £, (o, p) and
L](‘;lz(U , p) arises in the standard way.

We introduce the conjugate momenta associated to w
and y. We denote them p and g. We have

_0Lg _ 1

- aW[ - ZWX

_ 0L _ A
=%y T T
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and define 1 = p + wx, o = g + 2y,

¢1 = 0and ¢, = 0 are constraints on the phase space.
They are second class constraints. Notice that this is the
same structure of phase space as in Section 3 because the
e-parameter does not appear in the definition of the conju-
gate momenta. The Hamiltonian density may be obtained
by performing a Legendre transformation

He1 =pwe +qye — Lga-

We get
_ 1 3 1 2 A 2 A 2
He1 = E(WX) E(WXX) + EWX(yX) E(YXX)
1, 1 4 A 2,0y 1 .o 4
+ ge ﬁ(w") E(WX) (vx) 12/\ | .

The Dirac brackets between the canonical variables
w, p, Y, q are the same as was obtained in section 3 since
the e-parameter does not appear in the constraints. How-
ever the corresponding brackets among u, v are different
because the Gardner transformation involves the parame-
ter €. In the limit € > 0 we obtain the same Dirac brackets
for u and v as in Section 3. The same analysis can be per-
formed for £;,. The conjugate momenta and contraints as
well as the Dirac brackets among the canonical variables
w, p, Y, q are the same as in second part of Section 3. The
Hamiltonian is given by

1 A
Her = E(WX)Z)/X + YxWxxx + g()’x)3

- %ez(wxfyx - %EZA(yxfwx.
In the limit € - 0 it reduces to the Hamiltonian J, in Sec-
tion 3. In the same way by redefining €2%(s,, €2, and
taking € > oo we get the Hamiltonians ¥, H} respec-
tively, presented in Section 4.

The Poisson structures in both limits are the ones ex-
plicitly given in in Sections 3 and 4.

The construction of the e-parametric Gardner Hamil-
tonian and its Poisson structures unifies all the Hamilto-
nian structures of the coupled KdV system and make man-
ifest the duality relation among the KdV and the modified
KdV systems.

7 Conclusions

We obtained the full Hamiltonian structure for a coupled
parametric KdV system. We started from four basic singu-
lar lagrangians. The associated Hamiltonian formulation
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on phase space is restricted by second class constraints.
The Poisson structure on the constrained variety of phase
space was obtained using the Dirac approach. The Dirac
brackets on the constrained phase space yields the most
general structure of observables. A subset of them are
functionals of the original fields u(x, t), v(x, t) of the cou-
pled KdV system. We then constructed two pencils of Pois-
son brackets each of them with an associated parametric
Hamiltonian in terms of the same parameter of each pen-
cil.

Each pencil of Poisson brackets is obtained from two
compatible Poisson brackets of the same dimension. Con-
sequently it is not possible to construct a hierarchy of
higher dimensional Hamiltonians from them. However the
two pencils of Poisson brackets are of different dimen-
sions, hence one may construct a hierarchy of higher order
Hamiltonians as in the KdV case.

Finally we constructed two master lagrangians for the
parametric coupled KdV system whose field equations are
the Gardner equations obtained from the coupled KdV
through a e-parametric Gardner transformation. The Gard-
ner transformation is a non-linear transformation of the
fields for each value of the parameter €. It defines a du-
ality transformation between the theories obtained in the
two limits € > 0 and € > oo.

In the weak limit € - 0 the lagrangians reduce to the
ones of the coupled KdV system while, after a suitable re-
definition of the fields, in the strong limit € - co we obtain
the lagrangians of the coupled modified KdV system. The
Hamiltonian structures of the coupled KdV system follow
from the Hamiltonian structures of the master system by
taking the two limits € > 0 and € > oo.

We have thus disentangled all the Hamiltonian struc-
ture (a very rich one) associated with the parametric cou-
pled KdV system. This goal which we have fulfilled is the
first step towards the quantization of the coupled KdV sys-
tem in the sense of quantization deformation of the Pois-
son structures. The duality relation may be very important
to relate the quantization of all the Poisson structures.
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