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Abstract: We obtain the full Hamiltonian structure for
a parametric coupled KdV system. The coupled system
arises from four di�erent real basic lagrangians. The as-
sociated Hamiltonian functionals and the corresponding
Poisson structures follow from the geometry of a con-
strained phase space by using the Dirac approach for con-
strained systems. The overall algebraic structure for the
system is given in terms of two pencils of Poisson struc-
tures with associated Hamiltonians depending on the pa-
rameter of the Poisson pencils. The algebraic construction
we present admits the most general space of observables
related to the coupled system.We then construct twomas-
ter lagrangians for the coupled system whose �eld equa-
tions are the ϵ-parametric Gardner equations obtained
from the coupled KdV system through a Gardner transfor-
mation. In the weak limit ϵ → 0 the lagrangians reduce to
the ones of the coupled KdV system while, after a suitable
rede�nition of the �elds, in the strong limit ϵ → ∞we ob-
tain the lagrangians of the coupled modi�ed KdV system.
TheHamiltonian structures of the coupled KdV system fol-
low from the Hamiltonian structures of the master system
by taking the two limits ϵ → 0 and ϵ → ∞.
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1 Introduction
Coupled Korteweg-de Vries (KdV) systems describe sev-
eral physical interactions of interest. Hirota and Satsuma
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[1] proposed a model that describes interactions of two
long waves with di�erent dispersion relations. Gear and
Grimshaw [2, 3] considered a coupled KdV system to de-
scribe linearly-stable internal waves in a strati�ed �uid.

More recently Lou, Tong, Hu and Tang [4] proposed
models which may be used in the description of atmo-
spheric and oceanic phenomena. Coupled KdV systems
were also analyzed in [5–7]. An important area of interest
of high energy physics related to coupled systems is pro-
vided by the supersymmetric extensions of KdV equations
[8–14] and more generally by operator and Cli�ord valued
extensions of KdV equation [15, 16].

In this work we consider a parametric coupled KdV
system. For some values of the parameter, λ < 0, the sys-
tem corresponds to the complexi�cation of KdV equation.
For λ = 0 the system corresponds to one of the Hirota-
Satsuma coupled KdV systems, while for λ > 0 the system
is equivalent to two decoupled KdV equations. We analyze
the Hamiltonian formulation and the associated Poisson
bracket structure of the system. Although some properties
of the complexi�cation of KdV arise directly from the anal-
ogous ones on the solutions of the KdV equation there are
new properties, in particular, the full Hamiltonian struc-
ture,whichdoesnot have ananalogouson theoriginal real
equation. In fact, the complexi�cation approach gives rise
only to holomorphic observables on phase space. The full
Hamiltonian structure of the complex system give rise to
self-adjoint Hamiltonian functionals, whose Hamiltonian
�ow are the complex KdV equations, and it provides the
full structure of observables on phase space, not only the
holomorphic ones.

The goal of this paper is to analyze the di�erent Pois-
son structures associated with the coupled KdV system in
order to determine which of them are compatible, in the
sense that a linear combination of them is also a Poisson
structure. This goal is important from the point of view of
the integrability of the system. Moreover, it may also be an
important �rst step in order to understand the quantiza-
tion of the system in the sense of quantization deformation
of Poisson structures [17].

The approach we will follow in our analysis is to con-
struct a family of lagrangians fromwhich the coupled KdV
system is obtained by taking independent variations of
the associated functional action with respect to the �elds
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de�ning the lagrangian function. It turns out that these la-
grangians are singular ones. This implies that theHamilto-
nian construction, via a Legendre transformation is formu-
lated on a constrained phase space. In all the cases wewill
consider the constraints turn out to be primary constraints
and of the second class. The unconstrained phase space is
equipped with a Poisson bracket structure, however since
there are second class constraintswemust obtain the Pois-
son bracket structure on the constrained submanifold of
the phase space. This Poisson bracket is provided by the
Dirac brackets [18]. It satis�es all the properties of a Pois-
son bracket, in particular the Jacobi identity. In this way
starting from a lagrangian for the systemwe can construct
a Poisson bracket structure, together with a Hamiltonian
functional. This approach was followed for the KdV equa-
tion in [19, 20]. It provides a geometrical picture on phase
space of the Hamiltonian structure of the integrable sys-
tem. The other way to proceed is to �nd a Hamiltonian op-
erator together with a Hamiltonian functional. Afterwards
wemay construct a Poisson bracket structure provided the
Hamiltonian operator satis�es a di�erential restriction [21]
ensuring that the Jacobi identity is satis�ed. In this ap-
proach the set of allowed observables is only a subset of
the space of observables of the more general formulation
in terms of the constrained phase space approach.

In Section 2 we introduce the parametric coupled KdV
system we wish to analyze. In Section 3 we obtain two la-
grangian densities. The functional Gateaux derivatives of
the corresponding actions give rise to the parametrically
coupled KdV system. By a Legendre transformationwe ob-
tain the corresponding hamiltonians and associated Pois-
son structures. In Section 4 we introduce a Miura trans-
formationwhich allows the construction of two additional
lagrangian densities with the corresponding Hamiltonian
and Poisson structures. In Section 5 we study the compat-
ibility of the Poisson structures obtained in Sections 3 and
4. We obtain a pencil of Poisson bracket structures each
of them associated to a Hamiltonian functional. In partic-
ular this implies compatibility between some of the Pois-
son structures. In Section 6 we construct a duality relation
among the Hamiltonian structures. We construct twomas-
ter lagrangians for the parametric coupled system whose
�eld equations are the Gardner equations obtained from
the coupled KdV system though a ϵ-parametric Gardner
transformation. In the weak limit ϵ → 0 the lagrangians
reduce to the ones of the coupled KdV system while, af-
ter a suitable rede�nition of the �elds, in the strong limit
ϵ → ∞ we obtain the lagrangians of the coupled modi-
�ed KdV system. The Hamiltonian structures of the cou-
pled KdV system follow from the Hamiltonian structures

of the master system by taking the two limits ϵ → 0 and
ϵ → ∞.

2 The parametric coupled KdV
system

We consider a coupled Korteweg-de Vries (KdV) sys-
tem,formulated in terms of two real di�erentiable func-
tions u(x, t) and v(x, t), given by the following partial dif-
ferential equations:

ut + uux + uxxx + λvvx = 0 (1)
vt + uxv + vxu + vxxx = 0, (2)

where λ is a real parameter.
Here and in the sequel u and v belong to the real

Schwartz space de�ned by

C∞↓ =
{
w ∈ C∞(R)/ lim

x→±∞
xp ∂

q

∂xq w = 0; p, q ≥ 0
}
.

By a rede�nition of v given by v → v√
|λ|

wemay reduce the
values of λ > 0 to be +1 and λ < 0 to be −1. The systems for
λ = +1, λ = −1 and λ = 0 are not equivalent. The λ = −1
case corresponds to the complexi�cation of KdV equation.

The case λ = +1 corresponds to two decoupled KdV
equations.

The system (1),(2) for λ = −1 describes a two-layer liq-
uid model studied in references [2–4, 22]. It is a very in-
teresting evolution system. It is known to have solutions
developing singularities on a �nite time [23]. Also, a class
of solitonic solutions was reported in [24] via the Hirota
approach [25].

The system (1),(2) (introduced in [26]) for λ = 0 corre-
sponds to the ninth Hirota-Satsuma [1] coupled KdV sys-
tem given in [6] (for the particular value of k = 0) (see also
[5]) and is also included in the interesting study which re-
lates integrable hierarchies with polynomial Lie algebras
[7].

A Bäcklund transformation, the permutability theo-
rem, the Gardner transformation as well as the Gardner
equations for the coupled KdV system (1), (2), were ob-
tained in [27]. Also a class of multisolitonic solutions, a
class of periodic solutions and a regular static solution,
which can be interpreted as a non-trivial background of
the theory, were found in [27].
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3 Poisson structures
In this and in the following sectionwewill show that there
exists four basic Hamiltonians and four associated basic
Poisson structures for the coupled KdV systemwe are con-
sidering. We will use the method of Dirac for constrained
systems to deduce them. The Hamiltonian as de�ned in
quantum physics must be a selfadjoint operator conjugate
to the time, hence our four Hamiltonians will be four real
functionals in terms of the real �elds which de�ne them.

We rewrite (1) and (2) in terms of the Casimir potentials
w and y given by

u(x, t) = wx(x, t)
v(x, t) = yx(x, t)

and we obtain

wxt + P[w, y] = 0, P[w, y] = wxwxx + wxxxx + λyxyxx
yxt + Q[w, y] = 0, Q[w, y] = wxxyx + yxxwx + yxxxx .

We use the Helmholtz procedure to obtain a lagrangian
density from the �eld equations. We notice that the ma-
trix constructed from the Gateaux derivatives of P and λQ
is self-adjoint. We then get

L1 = −
1
2wxwt +

1∫
0

(
wP[µw, µy] + yλQ[µw, µy]

)
dµ

which explicitly gives

L1 = −
1
2wxwt −

1
6wx

3 + 1
2wxx

2 − λ2wxyx
2 − λ2 yxyt +

λ
2 yxx

2,

for λ 6= 0.
We de�ne the functional action L1(w, y) =∫ T

0 dt
∫ +∞
−∞ dxL1.

By taking independent variations of L1 with respect to
w and to y we obtain the �eld equations

δL1
δw = 0 , δL1

δy = 0,

which are the same as equations (1), (2). Here δ
δw and δ

δy
denote the Gateaux functional derivative de�ned by

δ
δw F(w) = lim

ϵ→0

F(w + ϵh) − F(w)
ϵ .

We now introduce a second functional action L2(w, y) =∫ T
0 dt

∫ +∞
−∞ dxL2 where

L2 = −
1
2wxyt −

1
2wtyx +

1∫
0

(
yP[µw, µy] + wQ[µw, µy]

)
dµ

which explicitly gives

L2 = −
1
2wxyt −

1
2wtyx −

1
2w

2
xyx − yxwxxx −

λ
6 y

3
x

for any λ.
By taking independent variations of L2 with respect to

w and y we obtain the same �eld equations.
We will now construct the Hamiltonian structure as-

sociated to each of the lagrangians Li ; i = 1, 2. We start
by considering the lagrangian L1. We introduce the con-
jugate momenta associated to w and y, we denote them p
and q respectively, we have

p = ∂L1
∂wt

= −12wx , q = ∂L1
∂yt

= − λ2 yx .

We de�ne

ϕ1 ≡ p +
1
2wx , ϕ2 = q +

λ
2 yx .

Hence ϕ1 = ϕ2 = 0. ϕ1 and ϕ2 do not have any wt nor any
yt dependence, they are constraints on the phase space. It
turns out that these are the only constraints on the phase
space.

The Hamiltonian may be obtain directly from L1 by
performing a Legendre transformation,

H1 = pwt + qyt − L1.

We obtain

H1 =
1
6w

3
x −

1
2w

2
xx +

λ
2wxy

2
x −

λ
2 y

2
xx

and the corresponding Hamiltonian is H1 =
∫ +∞
−∞ dxH1.

We introduce a Poisson structure on the phase space
de�ned by

{
w(x), p(x̂)

}
PB = δ(x − x̂){

y(x), q(x̂)
}
PB = δ(x − x̂)

with all other brackets between these variables being zero.
We then have thatϕ1, ϕ2 are second class constraints.

In fact,

{
ϕ1(x), ϕ1(x̂)

}
PB = δx(x − x̂){

ϕ1(x), ϕ2(x̂)
}
PB = 0{

ϕ2(x), ϕ2(x̂)
}
PB = δx(x − x̂).

The lagrangian system is degenerate (singular), such sys-
tem can be hamiltonized only by the use of Dirac’s theory
of constraints [28, 29].



98 | A. Restuccia and A. Sotomayor

Since we have a constrained phase space we must in-
troduce the Dirac brackets corresponding to a Lie bracket
structure on the constrained submanifold of phase space.
For the second and third order degenerate lagrangians
considered in this paper, one �rst needs to look for some
kind of order reduction and then use the Dirac’s the-
ory of constraints to hamiltonize the system [19, 30, 31].
Equivalently, one can formulated the Dirac theory of con-
straints for higher order lagrangians using the above Pois-
son bracket structure and the relations{

∂nxw(x), ∂mx̂ p(x̂)
}
= ∂nx∂mx̂

{
w(x), p(x̂)

}
.

The Dirac brackets between two functionals F and G on
phase space is de�ned as

{F, G}DB = {F, G}PB (3)

−
〈〈{

F, ϕi(x′)
}
PB

Cij(x′, x′′)
{
ϕj(x′′), G

}
PB

〉
x′

〉
x′′
,

where <>x′ denotes integration on x′ from −∞ to +∞.
The indices i, j = 1, 2 and the Cij(x′, x′′) are the compo-
nents of the inverse of the matrix whose components are{
ϕi(x′), ϕj(x′′

}
PB.

This matrix becomes[
∂x′δ(x′ − x′′) 0

0 λ∂x′δ(x′ − x′′)

]
and its inverse, satisfying

〈[
∂xδ(x − x′′) 0

0 λ∂xδ(x − x′′)

]
[

C11(x′′, x̂) C12(x′′, x̂)
C21(x′′, x̂) C22(x′′, x̂)

]〉
x′′
=

=
[
δ(x − x̂) 0

0 δ(x − x̂)

]

is given by

[
Cij(x′, x′′)

]
=
[ ∫ x′ δ(s − x′′)ds 0

0 1
λ
∫ x′ δ(s − x′′)ds

]
.

It turns out, after some calculations, that

{
u(x), u(x̂)

}
DB = −∂xδ(x − x̂),{

v(x), v(x̂)
}
DB = −

1
λ ∂xδ(x − x̂){

u(x), v(x̂)
}
DB = 0.

We notice that this Poisson bracket is not well de�ned for
λ = 0. We have already assumed λ 6= 0.

From them we obtain the Hamilton equations, which
are of course the same as (1), (2):

ut = {u, H1}DB = −uux − uxxx − λvvx
vt = {v, H1}DB = −uxv − vxu − vxxx .

(4)

We notice that adding any function of the constraints to
H1 does not change the result, since the Dirac bracket of
the constraints with any other local function of the phase
space variables is zero.

Moreover, we may obtain directly the Dirac bracket of
any two functionals F(u, v) and G(u, v) from (3) using the
above bracket relations for u and v. We notice that the
observables F and G in (3) may be functionals of w, y, p
and q, not only of u and v. In this sense the phase space
approach for singular lagrangians provides the most gen-
eral space of observables. The same comment will be valid
for the phase space construction using the action L2 and
LM1 , LM2 in the following sections.

The lagrangians L1 and L2 do not di�er by a gauge
term, despite that both of these lead to same equations of
motion. ThusL2 represents an alternative lagrangian rep-
resentationof the system. First, there canarise ambiguities
in the association of symmetries with constants of the mo-
tion. Secondly, the same classical system, via alternative
lagrangian description, can give rise to entirely di�erent
quantummechanical systems. These points have been de-
veloped in the context of classical mechanics [32, 33]. The
Noether theoremassures that associated to adi�erentiable
symmetry of the lagrangian one has a conserved quantity.
A symmetry of the action is also a symmetry of the �eld
equations. However there may be symmetries of the �eld
equations which are not symmetries of the action. In [27]
we obtained an in�nite sequence of polynomial local con-
served quantities for equations (1) and (2). Most of them
are not symmetries of the action L1 nor of L2.

We now consider the action L2 and its associated
Hamiltonian structure. In this case we denote the conju-
gate momenta to w and y by p̂ and q̂ respectively. We have

p̂ = −12 yx , q̂ = −12wx .

The constraints become in this case

ϕ̂1 = p̂ +
1
2 yx = 0 , ϕ̂2 = q̂ +

1
2wx = 0.

The corresponding Poisson brackets between ϕi and
ϕj , i, j = 1, 2, are given by
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{
ϕ̂1(x), ϕ̂1(x′)

}
PB

= 0 ,
{
ϕ̂2(x), ϕ̂2(x′)

}
PB

= 0,{
ϕ̂1(x), ϕ̂2(x′)

}
PB

= ∂xδ(x − x′).

The corresponding construction of the Dirac brackets
yields

{
u(x), u(x̂)

}
DB = 0 ,

{
v(x), v(x̂)

}
DB = 0,{

u(x), v(x̂)
}
DB = −∂xδ(x − x̂).

The Hamiltonian H2 =
∫ +∞
−∞ dxH2 is given by the Hamilto-

nian density

H2 =
1
2w

2
xyx + yxwxxx +

λ
6 y

3
x .

The Hamilton equations

ut(x) =
{
u(x), H2

}
DB , vt(x) =

{
v(x), H2

}
DB

now using the corresponding Dirac brackets yields the
same �elds equations (1),(2) for any λ. We have thus con-
structed twoHamiltonian functionals and associated Pois-
son bracket structures. These two Hamiltonian structures
arise directly from the basic actions L1 and L2.Wewill now
construct two additional Hamiltonian structures by con-
sidering the Miura transformation.

The Hamiltonians H1 and H2, HM1 and HM2 in the fol-
lowing section, were presented in [34].

4 The Miura transformation
We consider the Miura transformation

u = µx − 1
6µ

2 − λ
6 ν

2

v = νx − 1
3µν.

(5)

The corresponding modi�ed KdV system (MKdVS) is given
by

µt + µxxx − 1
6µ

2µx − λ
6 ν

2µx − λ
3µννx = 0

νt + νxxx − 1
6µ

2νx − λ
6 ν

2νx − 1
3µνµx = 0.

(6)

These equations may be obtained from two actions, which
we will denote LM1 =

∫ T
0 dt

∫ +∞
−∞ dxLM1 and LM2 =∫ T

0 dt
∫ +∞
−∞ dxLM2 .

The lagrangian densities LM1 , formulated for λ 6= 0,
and LM2 , formulated for any λ, expressed in terms of σ, ρ
where µ = σx , ν = ρx are given by

LM1 = −12σtσx −
λ
2ρtρx −

1
2σxσxxx −

λ
2ρxρxxx

+ 1
72σx

4 + λ2
72ρx

4 + λ
12ρ

2
xσ2x (7)

and

LM2 = −12σtρx −
1
2σxρt − σxxxρx

+ 1
18σx

3ρx +
λ
18ρx

3σx (8)

respectively. Wewill now construct the Hamiltonian struc-
ture associated to LM1 .

We denote by α and β the conjugate momenta associ-
ated to σ and ρ respectively. We have

α = δL
M
1

δσt
= −12σx , β = δL

M
1

δρt
= − λ2ρx .

These are constraints on the phase space.
TheHamiltonianHM1 corresponding to this lagrangian

density LM1 is given by

HM
1 = v2 − u2

HM1 =
+∞∫
−∞

HM
1 dx,

where u and v are given in terms of µ and ν by the Miura
transformation. HM

1 was obtained starting with the la-
grangian LM1 and performing the Legendre transforma-
tion. After some calculations it turns out that it can be
rewritten in terms of the original variables u and v. How-
ever when evaluating the Dirac brackets one must use its
expressions in terms of the Casimir potentials. LM1 is of
course formulated in terms of the Casimir potentials. At
this point it may be interesting to determine if it is possible
to obtain a formulation of the problem directly in terms of
original variables [35].

The construction of the Dirac brackets follows in the
usual way.We end upwith the following Poisson structure
on the constrained submanifold,

{
µ(x), µ(x̂)

}
DB = −∂xδ(x − x̂){

ν(x), ν(x̂)
}
DB = −1λ ∂xδ(x − x̂){

µ(x), ν(x̂)
}
DB = 0.

From these Poisson bracket structure we obtain for the
original u and v �elds
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{
u(x), u(x̂)

}
DB = ∂xxxδ(x − x̂) +

1
3uxδ(x − x̂)

+ 2
3u∂xδ(x − x̂){

v(x), v(x̂)
}
DB = 1

λ ∂xxxδ(x − x̂) +
1
3λ uxδ(x − x̂)

+ 2
3λ u∂xδ(x − x̂){

u(x), v(x̂)
}
DB = 1

3 vxδ(x − x̂) +
2
3 v∂xδ(x − x̂)

which de�nes the Poisson structure on the original �elds
inherited from the Poisson structure on the constrained
submanifold on the phase space associated to the modi-
�ed KdV system. This Poisson bracket is not well de�ned
for λ 6= 0. We have already assumed λ 6= 0.

From the Dirac brackets of u and v we may obtain di-
rectly the Hamiltonian �eld equations

ut =
{
u, HM1

}
DB = −uux − uxxx − λvvx

vt =
{
v, HM1

}
DB = −vxxx − (uv)x

(9)

which, as it should be, coincide with system (1), (2).
We have then obtained the Poisson structure associ-

ated to the Hamiltonian HM1 . Notice that the Hamiltonian
formulation includes all the e�ects of the constraints. The
point is that by using the Dirac brackets the second class
constraints commute with any other obervable. It is inter-
esting to remark that the Miura-like transformation, more
precisely the Gardner transformation allows to obtain an
in�nite sequence of local polynomial conserved quantities
[27].

We now proceed to obtain a second Poisson structure
starting from the Lagrangian LM2 .

The Hamiltonian obtained via a Legendre transforma-
tion is given by HM2 =

∫ +∞
−∞ (−uv) dxwhere u and v are func-

tions of µ and ν according to theMiura transformation.We
use as before µ = σx , ν = ρx .

We denote by α̂ and β̂ the conjugate momenta associ-
ated to σ and ρ respectively.

The constraints on phase space become now

α̂ = −12ρx

β̂ = −12σx .

The Dirac brackets are

{
µ(x), µ(x̂)

}
DB = 0{

ν(x), ν(x̂)
}
DB = 0{

µ(x), ν(x̂)
}
DB = −∂xδ(x − x̂).

We then obtain, for any λ,

{
u(x), u(x̂)

}
DB = λ

3 vxδ(x − x̂) +
2λ
3 v∂xδ(x − x̂){

v(x), v(x̂)
}
DB = 1

3 vxδ(x − x̂) +
2
3 v∂xδ(x − x̂){

u(x), v(x̂)
}
DB = ∂xxxδ(x − x̂) +

1
3uxδ(x − x̂)

+ 2
3u∂xδ(x − x̂).

This is the Poisson bracket structure inherited from the
second Poisson structure on the modi�ed phase space.
One may directly verify that the corresponding Hamilton
equations exactly coincidewith equations (1), (2).We have
then constructed four basic lagrangians and associated
Hamiltonian functionals together with four basic Poisson
structures.

5 Two pencils of Poisson structures
for the coupled system

In this sectionwe show the existence of twopencils of Pois-
son structures for the system (1) and (2). The strategy will
be to introduce two parametric lagrangian densities Lk
and LMk . For the value of the parameter k = 1, Lk reduces
to the lagrangian density L1 while for k = 0 it reduces to
the lagrangian densityL2 in Section 3. Similarly for k = 1,
LMk reduces to LM1 and for k = 0 it reduces to LM2 in Sec-
tion 4. We then �nd the associated Poisson structures for
the parametric Hamiltonians constructed via a Legendre
transformation. Each Poisson structure is k dependent. By
choosing suitable values of k we will show that the sum
of the Poisson structures in Section 3 also determines a
Poisson structure. In the same way the sum of the Poisson
structures in Section 4 determines a Poisson structure. In
thiswaywewill show the existence ot two Poisson pencils.

We now introduce the parametric lagrangian density
Lk, where k is a real parameter, associated to the two basic
actions L1 and L2.

We de�ne the lagrangian density

Lk = kL1 + (1 − k)L2.

The �eld equations obtained from this lagrangian density
are equivalent to (1) and (2) in the following cases: If λ < 0
for any k. If λ = 0, for k 6= 1. If λ > 0 for k 6= 1

1+
√
λ
and k 6=

1
1−

√
λ
. Fromnow onwewill exclude these particular values

of k. The corresponding Hamiltonian density constructed
through the Legendre transformation is given by

Hk = pwt + qyt − Lk = kH1 + (1 − k)H2
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and the primary constraints by

ϕ1 ≡ k
2wx +

(1 − k)
2 yx + p = 0 (10)

ϕ2 ≡ λk
2 yx +

(1 − k)
2 wx + q = 0. (11)

These are the only constraints on phase space.
The Poisson brackets on the unconstrained phase

space are

{
ϕ1(x), ϕ1(x̂)

}
PB = k∂xδ(x − x̂){

ϕ2(x), ϕ2(x̂)
}
PB = λk∂xδ(x − x̂){

ϕ1(x), ϕ2(x̂)
}
PB = (1 − k) ∂xδ(x − x̂).

Hence they are second class constraints.
We will denote by {}kDB the Dirac bracket correspond-

ing to the parameter k.
The Dirac brackets are then given by

{
u(x), u(x̂)

}k
DB = λk

−λk2 + (1 − k)2
∂xδ(x − x̂)

{
v(x), v(x̂)

}k
DB = k

−λk2 + (1 − k)2
∂xδ(x − x̂)

{
u(x), v(x̂)

}k
DB = 1 − k

−λk2 + (1 − k)2
(
−∂xδ

(
x − x̂

))
,

where the denominator is di�erent from zero for the values
of k we are considering. They de�ne the Poisson structure
for the Hamiltonian Hk =

∫ +∞
−∞ Hkdx.

The associated Hamilton equations coincide with the
coupled equations (1), (2). It is interesting to notice that
the above Poisson structure is a linear combination of the
Dirac brackets associated to Hamiltonians H1 and H2. In
the present notation H2 corresponds to k = 0.

We then have

{F, G}kDB = −λk
−λk2 + (1 − k)2

{F, G}1DB

+ 1 − k
−λk2 + (1 − k)2

{F, G}0DB

where F, G are any functionals of u and v and {F, G}1DB,
{F, G}0DB are the Poisson brackets de�ned in Section 3. In
particular for any λ di�erent from one and zero, and k =
1
1−λ , we obtain

{F, G}kDB = {F, G}
1
DB + {F, G}

0
DB .

Consequently, since {F, G}kDB is a Poisson bracket, then
the two basic Poisson brackets for every λ 6= 0, 1 are

then compatible. In fact, if the sum determines a Pois-
son bracket the any linear combination of them also de-
termines a Poisson bracket.

We also notice that for any k and λ = −1, using the
above Poisson bracket structure, one gets

{
u(x) + iv(x), u(x̂) − iv(x̂)

}k
DB = 0, (12){

u(x) + iv(x), u(x̂) + iv(x̂)
}k
DB = (13)

− 2
k2 + (1 − k)2

∂xδ(x − x̂).

We emphasize that only (13) arises from the complexi�ca-
tion of the corresponding Poisson structure for real KdV.
The relation (12) follows in our approach from �rst prin-
ciples. It is not imposed by hand. The existence of a local
real Hamiltonian Hk for each k is a non-trivial feature of
the system (1), (2) and is not an algebraic consequence of
the complexi�cation of the real KdV equation.

We may now consider the case λ = 0. The Poisson
bracket for any k 6= 1 becomes

{F, G}kDB =
k

2(1 − k)2
{F, G}

1
2
DB +

1 − 2k
(1 − k)2

{F, G}0DB (14)

in particular for k = 2
5 the two coe�cients are equal, hence

the Poisson brackets for k = 1
2 and k = 0 are compatible.

We have thus constructed a pencil of Poisson struc-
tures with an associated local real Hamiltonian Hk =∫ +∞
−∞ Hk.

We now introduce, as we have already done with L1

and L2, a parametric lagrangian density LMk = kLM1 +
(1 − k)LM2 . The associated hamiltonian density is given by
HM
k = kHM

1 + (1 − k)HM
2 in terms of the other two basic

hamiltonian densities. The constraints on phase space are
given by

ϕ1 ≡ α + k2σx +
(1 − k)

2 ρx = 0

ϕ2 ≡ β λk2 ρx +
(1 − k)

2 σx = 0

these constraints are the only ones on thephase space. The
Poisson brackets on the unconstrained phase space are

{
ϕ1(x), ϕ1(x̂)

}
PB = k∂xδ(x − x̂){

ϕ2(x), ϕ2(x̂)
}
PB = λk∂xδ(x − x̂){

ϕ1(x), ϕ2(x̂)
}
PB = (1 − k) ∂xδ(x − x̂).

Hence they are second class constraints.
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The Dirac brackets are then given by{
u(x), u(x̂)

}k
DB = −

λk
−λk2 + (1 − k)2(

∂xxxδ(x − x̂) +
1
3uxδ(x − x̂) +

2
3u∂xδ(x − x̂)

)
+ λ(1 − k)

−λk2 + (1 − k)2

(
1
3 vxδ(x − x̂) +

2
3 v∂xδ(x − x̂)

)
{
u(x), v(x̂)

}k
DB =

(1 − k)
−λk2 + (1 − k)2(

∂xxxδ(x − x̂) +
1
3uxδ(x − x̂) +

2
3u∂xδ(x − x̂)

)
− λk

−λk2 + (1 − k)2

(
1
3 vxδ(x − x̂) +

2
3 v∂xδ(x − x̂)

)
{
v(x), v(x̂)

}k
DB = −

k
−λk2 + (1 − k)2(

∂xxxδ
(
x − x̂

)
+ 1
3uxδ(x − x̂) +

2
3u∂xδ(x − x̂)

)
+ (1 − k)

−λk2 + (1 − k)2

(
1
3 vxδ(x − x̂) +

2
3 v∂xδ(x − x̂)

)
.

(15)

It follows from the construction that the Hamilton equa-
tions in terms of the corresponding Poisson structure,

ut =
{
u(x), HMk )

}k
DB

, vt =
{
v(x), HMk )

}k
DB

are equivalent to the coupled KdV system (1),(2).
As in theprevious case thepencil of Poisson structures

can be rewritten in terms of the basic Poisson structures
which corresponds to k = 1 and k = 0 in (14):

{F, G}kDB = −λk
−λk2 + (1 − k)2

{F, G}1DB

+ 1 − k
−λk2 + (1 − k)2

{F, G}0DB ,

where {F, G}1DB and {F, G}0DB are the Poisson structures
de�ned in Section 4.

We notice that this decomposition is the same as in
previous case, however the basic Poisson structure are dif-
ferent.

In particular for k = 1
1−λ , λ 6= 0, 1, the {, }kDB is the

sum of the {, }1DB and {, }0DB basic Poisson structures. For
λ = 0 and k 6= 1 the same relation (14) holds for the Poisson
bracket we are now considering. These are then compati-
ble Poisson structures.

We notice that by construction ϕ1 and ϕ2 as well as
any functional of them, in all the cases we have consid-
ered, are Casimirs of the Poisson structure de�ned in terms
of the Dirac brackets. In fact,

{
F, ϕ1)

}
DB = 0{

F, ϕ2)
}
DB = 0

for any functional F onphase space. This is a general prop-
erty of the Dirac bracket.

It is a non-trivial feature that for each real k, the
parameter of the pencil of Poisson structures, there are
Hamiltonians Hk and HMk which give rise to the coupled
KdV system when the corresponding Poisson structure is
used.

6 Duality among the Hamiltonian
structures

In this section we show the existence of two ϵ-deformed
Hamiltonians and their corresponding ϵ-deformed Pois-
son structures. In the limit ϵ → 0 they reduced to the
Hamiltonians and Poisson structures obtained in Sec-
tion 3. In the limit ϵ → ∞ they reduce to the Hamiltoni-
ans and Poisson structures obtained in Section 4. The ϵ-
deformation for the coupled KdV system is analogous to
the duality transformation in quantum �eld theory. One
formulation can be analyzed in perturbation theory for
small values of the coupling constant ϵ, theweak coupling
limit, while the dual formulation can be analyzed pertur-
batively as an expansion in 1

ϵ , the strong coupling limit.
The Hamiltonian, constraints and Poisson structures

we will present in this section are obtained following the
same approach we have developed in previous sections.
We will only provide the results.

The associated Gardner transformation and Gardner
equations for the system (1), (2) are given by [27]

u = r + εrx −
1
6 ε

2
(
r2 + λs2

)
(16)

v = s + εsx −
1
3 ε

2rs (17)

and

rt + rxxx + rrx + λssx
−16 ε

2
[(
r2 + λs2

)
rx + 2λrssx

]
= 0 (18)

st + sxxx + rsx + srx
−16 ε

2
[(
r2 + λs2

)
sx + 2rsrx

]
= 0. (19)

Any solution of the Gardner equations de�ne through
Gardner transformation a solution of the system (1), (2).
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It follows as in the case of KdV equation and the cor-
responding Gardner transformation [36] that if we take the
limit ϵ → 0 we obtain from (16), (17)

u = r (20)
v = s (21)

and from (18), (19) after replacing (20), (21) we get the orig-
inal KdV coupled system (1), (2).

On the other hand, if we rede�ne

µ ≡ ϵr (22)
ν ≡ ϵs (23)

and rewrite (16), (17) we get

u = µϵ + µx −
1
6µ

2 − 1
6 λν

2 (24)

v = νϵ + νx −
1
3µν. (25)

Taking the limit ϵ → ∞we have

û = µx −
1
6µ

2 − 1
6 λµ

2 (26)

v̂ = νx −
1
3µν (27)

which are exactly equations given by (5).
If we proceed in the samewaywith (18), (19) we obtain

the modi�ed KdV system equations (6). That means that if
µ, ν satis�es theMKdV then û, v̂ satis�es equations (1), (2).

This result is analogous to the one known for the KdV
equation and its Miura transformation.

We go now one step forward, beyond this relation be-
tween �eld equations, and prove that there exists a mas-
ter lagrangian form which by taking variations with re-
spect to r and s we obtain the ϵ-parametric Gardner equa-
tions (18), (19). Moreover, we will construct two di�erent
lagrangians with such property and the associated Hamil-
tonian structures. The corresponding ϵ-parametric Pois-
son structures are compatible. In the limit ϵ → 0 the ϵ-
parametric Hamiltonian structures reduce to the compati-
ble Hamiltonian structures obtained in Section 3 and with
the ϵ → ∞ limit, after suitable rede�nition of �elds, we ob-
tain the two compatible Hamiltonian structures obtained
in Section 4. There is a duality relation between the Hamil-
tonian structure of the parametric coupled KdV system (1),
(2) and the modi�ed parametric system (MKdV) (6). In the
weak limit ϵ → 0 we get one Hamiltonian structure and in
the strong limit ϵ → ∞ we get the modi�ed Hamiltonian
structure.

By freezing the �eld v to zerowe obtain from (1), (2) the
KdV equation and the same occurs with the ϵ-parameter
Hamiltonian structure of system (1), (2). It reduces to a ϵ-
parametric Hamiltonian structure of KdV equation (which
to our knowledge had not been constructed before).

In particular, the Poisson structure of the KdV system
(1), (2) is a ϵ-deformation of the Poisson structure of MKdV
system which is equivalent to the Virasoro algebra.

We now proceed to the construction of the master
Gardner lagrangians.

We introduce the �elds w(x, t), y(x, t) through

r = wx , s = yx .

The �rst master Gardner lagrangian density, which works
for λ 6= 0, is given by

LG1 = − 1
2wxwt −

1
6(wx)

3 + 1
2(wxx)

2 − λ2wx(yx)
2

− λ
2 yxyt +

λ
2(yxx)

2

− 1
6 ϵ

2
[
− 1
12(wx)

4 − λ2(wx)
2(yx)2

]
+ ϵ2
72 λ

2(yx)4

and the second master Gardner lagrangian density is
given, for any λ, by

LG2 = − 1
2wxyt −

1
2wtyx −

1
2(wx)

2yx − yxwxxx −
λ
6(yx)

3

+ 1
18 ϵ

2(wx)3yx +
1
18 ϵ

2λ(yx)3wx .

If we take the limit ϵ → 0 of the above expressions, we
obtain lagrangians densities L1 and L2 respectively given
in Section 3.

If we rede�ne

σ = ϵw , ρ = ϵy

LMG1 = ϵ2LG1 , LMG2 = ϵ2LG2
and take the limit ϵ → ∞we get

lim
ϵ→∞

LMG1(σ, ρ) = LM1 (σ, ρ)

lim
ϵ→∞

LMG2(σ, ρ) = LM2 (σ, ρ).

The Hamiltonian structure associated to LMG1(σ, ρ) and
LMG2(σ, ρ) arises in the standard way.

We introduce the conjugate momenta associated to w
and y. We denote them p and q. We have

p = ∂LG1∂wt
= −12wx

q = ∂LG2∂yt
= − λ2 yx
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and de�ne ϕ1 ≡ p + 1
2wx , ϕ2 ≡ q + λ

2 yx.
ϕ1 = 0 and ϕ2 = 0 are constraints on the phase space.

They are second class constraints. Notice that this is the
same structure of phase space as in Section 3 because the
ϵ-parameter does not appear in the de�nition of the conju-
gate momenta. The Hamiltonian density may be obtained
by performing a Legendre transformation

HG1 = pwt + qyt − LG1.

We get

HG1 = 1
6(wx)

3 − 1
2(wxx)

2 + λ2wx(yx)
2 − λ2(yxx)

2

+ 1
6 ϵ

2
[
− 1
12(wx)

4 − λ2(wx)
2(yx)2 −

1
12 λ

2(yx)4
]
.

The Dirac brackets between the canonical variables
w, p, y, q are the same as was obtained in section 3 since
the ϵ-parameter does not appear in the constraints. How-
ever the corresponding brackets among u, v are di�erent
because the Gardner transformation involves the parame-
ter ϵ. In the limit ϵ → 0 we obtain the same Dirac brackets
for u and v as in Section 3. The same analysis can be per-
formed forLG2. The conjugate momenta and contraints as
well as the Dirac brackets among the canonical variables
w, p, y, q are the same as in second part of Section 3. The
Hamiltonian is given by

HG2 = 1
2(wx)

2yx + yxwxxx +
λ
6(yx)

3

− 1
18 ϵ

2(wx)3yx −
1
18 ϵ

2λ(yx)3wx .

In the limit ϵ → 0 it reduces to the HamiltonianH2 in Sec-
tion 3. In the same way by rede�ning ϵ2HG1, ϵ2HG2 and
taking ϵ → ∞ we get the Hamiltonians HM

1 ,HM
2 respec-

tively, presented in Section 4.
The Poisson structures in both limits are the ones ex-

plicitly given in in Sections 3 and 4.
The construction of the ϵ-parametric Gardner Hamil-

tonian and its Poisson structures uni�es all the Hamilto-
nian structures of the coupled KdV system andmakeman-
ifest the duality relation among the KdV and the modi�ed
KdV systems.

7 Conclusions
We obtained the full Hamiltonian structure for a coupled
parametric KdV system. We started from four basic singu-
lar lagrangians. The associated Hamiltonian formulation

on phase space is restricted by second class constraints.
The Poisson structure on the constrained variety of phase
space was obtained using the Dirac approach. The Dirac
brackets on the constrained phase space yields the most
general structure of observables. A subset of them are
functionals of the original �elds u(x, t), v(x, t) of the cou-
pled KdV system.We then constructed two pencils of Pois-
son brackets each of them with an associated parametric
Hamiltonian in terms of the same parameter of each pen-
cil.

Each pencil of Poisson brackets is obtained from two
compatible Poisson brackets of the same dimension. Con-
sequently it is not possible to construct a hierarchy of
higher dimensional Hamiltonians from them.However the
two pencils of Poisson brackets are of di�erent dimen-
sions, hence onemay construct a hierarchy of higher order
Hamiltonians as in the KdV case.

Finally we constructed twomaster lagrangians for the
parametric coupled KdV system whose �eld equations are
the Gardner equations obtained from the coupled KdV
through a ϵ-parametric Gardner transformation. TheGard-
ner transformation is a non-linear transformation of the
�elds for each value of the parameter ϵ. It de�nes a du-
ality transformation between the theories obtained in the
two limits ϵ → 0 and ϵ → ∞.

In the weak limit ϵ → 0 the lagrangians reduce to the
ones of the coupled KdV system while, after a suitable re-
de�nition of the �elds, in the strong limit ϵ → ∞we obtain
the lagrangians of the coupled modi�ed KdV system. The
Hamiltonian structures of the coupled KdV system follow
from the Hamiltonian structures of the master system by
taking the two limits ϵ → 0 and ϵ → ∞.

We have thus disentangled all the Hamiltonian struc-
ture (a very rich one) associated with the parametric cou-
pled KdV system. This goal which we have ful�lled is the
�rst step towards the quantization of the coupled KdV sys-
tem in the sense of quantization deformation of the Pois-
son structures. The duality relationmay be very important
to relate the quantization of all the Poisson structures.
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