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Abstract: In this paper, Hirota’s bilinear method is ex-
tended to a new modified Kortweg—de Vries (mKdV) hier-
archy with time-dependent coefficients. To begin with, we
give a bilinear form of the mKdV hierarchy. Based on the
bilinear form, we then obtain one-soliton, two-soliton and
three-soliton solutions of the mKdV hierarchy. Finally, a
uniform formula for the explicit N-soliton solution of the
mKdV hierarchy is summarized. It is graphically shown
that the obtained soliton solutions with time-dependent
functions possess time-varying velocities in the process of
propagation.
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1 Introduction

In 1965, the concept of a soliton was first defined by
Zabusky and Kruskal [1]. With the development of soli-
ton theory, Zabusky and Kruskal’s classical solitons have
been generalized to a more general class of solitons with
at least time-varying velocities, such as those observed
in nonlinear optics and Bose-Einstein condensate. It was
Serkin, Hasegawa and Belyaeva [2] who substantially ex-
tended the concept of classical solitons to nonautonomous
solitons. From a mathematical point of view, solitons are
a class of special solutions of nonlinear partial differen-
tial equations (PDESs). As the generalization of classical
differential equations with integer order, fractional-order
differential calculus and its applications have attracted
much attention [3-7]. In 2010, Fujioka, Espinosa and Ro-
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driguez [8] described soliton propagation of an extended
nonlinear Schrédinger equation which incorporates frac-
tional dispersion and a fractional nonlinearity. Recently,
Yang et al. [9] modeled fractal waves on shallow water
surfaces via a local fractional KdV equation. In the past
several decades, finding soliton solutions of nonlinear
PDEs has gradually developed into a significant direction
and some effective methods have been proposed for con-
structing soliton solutions, such as the inverse scattering
method [10], Backlund transformation [11], Darboux trans-
formation [12], Hirota’s bilinear method [13], Wronskian
technique [14], tanh method [15], homogeneous balance
method [16], Jacobi elliptic function expansion method
[17], sub-equation method [18], exp-function method [19],
transformed rational function method [20], and the first
integral method [21, 22].

As a direct method, Hirota’s bilinear method [13] has
been widely used to construct multi-soliton solutions of
many nonlinear PDEs [23-34]. However, there is very little
research work in extending Hirota’s bilinear method for a
whole hierarchy of nonlinear PDEs (see. e.g., [35]). This is
because it is difficult to find a bilinear form suitable for all
the nonlinear PDEs in a given hierarchy. In this paper, we
shall give a bilinear form of the following new mKdV hier-
archy with time-dependent coefficients

n
Ve= Y toma(OF v, n=0,1,2,-, )
m=0
and then construct its multi-soliton solutions through Hi-
rota’s bilinear method. Here the recursion operator em-
ployed is
F=0%+4v7 + 4v,0™ v,

X oo
_9 y1_1 _
a—a,a —i /dX /dX

X

When aym:1(t) = 1 and m = n, Equation (1) becomes
the known constant-coefficient mKdV hierarchy [30] v; =
F'vy,n=0,1,2,---. The first equation of the mKdV hier-
archy (1) is the trivial linear variable-coefficient equation
ve = a1(t)vy, and the second and third equations are the
following non-trivial nonlinear equations with variable-
coefficients:

Ve = a1 ()vx + a3 (OVix + 6a3(OV v, @)
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Ve = a1(t)vx + a5 (Vi + 6a5(E)V2Vx
+a5(t)vxxxxx +10as (t)VZVxxx (3)
+40a5()vveVex + 10a5(6)v2 + 30as(E)v*vy.

Obviously, Equations (2) and (3) include the famous mKdV
equation v; = vxxx + 6V2vy as a special case.

In Section 2, a bilinear form of the mKdV hierarchy (1)
is obtained through Hirota’s bilinear method. In Section 3,
starting from the obtained bilinear form, we first construct
one-soliton, two-soliton, and three-soliton solutions of the
mKdV hierarchy (1). Based on the obtained soliton solu-
tions, we then summarize a uniform formula for the ex-
plicit N-soliton solution of the mKdV hierarchy (1). In ad-
dition, some spatial structures and propagations of the ob-
tained one-, two- and three-soliton solutions are shown in
figures. In Section 4, we conclude this paper.

2 Bilinearization

For the bilinear form of the mKdV hierarchy (1), we have
the following theorem.

Theorem 1. The mKdV hierarchy (1) possesses a bilinear
form:

Dif" -f=0, (4)

(Dt - aZmﬂ(t)Di’"*l) f-f=o, (5)

m=0

where f* denotes the conjugate of f = f(x, t), and Dy and D
are Hirota’s differential operators defined by

DYDif(x,t) - glx, t)
=(0x = 0,)™(0¢ = 0)"f(x, ) - 81X, )|yt

Proof. Firstly, we reduce the general term a3 p,+1(£)F™ vy in
Equation (1). For the sake of convenience, we introduce

Vtz,ml =a2m+1(t)Fvasm=O’ 1’2"“ , N (6)

For any integer m > 1, Equation (6) can be rewritten as

Vi _ a2m+1(t) ¢ _ a2m+1(t) [Vt

mel = el = mo1XX

T gm0 agmea () @)
+4V2Vt2m71 + 4VXa_1vvf2m—1] .
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Integrating Equation (7) with respect to x once, we have

ailvt2m+1 = a2m+l(t) [Vth—lx + 2V671(V2)l‘2m—1:| . (8)
aZm—l(t)

Secondly, we take a logarithmic transformation
f
f

where i is the imaginary unit. Then Equation (8) becomes

)X,f=f(X,t1,t3,"'), (9)

v =i(ln

1 "
foDlzmnf f

_ Oma(®) [ 1 5 *
aZm—l(t) |:f*fDXthm-1f f

- #(Dtmf* D - f)

2 (D ot (D’%f*‘f) } .
tom-1

(10)

ff ff
If we set D2f* - f = 0, then Equation (10) is reduced to

* ®ome1(t) 2 *
D - f = DyD - f.
f2m+1f f Qo1 (t) X tzm—1f f

From Equations (6), (7) and (11), we have

(1)

D12m+1f* f = a2m+1(t)D)2(m+1f* 'fa m=0,1,2,---,n. (12)

It is convenient to introduce ¢4, t, - -+ , t, for the iterative
reduction of the general term a4 1 ()F™ vy in Equation (6).
For example, Equation (6) gives

as(t)

Vy = al(t)VX’ Vi = a3(t)FVX = al(t)Fth’ (13)
as(t)
Vis = as(O)F*vy = ai(t) Fvg,, (14)

and so forth.

In fact, tq, t,, -+, tn can be seen as the same as t. It
is then easy to see from Equations (11)—(14) that the right
side of Equation (1) is expressed by

n
Z a2m+1(t)FmVx =

m=0

777 > @ (O™ -f - (15)
m=0

under the case of D2f" - f = 0. At the same time, for the left
side of Equation (1) we have

1 *
“F thf f.
Finally, with the help of Equations (14) and (15) we obtain
a bilinear form which consists of Equations (4) and (5) for
the mKdV hierarchy (1). Thus, the proof is complete. [

V¢ (16)
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3 Multi-soliton solutions

In this section, we use the bilinear form in Equations (4)
and (5) to construct multi-soliton solutions of the mKdV
hierarchy (1). In order to obtain the one-soliton solution,
we suppose that

f=1+efV+fP 4204 (17)

fr=1+efW 4 2f@ 4 30 4., (18)

Substituting Equations (17) and (18) into Equations (4) and
(5), and then collecting the coefficients of the same order
of £, we obtain a system of PDEs:

UM+ =0, (19)
Ox(f? + £ = —DFfW . F1, (20)
O%(fO + fO7) = —DH(FV - fO" 4 fIT f O (21)
n
[at -3 a2m+1(t)a,%'"”] W+ =0, (@
m=0
n
[at -3 azm(t)aﬁ'"“} (@ + )
m=0 n (23)
= - (Dt - Z a2m+1(t)D)zcm+1> f(l) 'f(l)*,
m=0
n
[at -3 a2m+1(t)0)2<m+1} 2+
m=0
(24)

n
- | D¢ - Z Aame1 ()DF™H

m=0
><(f(l) ,f(Z)* +f(1)* ,f(Z)),

and so forth. If we let

n
f(l) =ehtil, &1 =kix+ ZW1,2m+1 / tom1()dt  (25)

m=0

be a solution of Equations (19) and (22), we obtain

(26)

2m+1
W1ome1 = ki .
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Figure 1: Spatial structure of one-soliton solution (29) with k; =
0.7, ayms1(t) = 1 + 0.5msint, n = 20.

Substituting Equations (25) and (26) into Equations (20)
and (23), we can verify that if

f(2) _ f(Z)* =0, 7

then Equations (21), (24) and all the other equations omit-
ted in the above system of PDEs all hold. In this case, we
write

fi=1+ et 3l (28)

and hence obtain the following one-soliton solution of the
mKdV hierarchy (1):

v=1i <ln fI) = kyseché;. (29)

h

In Figure 1, the spatial structure of the one-soliton solu-
tion (29) is shown. Figure 2 displays the propagation of the
one-soliton solution (29) along the negative x-axis. It can
be seen from the velocity image in Figure 3 that the veloc-
ity of solution (29) periodically changes over time in the
process of propagation.

For the two-soliton solution, we suppose that

f(l) _ e{1+%i + e£2+%i, (30)

with

n
& =kox + Z W2 2m+1 / Qom+ (£)dt.
m=0

Substituting Equation (30) into Equations (19) and (22)
yields

2m+1
A

€3)

W2 2m+1 =
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In view of Equation (23), we further suppose that

f(z) - efl+fz+ﬂi+912’ (32)

where 61, is a constant to be determined. Substituting
Equations (30)—(32) into Equation (20), we obtain

0, _ (ki - k)’
(k1 + k2)?"

It is easy to see that if we substitute Equations (30)—(32)
into Equations (21) and (24), then we can verify that

(33)

FO - - 20 (34)

satisfies Equations (21), (24) and all the other equations
omitted in the above system of PDEs. In this case, we write

fZ =1+ e{ﬁ%i 4 ef2+%i " e{1+§2+ni+012 (35)

and hence obtain the following two-soliton solution of the
mKdV hierarchy (1):

(36)

N (1 b3l 4 efrm3l y ehirhivOn
v=i|ln . .
1 + ef1+31 4 eha+ 31 4 p&i+&+miv6y, «

In Figure 4, the spatial structure of the two-soliton solution
(36) is shown. Figure 5 displays the variable velocity prop-
agation of the two-soliton solution (36) along the negative
X-axis.

Similarly, we continue to construct the three-soliton
solution. For this purpose, we suppose that

f(l) _ e€1+§i + efz*'gi + e£3+§l" (37)

with
n
& =lksx+ Z W3, 2m+1 / tom (£)dt.
m=0

Substituting Equation (37) into Equations (19) and (22)
yields

W3 2m+1 = k%mﬂ- (38)
In view of Equations (20) and (23), we suppose that
f(Z) = @h1ttinby | (Gi+SHminhis e§2+53+71i+923, (39)

where 613 and 6,5 are unknown constants to be deter-
mined.

Substituting Equations (37)-(39) into Equations (20)
and (23), we obtain

0, (ki —k3)? o _ (k> - k3)?

¢ s (k1 + k3)?’ - (ky + k3)?”

(40)
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Figure 2: Propagation of one-soliton solution (29) with k; = 0.7,
arm+1(t) = 1 +0.5msint, n = 20 at different times (a) t = -5, (b)
t=0and(c)t=>5.
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Figure 3: Velocity image of one-soliton solution (29) with k; = 0.7,

Arm+1(t) =1+ 0.5msint, n = 20.

0.8 ‘._
Lyl 06
0.4
0.2
0.0 _

Figure 4: Spatial structure of two-soliton solution (36) with k;
0.3, k2 = 0.6, @am+1(t) = 1 + 2msecht, n = 120.
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Figure 5: Propagation of two-soliton solution (36) with k; = 0.3,
ky = 0.6, ayms1(t) = 1 + 2msecht, n = 120 at different times (a)
t=-10,(b)t=0and (c) t = 10.
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vl

-15
Figure 6: Spatial structure of three-soliton solution (43) with k; =

0.5,k = 1.05, k3 = 1, aams1(t) = (1 + mt?)™1, n = 10.
Then the substitution of Equations (37)-(40) into Equa-
tions (21) and (24) gives
f(3) _ e{1+%i+{z+§i+§3+§i+012+913+923.
If we further take

fO=0,f%-0,i=4,5,---, (41)

then it can be verified that all the other equations omitted
in the above system of PDEs hold. In this case, we write

fs=1+eb3i g @frt3l y oh*ii

+e.{1+§z+m'+912 + e§1+£3+ni+913 (42)

TR N 't
+&3+7i+0 +&)+&3+015+013+0,3+ 3 7 -15
+efz & 23 +efl §+83+012+013+023+3 ,

and hence obtain the following three-soliton solution of
the the mKdV hierarchy (1):

1+eh72l 4 efrdt
+e§3*§i + e{l*fz*ﬂl”reu

+e§1 +&3-mi+013 + e{2+{3 —-mi+033

vl

+efl+fz+f3+91z+913+923—%ﬂi

v=i|ln T . (@3)

+e§3+§i + e{1+§2+ni+912

+e§1+{3 +1Ti+6013 + e{2+{3 +1i+63

+eéite +&3+012+013+023+3 i
L dx

In Figure 6, the spatial structure of the three-soliton so-
lution (43) is shown. Figure 7 displays the variable veloc-
ity propagation of the three-soliton solution (43) along the
negative x-axis.

Generally, if we take

T
-10

v Figure 7: Propagation of three-soliton solution (43) with k; = 0.5,
Zui(fi+%i)+1z__ﬂiﬂj9ij ky = 1.05, k3 = 1, ayms1(£) = (1 + mt2)™1, n = 10 at different times
<i<j
’

fu= Z e (44)  @yt- 15 (b)t=0and(Q) = 15.
u=0,1
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n
gi = kiX+ Zwi,Zmﬂ / a2m+1(t)dt, Wiom+1 = k1‘2m+1y (45)
m=0

2
by — (ki - k;) P<ii i=1.2. .-

kK, (i<ji,j=1,2,
then a uniform formula of the explicit N-soliton solution

of the mKdV hierarchy (1) can be obtained as follows:

b N)’ (46)

N
S uil&Gi-5 0+ > uipiy
ei-l i<i<j

po! N 0))

N
> HilGi+ 50+ 30 uipsy
Z ei-1 1si<j
u=0,1 X
where the summation X,-o,; refers to all possible combi-
nations of each y; =0,1fori=1,2,---,N.

To the best of our knowledge, the one-soliton solution
(29), two-soliton solution (36), three-soliton solution (43)
and N-soliton solution (47) are new; they have not been

reported in literature.

4 Conclusions

In summary, we have extended Hirota’s bilinear method to
the mKdV hierarchy (1) with time-dependent coefficients.
In the procedure of extending Hirota’s bilinear method
to the mKdV hierarchy (1), one of the key steps is to re-
duce this mKdV hierarchy (1) to the bilinear form in Equa-
tions (4) and (5). The obtained one-soliton, two-soliton,
three-soliton and N-soliton solutions (29), (36), (43) and
(47) contain many time-dependent functions which pro-
vide enough freedom for us to describe spatial struc-
tures and propagations of these solutions. It is graphically
shown that the one-soliton, two-soliton and three-soliton
solutions (29), (36) and (43) possess time-varying veloci-
ties in the process of propagation. How to extend Hirota’s
bilinear method to some other hierarchies of nonlinear
PDEs with time-dependent coefficients is worthy of study.
This is our task in the future.
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