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Abstract: In this paper, Hirota’s bilinear method is ex-
tended to a new modi�ed Kortweg–de Vries (mKdV) hier-
archy with time-dependent coe�cients. To begin with, we
give a bilinear form of the mKdV hierarchy. Based on the
bilinear form, we then obtain one-soliton, two-soliton and
three-soliton solutions of the mKdV hierarchy. Finally, a
uniform formula for the explicit N-soliton solution of the
mKdV hierarchy is summarized. It is graphically shown
that the obtained soliton solutions with time-dependent
functions possess time-varying velocities in the process of
propagation.
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1 Introduction
In 1965, the concept of a soliton was �rst de�ned by
Zabusky and Kruskal [1]. With the development of soli-
ton theory, Zabusky and Kruskal’s classical solitons have
been generalized to a more general class of solitons with
at least time-varying velocities, such as those observed
in nonlinear optics and Bose-Einstein condensate. It was
Serkin, Hasegawa and Belyaeva [2] who substantially ex-
tended the concept of classical solitons to nonautonomous
solitons. From a mathematical point of view, solitons are
a class of special solutions of nonlinear partial di�eren-
tial equations (PDEs). As the generalization of classical
di�erential equations with integer order, fractional-order
di�erential calculus and its applications have attracted
much attention [3–7]. In 2010, Fujioka, Espinosa and Ro-
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dríguez [8] described soliton propagation of an extended
nonlinear Schrödinger equation which incorporates frac-
tional dispersion and a fractional nonlinearity. Recently,
Yang et al. [9] modeled fractal waves on shallow water
surfaces via a local fractional KdV equation. In the past
several decades, �nding soliton solutions of nonlinear
PDEs has gradually developed into a signi�cant direction
and some e�ective methods have been proposed for con-
structing soliton solutions, such as the inverse scattering
method [10], Bäcklund transformation [11], Darboux trans-
formation [12], Hirota’s bilinear method [13], Wronskian
technique [14], tanh method [15], homogeneous balance
method [16], Jacobi elliptic function expansion method
[17], sub-equation method [18], exp-function method [19],
transformed rational function method [20], and the �rst
integral method [21, 22].

As a direct method, Hirota’s bilinear method [13] has
been widely used to construct multi-soliton solutions of
many nonlinear PDEs [23–34]. However, there is very little
research work in extending Hirota’s bilinear method for a
whole hierarchy of nonlinear PDEs (see. e.g., [35]). This is
because it is di�cult to �nd a bilinear form suitable for all
the nonlinear PDEs in a given hierarchy. In this paper, we
shall give a bilinear form of the following newmKdV hier-
archy with time-dependent coe�cients

vt =
n∑

m=0
α2m+1(t)Fmvx , n = 0, 1, 2, · · · , (1)

and then construct its multi-soliton solutions through Hi-
rota’s bilinear method. Here the recursion operator em-
ployed is

F = ∂2 + 4v2 + 4vx∂−1v,

∂ = ∂
∂x , ∂

−1 = 1
2

 x∫
−∞

dx −
∞∫
x

dx

 .

When α2m+1(t) = 1 and m = n, Equation (1) becomes
the known constant-coe�cient mKdV hierarchy [30] vt =
Fnvx, n = 0, 1, 2, · · · . The �rst equation of the mKdV hier-
archy (1) is the trivial linear variable-coe�cient equation
vt = α1(t)vx, and the second and third equations are the
following non-trivial nonlinear equations with variable-
coe�cients:

vt = α1(t)vx + α3(t)vxxx + 6α3(t)v2vx , (2)
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vt = α1(t)vx + α3(t)vxxx + 6α3(t)v2vx

+α5(t)vxxxxx + 10α5(t)v2vxxx

+40α5(t)vvxvxx + 10α5(t)v3x + 30α5(t)v4vx .

(3)

Obviously, Equations (2) and (3) include the famousmKdV
equation vt = vxxx + 6v2vx as a special case.

In Section 2, a bilinear form of the mKdV hierarchy (1)
is obtained through Hirota’s bilinear method. In Section 3,
starting from the obtained bilinear form, we �rst construct
one-soliton, two-soliton, and three-soliton solutions of the
mKdV hierarchy (1). Based on the obtained soliton solu-
tions, we then summarize a uniform formula for the ex-
plicit N-soliton solution of the mKdV hierarchy (1). In ad-
dition, some spatial structures and propagations of the ob-
tained one-, two- and three-soliton solutions are shown in
�gures. In Section 4, we conclude this paper.

2 Bilinearization
For the bilinear form of the mKdV hierarchy (1), we have
the following theorem.

Theorem 1. The mKdV hierarchy (1) possesses a bilinear
form:

D2
x f * · f = 0, (4)(

Dt −
n∑

m=0
α2m+1(t)D2m+1

x

)
f * · f = 0, (5)

where f * denotes the conjugate of f = f (x, t), and Dx and Dt
are Hirota’s di�erential operators de�ned by

Dmx Dnt f (x, t) · g(x, t)

= (∂x − ∂x′ )m(∂t − ∂t′ )n f (x, t) · g(x′, t′)|x′=x,t′=t .

Proof. Firstly, we reduce the general term α2m+1(t)Fmvx in
Equation (1). For the sake of convenience, we introduce

vt2m+1 = α2m+1(t)Fmvx ,m = 0, 1, 2, · · · , n. (6)

For any integer m ≥ 1, Equation (6) can be rewritten as

vt2m+1 =
α2m+1(t)
α2m−1(t)

Fvt2m−1 =
α2m+1(t)
α2m−1(t)

[vt2m−1xx

+4v2vt2m−1 + 4vx∂−1vvt2m−1
]
.

(7)

Integrating Equation (7) with respect to x once, we have

∂−1vt2m+1 =
α2m+1(t)
α2m−1(t)

[
vt2m−1x + 2v∂−1(v2)t2m−1

]
. (8)

Secondly, we take a logarithmic transformation

v = i(ln f
*

f )x , f = f (x, t1, t3, · · · ), (9)

where i is the imaginary unit. Then Equation (8) becomes

1
f *f Dt2m+1 f

* · f

= α2m+1(t)
α2m−1(t)

[
1
f *f D

2
xDt2m−1 f * · f

− 1
f *2f 2 (Dt2m−1 f

* · f )(D2
x f * · f )

− 2
f *f (Dx f

* · f )∂−1
(
D2
x f * · f
f *f

)
t2m−1

]
.

(10)

If we set D2
x f * · f = 0, then Equation (10) is reduced to

Dt2m+1 f * · f =
α2m+1(t)
α2m−1(t)

D2
xDt2m−1 f * · f . (11)

From Equations (6), (7) and (11), we have

Dt2m+1 f * · f = α2m+1(t)D2m+1
x f * · f ,m = 0, 1, 2, · · · , n. (12)

It is convenient to introduce t1, t2, · · · , tn for the iterative
reductionof the general term α2m+1(t)Fmvx in Equation (6).
For example, Equation (6) gives

vt1 = α1(t)vx , vt3 = α3(t)Fvx =
α3(t)
α1(t)

Fvt1 , (13)

vt5 = α5(t)F2vx =
α5(t)
α3(t)

Fvt3 , (14)

and so forth.
In fact, t1, t2, · · · , tn can be seen as the same as t. It

is then easy to see from Equations (11)–(14) that the right
side of Equation (1) is expressed by

n∑
m=0

α2m+1(t)Fmvx =
1
f *f

n∑
m=0

α2m+1(t)D2m+1
x f * · f (15)

under the case of D2
x f * · f = 0. At the same time, for the left

side of Equation (1) we have

vt =
1
f *f Dt f

* · f . (16)

Finally, with the help of Equations (14) and (15) we obtain
a bilinear form which consists of Equations (4) and (5) for
the mKdV hierarchy (1). Thus, the proof is complete.
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3 Multi-soliton solutions
In this section, we use the bilinear form in Equations (4)
and (5) to construct multi-soliton solutions of the mKdV
hierarchy (1). In order to obtain the one-soliton solution,
we suppose that

f = 1 + εf (1) + ε2f (2) + ε3f (3) + · · · , (17)

f * = 1 + εf (1)* + ε2f (2)* + ε3f (3)* + · · · . (18)

Substituting Equations (17) and (18) into Equations (4) and
(5), and then collecting the coe�cients of the same order
of ε, we obtain a system of PDEs:

∂2x(f (1) + f (1)*) = 0, (19)

∂2x(f (2) + f (2)*) = −D2
x f (1) · f (1)*, (20)

∂2x(f (3) + f (3)*) = −D2
x(f (1) · f (2)* + f (1)* · f (2)), (21)

[
∂t −

n∑
m=0

α2m+1(t)∂2m+1x

]
(f (1) + f (1)*) = 0, (22)

[
∂t −

n∑
m=0

α2m+1(t)∂2m+1x

]
(f (2) + f (2)*)

= −
(
Dt −

n∑
m=0

α2m+1(t)D2m+1
x

)
f (1) · f (1)*,

(23)

[
∂t −

n∑
m=0

α2m+1(t)∂2m+1x

]
(f (3) + f (3)*)

= −
(
Dt −

n∑
m=0

α2m+1(t)D2m+1
x

)
×(f (1) · f (2)* + f (1)* · f (2)),

(24)

...

and so forth. If we let

f (1) = eξ1+
π
2 i , ξ1 = k1x +

n∑
m=0

w1,2m+1

∫
α2m+1(t)dt (25)

be a solution of Equations (19) and (22), we obtain

w1,2m+1 = k2m+11 . (26)

Figure 1: Spatial structure of one-soliton solution (29) with k1 =
0.7, α2m+1(t) = 1 + 0.5m sin t, n = 20.

Substituting Equations (25) and (26) into Equations (20)
and (23), we can verify that if

f (2) = f (2)* = 0, (27)

then Equations (21), (24) and all the other equations omit-
ted in the above system of PDEs all hold. In this case, we
write

f1 = 1 + eξ1+
π
2 i , (28)

and hence obtain the following one-soliton solution of the
mKdV hierarchy (1):

v = i
(
ln f

*
1
f1

)
x
= k1sechξ1. (29)

In Figure 1, the spatial structure of the one-soliton solu-
tion (29) is shown. Figure 2 displays the propagation of the
one-soliton solution (29) along the negative x-axis. It can
be seen from the velocity image in Figure 3 that the veloc-
ity of solution (29) periodically changes over time in the
process of propagation.

For the two-soliton solution, we suppose that

f (1) = eξ1+
π
2 i + eξ2+

π
2 i , (30)

with

ξ2 = k2x +
n∑

m=0
w2,2m+1

∫
α2m+1(t)dt.

Substituting Equation (30) into Equations (19) and (22)
yields

w2,2m+1 = k2m+12 . (31)
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In view of Equation (23), we further suppose that

f (2) = eξ1+ξ2+πi+θ12 , (32)

where θ12 is a constant to be determined. Substituting
Equations (30)–(32) into Equation (20), we obtain

eθ12 = (k1 − k2)2
(k1 + k2)2

. (33)

It is easy to see that if we substitute Equations (30)–(32)
into Equations (21) and (24), then we can verify that

f (3) = f (3)* = · · · = 0 (34)

satis�es Equations (21), (24) and all the other equations
omitted in the above system of PDEs. In this case, we write

f2 = 1 + eξ1+
π
2 i + eξ2+

π
2 i + eξ1+ξ2+πi+θ12 (35)

and hence obtain the following two-soliton solution of the
mKdV hierarchy (1):

v = i
[
ln
(
1 + eξ1− π2 i + eξ2− π2 i + eξ1+ξ2−πi+θ12
1 + eξ1+ π

2 i + eξ2+ π
2 i + eξ1+ξ2+πi+θ12

)]
x
. (36)

In Figure 4, the spatial structure of the two-soliton solution
(36) is shown. Figure 5 displays the variable velocity prop-
agation of the two-soliton solution (36) along the negative
x-axis.

Similarly, we continue to construct the three-soliton
solution. For this purpose, we suppose that

f (1) = eξ1+
π
2 i + eξ2+

π
2 i + eξ3+

π
2 i , (37)

with

ξ3 = k3x +
n∑

m=0
w3,2m+1

∫
α2m+1(t)dt.

Substituting Equation (37) into Equations (19) and (22)
yields

w3,2m+1 = k2m+13 . (38)

In view of Equations (20) and (23), we suppose that

f (2) = eξ1+ξ2+πi+θ12 + eξ1+ξ3+πi+θ13 + eξ2+ξ3+πi+θ23 , (39)

where θ13 and θ23 are unknown constants to be deter-
mined.

Substituting Equations (37)–(39) into Equations (20)
and (23), we obtain

eθ13 = (k1 − k3)2
(k1 + k3)2

, eθ23 = (k2 − k3)2
(k2 + k3)2

. (40)
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Figure 2: Propagation of one-soliton solution (29) with k1 = 0.7,
α2m+1(t) = 1 + 0.5m sin t, n = 20 at di�erent times (a) t = −5, (b)
t = 0 and (c) t = 5.
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Figure 3: Velocity image of one-soliton solution (29) with k1 = 0.7,
α2m+1(t) = 1 + 0.5m sin t, n = 20.

Figure 4: Spatial structure of two-soliton solution (36) with k1 =
0.3, k2 = 0.6, α2m+1(t) = 1 + 2msecht, n = 120.
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Figure 5: Propagation of two-soliton solution (36) with k1 = 0.3,
k2 = 0.6, α2m+1(t) = 1 + 2msecht, n = 120 at di�erent times (a)
t = −10, (b) t = 0 and (c) t = 10.
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Figure 6: Spatial structure of three-soliton solution (43) with k1 =
0.5, k2 = 1.05, k3 = 1, α2m+1(t) = (1 + mt2)−1, n = 10.

Then the substitution of Equations (37)–(40) into Equa-
tions (21) and (24) gives

f (3) = eξ1+
π
2 i+ξ2+

π
2 i+ξ3+

π
2 i+θ12+θ13+θ23 .

If we further take

f (i) = 0, f (i)* = 0, i = 4, 5, · · · , (41)

then it can be veri�ed that all the other equations omitted
in the above system of PDEs hold. In this case, we write

f3 = 1 + eξ1+
π
2 i + eξ2+

π
2 i + eξ3+

π
2 i

+eξ1+ξ2+πi+θ12 + eξ1+ξ3+πi+θ13

+eξ2+ξ3+πi+θ23 + eξ1+ξ2+ξ3+θ12+θ13+θ23+
3
2 πi ,

(42)

and hence obtain the following three-soliton solution of
the the mKdV hierarchy (1):

v = i


ln



1 + eξ1−
π
2 i + eξ2−

π
2 i

+eξ3− π2 i + eξ1+ξ2−πi+θ12
+eξ1+ξ3−πi+θ13 + eξ2+ξ3−πi+θ23
+eξ1+ξ2+ξ3+θ12+θ13+θ23− 3

2 πi

1 + eξ1+
π
2 i + eξ2+

π
2 i

+eξ3+ π
2 i + eξ1+ξ2+πi+θ12

+eξ1+ξ3+πi+θ13 + eξ2+ξ3+πi+θ23
+eξ1+ξ2+ξ3+θ12+θ13+θ23+ 3

2 πi




x

. (43)

In Figure 6, the spatial structure of the three-soliton so-
lution (43) is shown. Figure 7 displays the variable veloc-
ity propagation of the three-soliton solution (43) along the
negative x-axis.

Generally, if we take

fN =
∑
µ=0,1

e
N∑
i=1
µi(ξi+ π

2 i)+
∑
1≤i<j

µiµjθij
, (44)
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Figure 7: Propagation of three-soliton solution (43) with k1 = 0.5,
k2 = 1.05, k3 = 1, α2m+1(t) = (1 + mt2)−1, n = 10 at di�erent times
(a) t = −15, (b) t = 0 and (c) t = 15.
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ξi = kix +
n∑

m=0
wi,2m+1

∫
α2m+1(t)dt, wi,2m+1 = k2m+1i , (45)

eθij =
(ki − kj)2

(ki − kj)2
(i < j; i, j = 1, 2, · · · , N), (46)

then a uniform formula of the explicit N-soliton solution
of the mKdV hierarchy (1) can be obtained as follows:

v = i


ln


∑
µ=0,1

e
N∑
i=1
µi(ξi− π2 i)+

∑
1≤i<j

µiµjθij

∑
µ=0,1

e
N∑
i=1
µi(ξi+ π

2 i)+
∑
1≤i<j

µiµjθij




x

, (47)

where the summation Σµ=0,1 refers to all possible combi-
nations of each µi = 0, 1 for i = 1, 2, · · · , N.

To the best of our knowledge, the one-soliton solution
(29), two-soliton solution (36), three-soliton solution (43)
and N-soliton solution (47) are new; they have not been
reported in literature.

4 Conclusions
In summary, we have extendedHirota’s bilinearmethod to
the mKdV hierarchy (1) with time-dependent coe�cients.
In the procedure of extending Hirota’s bilinear method
to the mKdV hierarchy (1), one of the key steps is to re-
duce this mKdV hierarchy (1) to the bilinear form in Equa-
tions (4) and (5). The obtained one-soliton, two-soliton,
three-soliton and N-soliton solutions (29), (36), (43) and
(47) contain many time-dependent functions which pro-
vide enough freedom for us to describe spatial struc-
tures and propagations of these solutions. It is graphically
shown that the one-soliton, two-soliton and three-soliton
solutions (29), (36) and (43) possess time-varying veloci-
ties in the process of propagation. How to extend Hirota’s
bilinear method to some other hierarchies of nonlinear
PDEs with time-dependent coe�cients is worthy of study.
This is our task in the future.
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