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Abstract: This paper introduces the concepts of logical en-
tropy and conditional logical entropy of finite partitions
on a quantum logic. Some of their ergodic properties are
presented. Also logical entropy of a quantum dynamical
system is defined and ergodic properties of dynamical sys-
tems on a quantum logic are investigated. Finally, the ver-
sion of Kolmogorov-Sinai theorem is proved.
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1 Introduction

Birkhoff and Von Neumann in [1] have introduced the
quantum logic approach. Entropy is a tool to measure the
amount of uncertainty in random event. Entropy has been
applied in a variety of problem areas including physics,
computer science, general systems theory, information
theory, statistics, biology, chemistry, sociology and many
other fields. Hejun Yuan, Mona Khare and Shraddha Roy,
using the notion of state of quantum logic, introduced
Shanon entropy of finite partitions on a quantum logic [2—
4]. The definition of entropy of a dynamical system might
be in three stages [2, 5, 6]. Logical entropy is a measure on
set of ordered pairs [7]. In 1982, Rao, Good, Patil and Taillie
defined and studied the notion logical entropy [8-10]. Rao
introduced precisely this concept as quadratic entropy [10]
and in the years 2009 and 2013, this concept was discussed
by Ellerman in [7, 11, 12].

The notion of Shanon entropy of quantum dynamical
systems with Bayessian state was studied by Mona Khare
and Shraddha Roy in [2]. In this paper, the notion of logi-
cal entropy with finite partitions is defined and then, logi-
cal entropy of quantum dynamical systems with Bayessian
state is presented and studied. In Section 2, some basic
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definitions are presented. In Section 3, logical entropy and
coditional logical entropy of partitions of a quantum logic
with respect to state s are defined and a few results about
them will be presented. In the subsequent section the re-
lations s-refinement and = are defined and logical en-
tropy and coditional logical entropy under the relations
are studied. In Section 4, logical entropy of a quantum dy-
namical system (L, s, ¢) is defined where L is a quantum
logic and s is a Bayessian state. At the end, the version of
Kolmogorov-Sinai theorem is proved.

2 Finite Partitions

At first, some basic definitions are presented that will be
useful in further considerations.

Definition 1. [4] A quantum logic QL is a g-orthomodular
lattice, i.e., alattice L (L, <, Vv, A, 0, 1) with the smallest el-
ement O and the greatest element 1, an operation : L > L
such that the following properties hold for all a, b, c € L:

i)au=a,asb:>b,sal,a\/a' =1,aAa' = 0;

ii) Given any finite sequence (a;)ic;, a; < a;, /= j, thejoin
Viena; existsin L;

iii) L is orthomodular:a<b =b=a Vv (b A a/).

Two elements a, b € QL are called orthogonal if a < bl and
denoted by a L b. A sequence (a;);¢; is said orthogonal if
a; L aj, VV= ]

Definition 2. [4] Let L be a quantum logic. Amap s : L >
[0, 1]is astateiff s(1) = 1 and for any orthogonal sequence
(aiers s(Vierai) = 3icp s(ay).

Definition 3. [4] Let P = {ay, ..., an} be a finite system
of elements of a quantum logic. P is called to be a V-
orthogonal system iff vk, a; L ay,q, Vk.

Definition 4. [4] A system P = {ay, ..., an} C Lissaid to
be a partition of L corresponding to a state s if:

i) P is a v-orthogonal system;

if) s(viL a;) = 1.

Note that from definition 2, we obtain Z;Ll s(a;) = 1.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

The article is published with open access at www.degruyter.com.



2 —— A. Ebrahimzadeh

Definition 5. [4] Let the system (b1, ..., bm) be any parti-
tion corresponding to a state s and a € L. The state s is
said has Bayes’ Property if s(\/j"il(a Abj)) = s(a).

Lemma 6. [4]Let Q = (b4, ..., bm) be a partition on L, and
a € L, and the state s has Bayes’ Property. Then Z]."il s(an
bj) = s(a).

3 Logical entropy of finite
partitions

Let P = {ai,...,an} and Q = {b1, ..., bm} be two finite
partitions of a quantum logic corresponding to a state s.
The common refinement of these partitions is:

P\/Q={a,~/\b,~:aieP,b,-eR}.

Definition 7. Let P = {ay, ..., an} be a partition of a quan-
tum logic corresponding to a state s. The logical entropy of
P with respect to state s is defined by:

n

hs(P) = > " s(a)(1 - s(ay).

i=1

Since 1, s(a;) = 1, we have hi(P) = 1 - 31 (s(ay))*.

Definition 8. Let P = {ai,...,an} and Q = {b1, ..., bm}
be two partitions of a quantum logic corresponding to a
state s. The conditional logical entropy of P given Q with
respect to state s is defined as:

hL(P|Q) = Z Z s(a; A bj)(s(bj) - s(a; A by)).

i=1 j=1

In the next theorem an upper bound for logical entropy on
a quantum logic is presented.

Theorem 9. Let P be a finite partition of a quantum logic
corresponding to a state s. Then O < hl(P)<1- %

Proof. Let P = (p1,...,pn) € R" be a probability distri-
bution, then from [7], maximum value of the logical en-
tropyis 1 - % Since Y"1, s(a;) = 1, P = (s(a1), ..., s(an))
is a probability distribution and hence the proof is com-
plete. O

In the following theorem the conditional logical entropy
under the common refinement of partitions is studied.

Theorem 10. Let P, Q and R be finite partitions of a quan-
tum logic corresponding to a state s having Bayes’ Property.
Then h}(P v Q|R) = h(P|R) + h}(Q|P V R).
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Proof. Let P = {ay,
{Cl, .
have
hi{(PVQIR) =31, S D ker S(ai Abj A ci)(s(er) - s(a; A
bj A Ck)) = Z?:l Z]m=1 Z;=1 s(al- A bj A Ck)S(Ck)

-2 Z;ril S ke1(8ai A by A c))?

= > S s(ai Acs(e) = o8, Sii (slai A ci))?

+ 2 Dk (s(ai A c)?

- Z}mzl > rea(sai A by A )’

On the other hand we can write

hs(PIR) = 0 “slai Acsled = Y (slai A )y,

i=1 k=1 i=1 k=1

(EEX) aﬂ}; Q = {bl, ceey bm} and R =
., Cr}. Since s has Bayes’ Property, by Lemma 6 we

and

hs(QIPV R) = 301, 2o Yok (s(ai A b A i)

s(ai A cd) = D00y Do >oiq (s(a@i A by A )

= > Y (slai A c))?

- Z;Ll Z]"ll ZLl(S(ai A bj A ).

Thus the proof is complete. O

Now the assertion of the following theorem will be proved
that will be useful in further theorems.

Theorem 11. Let P and Q be finite partitions of a quan-
tum logic corresponding to a state s having Bayes’ Property.
Then hi(P v Q) = hs(Q) + hs(P|Q).

Proof. Let P = {ay, ..
Lemma 6 we can write

»an}and Q = {by,..., bm}. From

Z Z s(ai N b}')(l - s(ai N b]))

hi(Pv Q) =
-1 =1
= Z Z s(al- A b]) - Z Z(s(ai A b]'))z
-1 j=1 -1 j=1
= Z s(b)) - Z Z(s(a,- A b)),
=1 -1 j-1

On the other hand h{(Q) = X1 s(b)(1 - s(by) =
er:1 S(bj) - Zjnil(S(bj))z. AISO,

Z Z s(a; A b})(S(b]) -s(a; A b]))

hs(PlQ) =
=1 j=1
= Z Z s(a; A bj)(s(b))) - Z Z(S(ai A b)))?
=1 j=1 =1 j=1
= Z(S(bj))z - Z Z(S(Gi A bj))z-
j=1 i=1 j=1
Hence the proof is complete. O

In the next theorem it is proved subadditivity of logical en-
tropy of partitions on a quantum logic.
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Theorem 12. Let P and Q be finite partitions of a quan-
tum logic corresponding to a state s having Bayes’ Property.
Then

i) hi(P|Q) < hi(P);

ii) max{h{(P), hs(Q)} < h§(P v Q) < h§(P) + h5(Q).

Proof. i) Let P = {ay,...,an} and Q = {by,..., bm}. For
each a; € P, we can write

erzl s(a; A b])(S(b]) -s(a; A bl))

< E}r’:ll s(a; A b])(Z}n:zl S(bj) -s(a; A b]))

=s(a)(X2}, s(b)) - s(ai A by)

= s(a)(1 - 327, s(a; A b)) = s(ai)(1 - s(ay)).

So

hi(P|Q) = > Z]":ll s(a; A b)(s(bj) - s(a; A by)) <
S s(a)(1 - s(ay)) = hi(P).

ii) From Theorem 11 and part i),

hi(P v Q) = hi(Q) + hi(P|Q) < hi(Q) + hi(P).

By Theorem 11, max{h.(P), h}(Q)} < h}(P v Q). O

Let s be a state. Two finite partitions P and Q of a quantum
logic are called s-independent if s(a A b) = s(a)s(b) for all
acP,and b € Q.

In the next theorem you observe that, for two s-
independent finite partitions P and Q of a QL,

hL(P v Q)/= hL(P) + hL(Q) necessarily. Also, in this case
hL(P|Qy= h!(P) necessarily.

Theorem 13. Let s be a state and let P and Q be s-
independent finite partitions of a quantum logic. Then

i) hi(P v Q) = hi(P) + h{(Q) - hi(P)hi(Q);

ii) hi(P|Q) = hi(P)(1 - h{(Q)).

Proof. i) Since hi(P) = 1 - 31, (s(a;))? and h5(Q) = 1 -
Zj"='1(s(bj))2 and P, Q are s-independent, we can write
h(Pv Q) =1-31, 3 (s(a; A b))
=1-31, S0 (s(a)(s(b)))®
= 1- (L, (@) (s(hi)?)
= 1- (1L, (@) (s(by)?)
- Son(s(a))? + 3o (s(ay)?
= hi(P) + Y1 (s(a)*(1 = 327 (s(b))?)
= h{(P) + (1 - h}(P)HL(Q)
= h{(P) + h}(Q) - hi(P)RL(Q).
ii) Follows from i) and Theorem 11. O

Definition 14. Let P = {ai,...,an} and Q = {b1, ..., bm}
be two partitions of a quantum logic corresponding to a
state s. We say Q is a s-refinement of P, denoted by P < Q,
if there exists a partition I(1), ..., I(n) of the set {1, ..., m}
such that a; = \/jel(i)b,- foreveryi=1,...,n.

Now the relation between the s-refinement and the logical
entropy of finite partitions will be studied.

Logical entropy of quantum dynamical systems = 3

Theorem 15. Let P = {a,...,an},Q = {b1,...,bm} and
R = {ci,..., cr} be partitions of a quantum logic corre-
sponding to a state s. Then

i) P <s Q implies that h}(P) < h}(Q);

ii) If P <5 Q and the quantum logic be distributive then
hi(PIR) < hi(QIR).

Proof. i)Since P <; Q, there exists a partition I(1), ..., I(n)
of the set {1, ..., m} such that a; = V;¢;b; for every i =
1, ..., n. So from definition 2, s(a;) = > s(b;), there-
fore Z;ﬁl(s(bi))2 < >0 (s(ay))?, so

JEI(D)

h(P) =1 (s(@))? < 1-> (s(b)* = hi(Q).

i=1 j=1

ii) P <s Q implies that PVR <s QV R, because let a; A ¢ be
an arbitrary element of P v R, then there exists a partition
1(1), ..., I(n) of the set {1, ..., m} such that a; = Vj¢b;
for every i = 1,..., n. Therefore a; A ¢ = (Vjepbj) A c =
Vjerw(bj A ¢), hence PV R <5 Q V R. Now by Theorems
11 and 15, it will be obtained h%(P|R) = hL(P v R) - hi(R) <
hi(Q Vv R) - hi(R) = h{(Q|R). O

Definition 16. Let P = {ay, ..., an} and Q = {b4, ..., bm}
be two partitions of a quantum logic corresponding to a
state s. P ¢ Q if for each b; € Q there exists a; € P with
s(a; A b;) = s(b;). P =s Qif Pc? Qand Q C¢ P.

The next theorem shows that, the logical entropy and log-
ical conditional entropy of finite partitions of a quantum
logic corresponding to a state s having Bayes’ Property, are
invariant under the relation =; .

Theorem 17. Let P and Q be finite partitions of a quan-
tum logic corresponding to a state s having Bayes’ Property.
Then

i) P c? Qif and only if h}(P|Q) = 0;

ii) if P = Q then h:(P) = h(Q);

iii) if P =5 Q then h{(P|R) = h{(Q|R);

iv) if Q =5 R then h.(P|Q) = hL(P|R).

Proof. i) Let P = {ay,...,an} and Q = {by, ..., bn} and
P ¢ Q, then for each b; € Q there exists a;, € P such that
s(b;) = s(aj, A bj). Since s(b;) = Z;Ll s(a; A bj), we obtain
s(bj) = s(aj, A b;) and for each /= ig, s(a; A b;) = 0 and so
hL(P|Q) = 0. Conversely, if h}(P|Q) = O then for each i, j,
s(b;) = s(a; A bj) or s(a; A bj) = 0. For an arbitrary element
b; € Q, since 0/= s(b;) = 3", s(a; A bj) we deduce that
there exists an i1, 1 < i; < n, such that s(b;) = s(a;, A by).

ii) Since P ¢ Q, by i) we have h.(P|Q) = 0. So by theorem
11, h(P|Q) = hL(PvQ)-hL(Q) = 0 and therefore hi(PVv Q) =
hi(Q). Similarly if Q 2 P, then h(Q|P) = h(P v Q) -
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hL(P) = 0 and so hL(P v Q) = hL(P). Hence we imply that
hi(P) = hi(Q).

iii) We first show that P ¢ Q implies that PV R c? QVR.
Let bj, Acy, be an arbitrary element of QVR. Since P ¢ Q,
there exists a;, € P such that s(a;, A bj,) = s(bj,). Now
S((Cl,‘0 A\ Cko) 74\ (bjo N Cko)) = s(aio A bio 74\ (Ck0 A\ Cko)) =
s(ai, A b, A cy,), it is sufficient to show that s(a;, A bj, A
Ck,) = s(bj, Acy,). Since s has Bayes’ Property, s(a;, Abj,) =
s(bj,) = >_iL, s(a; A b;,). So for each /= i, s(a; A bj,) =0,
therefore for each i/= iy, s(a; A bj, A cx,) = O and this
implies that

n
s(a,-o A bio A Cko) = Z s(al- A bio A Cko) = S(bjo N Ckg)'

i=1
Thus PVR c? QVR. By changing theroleof Pand Q, P =;
Q implies that P v R =5 Q V R. Hence from ii), h}(P|R) =
hL(PV R)-hL(R) = hi(QVR)-hL(R) = hL(Q|R). iv) We need
toshow that Q c Rimpliesthat PvQ C¢ PVR. Let a;, Acy,
be an arbitrary element of PV R. Since Q C? R, there exists
bj, € Qsuch that s(bj;, A cx,) = s(c,). Now s((aj, A bj,) A
(ai, A c,)) = s((ai, A ai,) Abjy Ack,) = s(ai, Abj, Acy,), itis
sufficient to show that s(a;, Abj, Acy,) = s(a;, Acy,). Since s
has Bayes’ Property, s(bj, Acy,) = s(ck,) = Z;ﬁl s(bjAck,).
So for each j/= jo, s(bj A ci,) = 0, therefore for each j/= jo,
s(a;, A bj A ci,) = 0 and this implies that

m
s(ai, A bj, A ck,) = Z s(ai, A bj A cy,) = s(ai, A Ck,)-
j=1

Thus P v Q ¢ PV R. By changing the role of Q and R,
Q =5 Rimplies that PV Q =5 PVR. Now fromii), h}(P|Q) =
hi(P v Q) - hi(Q) = h(P v R) - hi(R) = hi(P|R). D

4 Logical entropy of quantum
dynamical systems

Definition 18. [2] Let L be a quantum logicand ¢ : L > L
be a map with the following properties:

) plav b)=¢(a)Vv eb),vVa,b e L;

ii) e(a A b) = go(q) A@(b),Va,b € L;

iii) p(a) = (p(a)), Va € L.

¢ : L > Lwithrespect to a state s is called state preserving
if s(¢p(a)) = s(a) for every a € L. Then the triple (L, s, @) is
said a quantum dynamical system where the state s having
Bayes’ Property. In the following theorem the existence of
the limit in Definition 20 is shown.
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Theorem 19. Let(L, s, ¢) be a quantum dynamical system
and P be a partition of (L, s), then lim, .. %h’s(\/,{l(p"P) ex-
ists.

Proof. Let an = hL(VI,@'P). It will be shown that for
p € N, ansp < an + ap and then by Theorem 4.9 in [13],
limy 5o +ay exists and equals inf, 2. By Theorem 12, ii)
we have

hs(Viy " ¢'P)

< h{(Vig@'P)+ hi(v['P o' P)

= an+hi(V' ) ™P)

= an+hi(@"(V! ) ¢'P)

= an+hi(VP ) 9'P)

Anyp =

= an+ap.

O

The second stage and the final stage of the definition of the
logical entropy of a quantum dynamical system (L, s, @) is
given in the next definition.

Definition 20. Let (L, s, ¢) be a quantum dynamical sys-
tem and P be a partition of (L, s). The logical entropy of T
respect to P is defined by:

.1 i
hy(p, P) = lim (v, 9'P).
The logical entropy of ¢ is defined as:
hi(p) = sup hi(p, P)

where the supremum is taken over all finite partitions of
(L, s).

In the following proposition some ergodic properties
of hi(¢, P) and h.(p) will be studied.

Proposition 21. If(L, s, ¢) is a quantum dynamical system
and P is a partition of (L, s), then

i) hi(p, P) = hi(p, VL, ¢'P);

ii) For k € N, hl(¢*) = khl(¢).

Proof. i) hi(g, VE,9'P) = lim,se 2hE(VE, @/ (VE, @'P))

= limpsee LRL(VET19P)

= limyse0 (K1) ()R (VET 2 0'P) = Ki(g, P).

ii) Let P be an arbitrarary finite partition of (L, s). we can
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write

hy(p", via@'P) = lim =~ hy(viL (@Y (VL @'P)

Lo on ko ki
= rlll_gloﬁhs(\/jzlvi:l(P]lP)
N Y PR S
= lim ~hy(vii'9'P)
nk 1

= lim =BV p'P)

= khi(p,P)

So khi(¢) = ksupp hi(p, P) = sup, hi(p*, VI, ¢'P) <
supp hi(@*, P) = hi(¢p¥). Since P <5 vk, ¢'P, it will be ob-
tained hi(p*, P) < hi(p*, v, ¢0'P) = khi(p, P). O

Definition 22. Let (L, s, ¢) be a quantum dynamical sys-
tem. A finite partition R of (L, s), is said to be an s-
generator of ¢, if there exists r € Nsuch that P <5 VI_; 'R
for each finite partition P of (L, s).

The main aim of this theorem is to prove an analogue of the
Kolmogorov-Sinaj theorem on logical entropy and genera-
tors.

Theorem 23. Let (L, s, ¢) be a quantum dynamical system
and let R be an s-generator of @, then h(¢p) = h(p, R).

Proof. Let P be an arbitrary finite partition of (L, s). Since

R is an s-generator, P =< v{;lgoiR. By Theorem 15, you

get hi(p, P) < hi(p,V_,0'R) = hi(p, R). Hence hi(p) =

suphl(p,P) < hi(p,R). On the other hand hl(p,R) <
P

hi(p). O

Logical entropy of quantum dynamical systems = 5

5 Conclusion

This paper has introduced logical entropy and conditional
logical entropy of finite partitions on a quantum logic and
has presented some of their ergodic properties. Also, logi-
cal entropy of a quantum dynamical system with finite par-
titions studied and some of its properties proved.

References

[1]  G. Birkhoff, J. Von Neumann, Ann. Math. 37, 8 (1936)

[2] M. Khare, Sh. Roy, China. J. Theor. phys. 50, 551 (2008)

[3] M. Khare, Sh. Roy, Int. ). Theor. Phys. 47, 1386 (2008)

[4] H.Yuan, China. MM-Preprints 22, 409 (2003)

[5] A.Ebrahimzadeh, M. Ebrahimi, JMMRC 2, 53 (2013)

[6] A.Ebrahimzadeh, M. Ebrahimi, U.P.B. Sci. Bull. Series A 76, 107
(2014)

[7]1 D.Ellerman, Int. ). Semant. Comput. 7, 121 (2013)

[8] I.).Good, J. Amer. Statist. Assoc. 77, 561 (1982)

[9] G.P. Patil, C. Taillie, J. Amer. Statist. Assoc. 77, 548 (1982)

[10] C.R. Rao, Theor. Popul. Biol. 21, 24 (1982)

[11] D. Ellerman, Rev. Symb. Logic. 3, 287 (2010)

[12] D.Ellerman, Theory. Synthese. 168, 119 (2009)

[13] P. Walters, An introduction to ergodic theory (Springer-Verlag,
New York, 1982)



	1 Introduction
	2 Finite Partitions
	3 Logical entropy of finite partitions
	4 Logical entropy of quantum dynamical systems
	5 Conclusion

