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Abstract: This paper introduces the concepts of logical en-
tropy and conditional logical entropy of �nite partitions
on a quantum logic. Some of their ergodic properties are
presented. Also logical entropy of a quantum dynamical
system is de�ned and ergodic properties of dynamical sys-
tems on a quantum logic are investigated. Finally, the ver-
sion of Kolmogorov-Sinai theorem is proved.
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1 Introduction
Birkho� and Von Neumann in [1] have introduced the
quantum logic approach. Entropy is a tool to measure the
amount of uncertainty in random event. Entropy has been
applied in a variety of problem areas including physics,
computer science, general systems theory, information
theory, statistics, biology, chemistry, sociology and many
other �elds. Hejun Yuan, Mona Khare and Shraddha Roy,
using the notion of state of quantum logic, introduced
Shanon entropy of �nite partitions on a quantum logic [2–
4]. The de�nition of entropy of a dynamical system might
be in three stages [2, 5, 6]. Logical entropy is a measure on
set of ordered pairs [7]. In 1982, Rao, Good, Patil and Taillie
de�ned and studied the notion logical entropy [8–10]. Rao
introduced precisely this concept as quadratic entropy [10]
and in the years 2009 and 2013, this conceptwas discussed
by Ellerman in [7, 11, 12].

The notion of Shanon entropy of quantum dynamical
systems with Bayessian state was studied by Mona Khare
and Shraddha Roy in [2]. In this paper, the notion of logi-
cal entropy with �nite partitions is de�ned and then, logi-
cal entropy of quantumdynamical systemswith Bayessian
state is presented and studied. In Section 2, some basic
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de�nitions are presented. In Section 3, logical entropy and
coditional logical entropy of partitions of a quantum logic
with respect to state s are de�ned and a few results about
them will be presented. In the subsequent section the re-
lations s-re�nement and $s are de�ned and logical en-
tropy and coditional logical entropy under the relations
are studied. In Section 4, logical entropy of a quantum dy-
namical system (L, s, φ) is de�ned where L is a quantum
logic and s is a Bayessian state. At the end, the version of
Kolmogorov-Sinai theorem is proved.

2 Finite Partitions
At �rst, some basic de�nitions are presented that will be
useful in further considerations.

De�nition 1. [4] A quantum logic QL is a σ-orthomodular
lattice, i.e., a lattice L (L, ≤,∨,∧, 0, 1) with the smallest el-
ement 0 and the greatest element 1, an operation ′ : L → L
such that the following properties hold for all a, b, c ∈ L:
i) a

′′
= a, a ≤ b ⇒ b

′
≤ a

′
, a ∨ a

′
= 1, a ∧ a

′
= 0;

ii) Given any �nite sequence (ai)i∈I, ai ≤ aj′ , i ̸= j, the join
∨i∈Nai exists in L;
iii) L is orthomodular: a ≤ b ⇒ b = a ∨ (b ∧ a

′
).

Two elements a, b ∈ QL are called orthogonal if a ≤ b
′
and

denoted by a ⊥ b. A sequence (ai)i∈I is said orthogonal if
ai ⊥ aj, ∀i ̸= j.

De�nition 2. [4] Let L be a quantum logic. A map s : L →
[0, 1] is a state i� s(1) = 1 and for any orthogonal sequence
(ai)i∈I, s(∨i∈Iai) =

∑
i∈I s(ai).

De�nition 3. [4] Let P = {a1, ..., an} be a �nite system
of elements of a quantum logic. P is called to be a ∨-
orthogonal system i� ∨ki=1ai ⊥ ak+1, ∀k.

De�nition 4. [4] A system P = {a1, ..., an} ⊂ L is said to
be a partition of L corresponding to a state s if:
i) P is a ∨-orthogonal system;
ii) s(∨ni=1ai) = 1.

Note that from de�nition 2, we obtain
∑n

i=1 s(ai) = 1.
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De�nition 5. [4] Let the system (b1, ..., bm) be any parti-
tion corresponding to a state s and a ∈ L. The state s is
said has Bayes’ Property if s(∨mj=1(a ∧ bj)) = s(a).

Lemma 6. [4] Let Q = (b1, ..., bm) be a partition on L, and
a ∈ L, and the state s has Bayes’ Property. Then

∑m
j=1 s(a∧

bj) = s(a).

3 Logical entropy of �nite
partitions

Let P = {a1, ..., an} and Q = {b1, ..., bm} be two �nite
partitions of a quantum logic corresponding to a state s.
The common re�nement of these partitions is:

P ∨ Q = {ai ∧ bj : ai ∈ P, bj ∈ R}.

De�nition 7. Let P = {a1, ..., an} be a partition of a quan-
tum logic corresponding to a state s. The logical entropy of
P with respect to state s is de�ned by:

hls(P) =
n∑
i=1

s(ai)(1 − s(ai)).

Since
∑n

i=1 s(ai) = 1, we have hls(P) = 1 −
∑n

i=1(s(ai))
2.

De�nition 8. Let P = {a1, ..., an} and Q = {b1, ..., bm}
be two partitions of a quantum logic corresponding to a
state s. The conditional logical entropy of P given Q with
respect to state s is de�ned as:

hls(P|Q) =
n∑
i=1

m∑
j=1

s(ai ∧ bj)(s(bj) − s(ai ∧ bj)).

In the next theorem an upper bound for logical entropy on
a quantum logic is presented.

Theorem 9. Let P be a �nite partition of a quantum logic
corresponding to a state s. Then 0 ≤ hls(P) ≤ 1 − 1

n .

Proof. Let P = (p1, ..., pn) ∈ Rn be a probability distri-
bution, then from [7], maximum value of the logical en-
tropy is 1 − 1

n . Since
∑n

i=1 s(ai) = 1, P = (s(a1), ..., s(an))
is a probability distribution and hence the proof is com-
plete.

In the following theorem the conditional logical entropy
under the common re�nement of partitions is studied.

Theorem 10. Let P, Q and R be �nite partitions of a quan-
tum logic corresponding to a state s having Bayes’ Property.
Then hls(P ∨ Q|R) = hls(P|R) + hls(Q|P ∨ R).

Proof. Let P = {a1, ..., an}, Q = {b1, ..., bm} and R =
{c1, ..., cr}. Since s has Bayes’ Property, by Lemma 6 we
have
hls(P∨Q|R) =

∑n
i=1

∑m
j=1

∑r
k=1 s(ai ∧ bj ∧ ck)(s(ck) − s(ai ∧

bj ∧ ck)) =
∑n

i=1
∑m

j=1
∑r

k=1 s(ai ∧ bj ∧ ck)s(ck)
−
∑n

i=1
∑m

j=1
∑r

k=1(s(ai ∧ bj ∧ ck))
2

=
∑n

i=1
∑r

k=1 s(ai ∧ ck)s(ck) −
∑n

i=1
∑r

k=1(s(ai ∧ ck))
2

+
∑n

i=1
∑r

k=1(s(ai ∧ ck))
2

−
∑n

i=1
∑m

j=1
∑r

k=1(s(ai ∧ bj ∧ ck))
2.

On the other hand we can write

hls(P|R) =
n∑
i=1

r∑
k=1

s(ai ∧ ck)s(ck) −
n∑
i=1

r∑
k=1

(s(ai ∧ ck))2,

and
hls(Q|P ∨ R) =

∑n
i=1

∑m
j=1

∑r
k=1(s(ai ∧ bj ∧ ck)

s(ai ∧ ck)) −
∑n

i=1
∑m

j=1
∑r

k=1(s(ai ∧ bj ∧ ck))
2

=
∑n

i=1
∑r

k=1(s(ai ∧ ck))
2

−
∑n

i=1
∑m

j=1
∑r

k=1(s(ai ∧ bj ∧ ck))
2.

Thus the proof is complete.

Now the assertion of the following theorem will be proved
that will be useful in further theorems.

Theorem 11. Let P and Q be �nite partitions of a quan-
tum logic corresponding to a state s having Bayes’ Property.
Then hls(P ∨ Q) = hls(Q) + hls(P|Q).

Proof. Let P = {a1, ..., an} and Q = {b1, ..., bm}. From
Lemma 6 we can write

hls(P ∨ Q) =
n∑
i=1

m∑
j=1

s(ai ∧ bj)(1 − s(ai ∧ bj))

=
n∑
i=1

m∑
j=1

s(ai ∧ bj) −
n∑
i=1

m∑
j=1

(s(ai ∧ bj))2

=
m∑
j=1

s(bj) −
n∑
i=1

m∑
j=1

(s(ai ∧ bj))2.

On the other hand hls(Q) =
∑m

j=1 s(bj)(1 − s(bj)) =∑m
j=1 s(bj) −

∑m
j=1(s(bj))

2. Also,

hls(P|Q) =
n∑
i=1

m∑
j=1

s(ai ∧ bj)(s(bj) − s(ai ∧ bj))

=
n∑
i=1

m∑
j=1

s(ai ∧ bj)(s(bj)) −
n∑
i=1

m∑
j=1

(s(ai ∧ bj))2

=
m∑
j=1

(s(bj))2 −
n∑
i=1

m∑
j=1

(s(ai ∧ bj))2.

Hence the proof is complete.

In the next theorem it is proved subadditivity of logical en-
tropy of partitions on a quantum logic.
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Theorem 12. Let P and Q be �nite partitions of a quan-
tum logic corresponding to a state s having Bayes’ Property.
Then
i) hls(P|Q) ≤ hls(P);
ii)max{hls(P), hls(Q)} ≤ hls(P ∨ Q) ≤ hls(P) + hls(Q).

Proof. i) Let P = {a1, ..., an} and Q = {b1, ..., bm}. For
each ai ∈ P, we can write∑m

j=1 s(ai ∧ bj)(s(bj) − s(ai ∧ bj))
≤
∑m

j=1 s(ai ∧ bj)(
∑m

j=1 s(bj) − s(ai ∧ bj))
= s(ai)(

∑m
j=1 s(bj) − s(ai ∧ bj))

= s(ai)(1 −
∑m

j=1 s(ai ∧ bj)) = s(ai)(1 − s(ai)).
So
hls(P|Q) =

∑n
i=1

∑m
j=1 s(ai ∧ bj)(s(bj) − s(ai ∧ bj)) ≤∑n

i=1 s(ai)(1 − s(ai)) = h
l
s(P).

ii) From Theorem 11 and part i),
hls(P ∨ Q) = hls(Q) + hls(P|Q) ≤ hls(Q) + hls(P).
By Theorem 11, max{hls(P), hls(Q)} ≤ hls(P ∨ Q).

Let s be a state. Two �nite partitions P and Q of a quantum
logic are called s-independent if s(a ∧ b) = s(a)s(b) for all
a ∈ P, and b ∈ Q.
In the next theorem you observe that, for two s-
independent �nite partitions P and Q of a QL,
hls(P ∨ Q) ̸= hls(P) + hls(Q) necessarily. Also, in this case
hls(P|Q) ̸= hls(P) necessarily.

Theorem 13. Let s be a state and let P and Q be s-
independent �nite partitions of a quantum logic. Then
i) hls(P ∨ Q) = hls(P) + hls(Q) − hls(P)hls(Q);
ii) hls(P|Q) = hls(P)(1 − hls(Q)).

Proof. i) Since hls(P) = 1 −
∑n

i=1(s(ai))
2 and hls(Q) = 1 −∑m

j=1(s(bj))
2 and P, Q are s-independent, we can write

hls(P ∨ Q) = 1 −
∑n

i=1
∑m

j=1(s(ai ∧ bj))
2

= 1 −
∑n

i=1
∑m

j=1(s(ai))
2(s(bj))2

= 1 − (
∑n

i=1(s(ai))
2)(

∑m
j=1(s(bj))

2)
= 1 − (

∑n
i=1(s(ai))

2)(
∑m

j=1(s(bj))
2)

−
∑n

i=1(s(ai))
2 +

∑n
i=1(s(ai))

2

= hls(P) +
∑n

i=1(s(ai))
2(1 −

∑m
j=1(s(bj))

2)
= hls(P) + (1 − hls(P))hls(Q)
= hls(P) + hls(Q) − hls(P)hls(Q).

ii) Follows from i) and Theorem 11.

De�nition 14. Let P = {a1, ..., an} and Q = {b1, ..., bm}
be two partitions of a quantum logic corresponding to a
state s. We say Q is a s-re�nement of P, denoted by P �s Q,
if there exists a partition I(1), ..., I(n) of the set {1, ...,m}
such that ai = ∨j∈I(i)bj for every i = 1, ..., n.

Now the relation between the s-re�nement and the logical
entropy of �nite partitions will be studied.

Theorem 15. Let P = {a1, ..., an}, Q = {b1, ..., bm} and
R = {c1, ..., cr} be partitions of a quantum logic corre-
sponding to a state s. Then
i) P �s Q implies that hls(P) ≤ hls(Q);
ii) If P �s Q and the quantum logic be distributive then
hls(P|R) ≤ hls(Q|R).

Proof. i) Since P �s Q, there exists a partition I(1), ..., I(n)
of the set {1, ...,m} such that ai = ∨j∈I(i)bj for every i =
1, ..., n. So from de�nition 2, s(ai) =

∑
j∈I(i) s(bj), there-

fore
∑m

j=1(s(bj))
2 ≤

∑n
i=1(s(ai))

2, so

hls(P) = 1 −
n∑
i=1

(s(ai))2 ≤ 1 −
m∑
j=1

(s(bj))2 = hls(Q).

ii) P �s Q implies that P∨R �s Q∨R, because let ai∧ c be
an arbitrary element of P ∨ R, then there exists a partition
I(1), ..., I(n) of the set {1, ...,m} such that ai = ∨j∈I(i)bj
for every i = 1, ..., n. Therefore ai ∧ c = (∨j∈I(i)bj) ∧ c =
∨j∈I(i)(bj ∧ c), hence P ∨ R �s Q ∨ R. Now by Theorems
11 and 15, it will be obtained hls(P|R) = hls(P ∨ R) − hls(R) ≤
hls(Q ∨ R) − hls(R) = hls(Q|R).

De�nition 16. Let P = {a1, ..., an} and Q = {b1, ..., bm}
be two partitions of a quantum logic corresponding to a
state s. P ⊂os Q if for each bj ∈ Q there exists ai ∈ P with
s(ai ∧ bj) = s(bj). P $s Q if P ⊂os Q and Q ⊂os P.

The next theorem shows that, the logical entropy and log-
ical conditional entropy of �nite partitions of a quantum
logic corresponding to a state s having Bayes’ Property, are
invariant under the relation$s .

Theorem 17. Let P and Q be �nite partitions of a quan-
tum logic corresponding to a state s having Bayes’ Property.
Then
i) P ⊂os Q if and only if hls(P|Q) = 0;
ii) if P $s Q then hls(P) = hls(Q);
iii) if P $s Q then hls(P|R) = hls(Q|R);
iv) if Q $s R then hls(P|Q) = hls(P|R).

Proof. i) Let P = {a1, ..., an} and Q = {b1, ..., bm} and
P ⊂os Q, then for each bj ∈ Q there exists ai0 ∈ P such that
s(bj) = s(ai0 ∧ bj). Since s(bj) =

∑n
i=1 s(ai ∧ bj), we obtain

s(bj) = s(ai0 ∧ bj) and for each i ̸= i0, s(ai ∧ bj) = 0 and so
hls(P|Q) = 0. Conversely, if hls(P|Q) = 0 then for each i, j,
s(bj) = s(ai ∧ bj) or s(ai ∧ bj) = 0. For an arbitrary element
bj ∈ Q, since 0 ̸= s(bj) =

∑n
i=1 s(ai ∧ bj) we deduce that

there exists an i1, 1 ≤ i1 ≤ n, such that s(bj) = s(ai1 ∧ bj).
ii) Since P ⊂os Q, by i) we have hls(P|Q) = 0. So by theorem
11, hls(P|Q) = hls(P∨Q)−hls(Q) = 0 and therefore hls(P∨Q) =
hls(Q). Similarly if Q ⊂os P, then hls(Q|P) = hls(P ∨ Q) −
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hls(P) = 0 and so hls(P ∨ Q) = hls(P). Hence we imply that
hls(P) = hls(Q).
iii) We �rst show that P ⊂os Q implies that P ∨ R ⊂os Q ∨ R.
Let bj0∧ck0 be an arbitrary element ofQ∨R. Since P ⊂os Q,
there exists ai0 ∈ P such that s(ai0 ∧ bj0 ) = s(bj0 ). Now
s((ai0 ∧ ck0 ) ∧ (bj0 ∧ ck0 )) = s(ai0 ∧ bj0 ∧ (ck0 ∧ ck0 )) =
s(ai0 ∧ bj0 ∧ ck0 ), it is su�cient to show that s(ai0 ∧ bj0 ∧
ck0 ) = s(bj0∧ck0 ). Since s has Bayes’ Property, s(ai0∧bj0 ) =
s(bj0 ) =

∑n
i=1 s(ai ∧ bj0 ). So for each i ̸= i0, s(ai ∧ bj0 ) = 0,

therefore for each i ̸= i0, s(ai ∧ bj0 ∧ ck0 ) = 0 and this
implies that

s(ai0 ∧ bj0 ∧ ck0 ) =
n∑
i=1

s(ai ∧ bj0 ∧ ck0 ) = s(bj0 ∧ ck0 ).

Thus P∨R ⊂os Q∨R. By changing the role of P and Q, P $s

Q implies that P ∨ R $s Q ∨ R. Hence from ii), hls(P|R) =
hls(P∨R)−hls(R) = hls(Q∨R)−hls(R) = hls(Q|R). iv)We need
to show thatQ ⊂os R implies that P∨Q ⊂os P∨R. Let ai0∧ck0
be an arbitrary element of P∨R. SinceQ ⊂os R, there exists
bj0 ∈ Q such that s(bj0 ∧ ck0 ) = s(ck0 ). Now s((ai0 ∧ bj0 ) ∧
(ai0 ∧ ck0 )) = s((ai0 ∧ai0 )∧bj0 ∧ ck0 ) = s(ai0 ∧bj0 ∧ ck0 ), it is
su�cient to show that s(ai0∧bj0∧ck0 ) = s(ai0∧ck0 ). Since s
has Bayes’ Property, s(bj0 ∧ck0 ) = s(ck0 ) =

∑m
j=1 s(bj∧ck0 ).

So for each j ̸= j0, s(bj ∧ ck0 ) = 0, therefore for each j ̸= j0,
s(ai0 ∧ bj ∧ ck0 ) = 0 and this implies that

s(ai0 ∧ bj0 ∧ ck0 ) =
m∑
j=1

s(ai0 ∧ bj ∧ ck0 ) = s(ai0 ∧ ck0 ).

Thus P ∨ Q ⊂os P ∨ R. By changing the role of Q and R,
Q $s R implies that P∨Q $s P∨R. Now from ii), hls(P|Q) =
hls(P ∨ Q) − hls(Q) = hls(P ∨ R) − hls(R) = hls(P|R).

4 Logical entropy of quantum
dynamical systems

De�nition 18. [2] Let L be a quantum logic and φ : L → L
be a map with the following properties:
i) φ(a ∨ b) = φ(a) ∨ φ(b), ∀a, b ∈ L;
ii) φ(a ∧ b) = φ(a) ∧ φ(b), ∀a, b ∈ L;
iii) φ(a

′
) = (φ(a))

′
, ∀a ∈ L.

φ : L → Lwith respect to a state s is called state preserving
if s(φ(a)) = s(a) for every a ∈ L. Then the triple (L, s, φ) is
said a quantumdynamical systemwhere the state s having
Bayes’ Property. In the following theorem the existence of
the limit in De�nition 20 is shown.

Theorem 19. Let (L, s, φ) be a quantum dynamical system
and P be a partition of (L, s), then limn→∞

1
n h

l
s(∨ni=1φiP) ex-

ists.

Proof. Let an = hls(∨ni=1φiP). It will be shown that for
p ∈ N, an+p ≤ an + ap and then by Theorem 4.9 in [13],
limn→∞

1
n an exists and equals infn an

n . By Theorem 12, ii)
we have

an+p = hls(∨n+p−1i=0 φiP)
≤ hls(∨n−1i=0 φiP) + hls(∨n+p−1i=n φiP)
= an + hls(∨p−1i=0 φ

n+iP)
= an + hls(φn(∨p−1i=0 φ

iP)
= an + hls(∨p−1i=0 φ

iP)
= an + ap .

The second stage and the �nal stage of the de�nition of the
logical entropy of a quantum dynamical system (L, s, φ) is
given in the next de�nition.

De�nition 20. Let (L, s, φ) be a quantum dynamical sys-
tem and P be a partition of (L, s). The logical entropy of T
respect to P is de�ned by:

hls(φ, P) = lim
n→∞

1
n h

l
s(∨ni=1φiP).

The logical entropy of φ is de�ned as:

hls(φ) = sup
P
hls(φ, P)

where the supremum is taken over all �nite partitions of
(L, s).

In the following proposition some ergodic properties
of hls(φ, P) and hls(φ) will be studied.

Proposition 21. If (L, s, φ) is a quantumdynamical system
and P is a partition of (L, s), then
i) hls(φ, P) = hls(φ,∨ki=1φiP);
ii) For k ∈ N, hls(φk) = khls(φ).

Proof. i) hls(φ,∨ki=1φiP) = limn→∞
1
n h

l
s(∨nj=1φj(∨ki=1φiP))

= limn→∞
1
n h

l
s(∨k+n−1i=1 φiP)

= limn→∞( k+n−1n )( 1
k+n−1 )h

l
s(∨k+n−1i=1 φiP) = hls(φ, P).

ii) Let P be an arbitrarary �nite partition of (L, s). we can
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write

hls(φk ,∨ni=1φiP) = lim
n→∞

1
n h

l
s(∨nj=1(φk)j(∨ni=1φiP))

= lim
n→∞

1
n h

l
s(∨nj=1 ∨ki=1 φkj+iP)

= lim
n→∞

1
n h

l
s(∨nk−1i=1 φiP)

= lim
n→∞

nk
n

1
nk h

l
s(∨nk−1i=1 φiP)

= khls(φ, P)

So khls(φ) = k supP hls(φ, P) = supP hls(φk ,∨ni=1φiP) ≤
supP hls(φk , P) = hls(φk). Since P �s ∨ki=1φiP, it will be ob-
tained hls(φk , P) ≤ hls(φk ,∨ni=1φiP) = khls(φ, P).

De�nition 22. Let (L, s, φ) be a quantum dynamical sys-
tem. A �nite partition R of (L, s), is said to be an s-
generator of φ, if there exists r ∈ N such that P �s ∨ri=1φiR
for each �nite partition P of (L, s).

Themain aimof this theorem is to prove an analogue of the
Kolmogorov-Sinaj theorem on logical entropy and genera-
tors.

Theorem 23. Let (L, s, φ) be a quantum dynamical system
and let R be an s-generator of φ, then hls(φ) = hls(φ, R).

Proof. Let P be an arbitrary �nite partition of (L, s). Since
R is an s-generator, P �s ∨ri=1φiR. By Theorem 15, you
get hls(φ, P) ≤ hls(φ,∨ri=1φiR) = hls(φ, R). Hence hls(φ) =
sup
P
hls(φ, P) ≤ hls(φ, R). On the other hand hls(φ, R) ≤

hls(φ).

5 Conclusion
This paper has introduced logical entropy and conditional
logical entropy of �nite partitions on a quantum logic and
has presented some of their ergodic properties. Also, logi-
cal entropy of a quantumdynamical systemwith�nite par-
titions studied and some of its properties proved.
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