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Abstract: All technical systems have been designed to per-
form their intended tasks in a specific ambient. Some sys-
tems can perform their tasks in a variety of distinctive lev-
els. A system that can have a finite number of performance
rates is called a multi-state system. Generally multi-state
system is consisted of components that they also can be
multi-state. The performance rates of components consti-
tuting a system can also vary as a result of their deterio-
ration or in consequence of variable environmental con-
ditions. Components failures can lead to the degradation
of the entire multi-state system performance. The perfor-
mance rates of the components can range from perfect
functioning up to complete failure. The quality of the sys-
tem is completely determined by components. In this ar-
ticle, a possible state for the single component system,
where component is subject to two stresses, is considered
under stress-strength model which makes the component
multi-state. The probabilities of component are studied
when strength of the component is Erlang random vari-
ables and the stresses are independent exponential ran-
dom variables. Also, the probabilities of component are
considered when the stresses are dependent exponential
random variables.

Keywords: Reliability; Stress-Strength Model; Multi-State
System; Erlang Distribution; Exponential Distribution
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1 Introduction
In amultistate systemmodel, a systemand its components
may be in M + 1 possible states 0, 1, 2, . . . ,M, where 0
indicates the completely failed state, M indicates the per-
fectly working state, and others degraded states. In other
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words, the state space of each component and the system
is taken to be {0, 1, . . . ,M}, whereM is a positive integer.
Actually, we have a discrete multi-state system model be-
cause the state of each component and the system can be
represented by integer numbers. Indeed, a binary system
is the simplest case of a multi-state system having two dis-
tinguished states; perfect functioning and completely fail-
ure.
In a binary system, the definition domains of the states of
the system and its components are {0, 1}. Multi-state sys-
tems have been found to be more flexible tool than binary
systems for modeling engineering systems. In literature,
much attention has been paid to multi-state system mod-
eling ([3],[5],[6],[8],[12],[14],[19]).

For reliability analysis, stress-strength models are of
special importance. In the simplest terms, stress-strength
model can be described as an assessment of the reliability
of the component in terms of X and Y random variables
where Y is the random “ stress” experienced by the com-
ponent and X is the random “strength” of the component
available to overcome the stress. From this simplified ex-
planation, the reliability of the component is the probabil-
ity that the component is strong enough to overcome the
stress applied on it, i.e., R = P(Y < X).

Extensive works have been done for the reliabil-
ity of the component and its estimation under dif-
ferent choices for stress and strength distributions
([1],[2],[4],[7],[9],[10],[13],[17],[18]).

In this article, we consider following three possible
states for a single component systemunder stress-strength
model which makes the component multistate. Suppose
that there is a system consisting of Z prone to failure in-
dependent component, Y1 and Y2 are random stresses ex-
perienced by the component and X is the random strength
of the component to overcome the stresses.

Complete failure state.
Z = 0 if the strength of the component does not exceed
both of the stresses Y1 and Y2 .
That is, X < Y1:2 = min(Y1, Y2).

Lower state.
Z = 1 if the strength of the component exceeds only one
stresses Y1 and Y2.
That is,Y1:2 < X < Y2:2 = max(Y1, Y2).

Perfect state.
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Z = 2 if the strength of the component exceeds both of the
stresses Y1 and Y2.
That is, X > Y2:2.

In a multistate system, state distribution is often used
to indicate the distribution of each component in different
state. The performance of the component is represented in
terms of its state distribution. Therefore, the state distribu-
tion is the most important performance measure in a mul-
tistate system.On the other hand, a state distribution can
be given by a probability distribution function, a cumula-
tive distribution function or a reliability function.

Let us assume that strength of the component X is
independent identically distributed with continuous cu-
mulative distribution function F(z) = P{X ≤ z} and the
stresses Y1 and Y2 are independent random variables hav-
ing continuous cumulative distribution function Gl(z) =
P{Yl ≤ z}, l = 1, 2.

In the following, we obtain the probability of being in
three possible states, as mentioned above, for a compo-
nent in a system (see [9]).

The probability of being in complete failure state for a
component is obtained as follows:

p0 = P{Z = 0} =
∫︁
Ry

P{X < Y1:2, Y1:2 = y}dy

Conditioning on Y1:2 = y, we have

p0 =
∫︁
Ry

F(y)dP{Y1:2 ≤ y}, (1)

where P{Y1:2 ≤ y} = 1 − G1(y)G2(y) and G = 1 − G.
Theprobability of being in lower state for a component

is obtained as follows:

p1 = P{Z = 1}

=
∫︁∫︁
y1<y2

P{Y1:2 < X < Y2:2, Y1:2 = y1; Y2:2 = y2}dy1dy2

Conditioning on Y1:2 = y1, Y2:2 = y2 we have

p1 =
∫︁∫︁
y1<y2

(F (y2) − F (y1)) dP {Y1:2 ≤ y1, Y2:2 ≤ y2} , (2)

where

P {Y1:2 ≤ y1, Y2:2 ≤ y2} =G1 (y2)G2 (y2) − (G1 (y2)
−G1 (y1)) (G2 (y2) − G2 (y1))

Similarly, the probability of being in perfect state for a
component is obtained as follows:

p2 = P{Z = 2} =
∫︁
Ry

F(y)dP{Y2:2 ≤ y}, (3)

where P {Y2:2 ≤ y} = G1 (y)G2 (y) and F = 1 − F.
In the present paper, in section 2, the probability that a

component is in three possible states are studiedunder the
strength-stress model when strength of the component is
Erlang random variable and the stresses are independent
exponential random variables with different parameters.
In section 3, we consider the probability that a component
is in three possible states when the stresses are dependent
exponential randomvariables. In the last section, we sum-
marizewhatwehavedone in the article andgive some con-
clusions.

Wewill use the following special function and integral
in the next section to establish the component states. The
function is the complementary incomplete gamma func-
tion defined by

Γ (s, x) =
∞∫︁
x

ts−1e−tdt. (4)

The integral is
∞∫︁
0

e−αxΓ (β, x) dx = 1
α Γ (β)

[︃
1 − 1

(α + 1)β

]︃
(5)

where β > 0 and Γ is the gamma function (Eq. 6.451.2 in
[11]).

2 State distributions for
independent stresses

In this section, wewill consider the strength of the compo-
nent is Erlang random variable and the stresses are inde-
pendent exponential random variables with different pa-
rameters. That is, for z ≥ 0, the cumulative distribution
function of X and Y1, Y2 are, respectively,

F (z) = 1 −
k−1∑︁
m=0

1
m!

(︁ z
θ

)︁m
e−

z
θ

and

Gl (z) = 1 − e−
z
θl ,

where k positive integer and θ, θl > 0.
Now using (1)-(3), component’s three possible states can
be computed as follows:

Complete failure state.
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p0 =
∞∫︁
0

(︃
1 −

k−1∑︁
m=0

1
m!

(︁ y
θ

)︁m
e−

y
θ

)︃(︂
1
θ2
e−

y
θ2 e−

y
θ1 + 1

θ1
e−

y
θ1 e−

y
θ2

)︂
dy = 1 −

(︂
1
θ1

+ 1
θ2

)︂ k∑︁
m=1

1

θm−1
(︁
1
θ +

1
θ1 +

1
θ2

)︁m
Lower state.

p1 =
1

θ1θ2

k−1∑︁
m=0

1
m!θm

∞∫︁
0

∞∫︁
y1

(︁
ym1 e−

y1
θ − ym2 e−

y2
θ
)︁(︁
e−

y2
θ1 e−

y1
θ2 + e−

y1
θ1 e−

y2
θ2

)︁
dy2dy1

= 1
θ1θ2

k∑︁
m=1

1
(m − 1)!θm−1

∞∫︁
0

⎡⎣ym−11 e−y1
(︁

1
θ +

1
θ2

)︁ ∞∫︁
y1

e−
y2
θ1 dy2 + ym−11 e−y1

(︁
1
θ +

1
θ1

)︁

×
∞∫︁
y1

e−
y2
θ2 dy2 − e−

y1
θ2

∞∫︁
y1

ym−12 e−y2
(︁

1
θ +

1
θ1

)︁
dy2 − e−

y1
θ1

∞∫︁
y1

ym−12 e−y2(
1
θ +

1
θ2 )dy2

⎤⎦ dy1
= 1
θ1θ2

k∑︁
m=1

1
(m − 1)!θm−1

⎡⎢⎣(θ1 + θ2) ∞∫︁
0

ym−11 e−y1
(︁

1
θ +

1
θ1
+ 1
θ2

)︁
dy1 −

1(︁
1
θ +

1
θ1

)︁m ∞∫︁
0

e−
y1
θ2 Γ
(︂
m, y1

(︂
1
θ + 1

θ1

)︂)︂
dy1

− 1(︁
1
θ +

1
θ2

)︁m ∞∫︁
0

e−
y1
θ1 Γ
(︂
m, y1

(︂
1
θ + 1

θ2

)︂)︂
dy1

⎤⎥⎦
=

k∑︁
m=1

1
θm−1

⎡⎢⎣ 1
θ1 +

1
θ2(︁

1
θ +

1
θ1 +

1
θ2

)︁m − 1
θ1(︁

1
θ +

1
θ1

)︁m
⎛⎜⎝1 −

⎛⎝ θ2
(︁
1
θ +

1
θ1

)︁
1 + θ2

(︁
1
θ +

1
θ1

)︁
⎞⎠m⎞⎟⎠

−
1
θ2(︁

1
θ +

1
θ2

)︁m
⎛⎜⎝1 −

⎛⎝ θ1
(︁
1
θ +

1
θ2

)︁
1 + θ1

(︁
1
θ +

1
θ2

)︁
⎞⎠m⎞⎟⎠

⎤⎥⎦ ,
where suitable transformations and simplifications have been applied and (4)-(5) used.

Perfect state.

p2 =
∞∫︁
0

(︃ k−1∑︁
m=0

1
m!

(︁ y
θ

)︁m
e−

y
θ

)︃(︂
1
θ1
e−

y
θ1

(︁
1 − e−

y
θ2

)︁
+ 1
θ2
e−

y
θ2

(︁
1 − e−

y
θ1

)︁)︂
dy

=
k∑︁

m=1

1
θm−1

⎛⎜⎝ 1
θ1(︁

1
θ +

1
θ1

)︁m +
1
θ2(︁

1
θ +

1
θ2

)︁m − 1
θ1 +

1
θ2(︁

1
θ +

1
θ1 +

1
θ2

)︁m
⎞⎟⎠

Table 1 and 2 contain some numerical results for component’s three possible states for selected values of the pa-
rameters k, θ, θ1 and θ2.

As shown in this section, the stresses are independent random variables. However, from practical viewpoint, the
stresses may be dependent random variables. Now let the stresses are dependent, that is, the random variables Y1
and Y2 have the joint cumulative distribution function G (z1, z2) and probability density function g (z1, z2). Then, the
distributions of Y1:2 and Y2:2 are obtained to be:

P {Y1:2 ≤ y} = 1 − G (y, y) = G1 (y) + G2 (y) − G (y, y) , (6)
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Table 1: Probabilities of component states with same parameters.

k θ θ1 θ2 p0 p1 p2
1 0.1 0.1 0.1 0.333 0.333 0.333
2 0.1 0.1 0.1 0.111 0.278 0.611
3 0.1 0.1 0.1 0.037 0.176 0.787
4 0.1 0.1 0.1 0.012 0.101 0.887
5 0.1 0.1 0.1 0.004 0.055 0.941

Table 2: Probabilities of component states with different parame-
ters.

k θ θ1 θ2 p0 p1 p2
1 0.1 0.2 0.3 0.1666 0.7047 0.1287
2 0.1 0.2 0.3 0.0277 0.6818 0.2905
3 0.1 0.2 0.3 0.0046 0.5513 0.4441
4 0.1 0.2 0.3 0.0007 0.4248 0.5745
5 0.1 0.2 0.3 0.0001 0.3207 0.6792

P {Y1:2 ≤ y1, Y2:2 ≤ y2} = G (y1, y2)+G (y2, y1)−G (y1, y1) ,
(7)

P {Y2:2 ≤ y} = G (y, y) , (8)
where G (y, y) = P {Y1 > y1, Y2 > y2} denotes the bivariate
survival function. The state probabilities will be computed
in the following section using (6)-(8).

3 State distributions for dependent
stresses

Let (Y1, Y2) have a bivariate exponential distribution with
survival function by

G (y1, y2) = e−λy1−βy2−θ1 max{y1 ,y2} y1, y2 > 0,

where λ, β, θ1 > 0 ([15]) and the strength of the component
have gamma distribution.
Now using (6)-(8) in (1)-(3), component’s three possible
states can be computed as follows:

Complete failure state.

p0=
∞∫︁
0

(︃
1 −

k−1∑︁
m=0

1
m!

(︁ y
θ

)︁m
e−

y
θ

)︃(︁
(λ + β + θ1) e−y(λ+β+θ1)

)︁
dy

= 1 − (λ + β + θ1)
k∑︁

m=1

1
θm−1

(︀1
θ + λ + β + θ1

)︀m

Table 3: Probabilities of component states with same parameters.

k θ λ β θ1 p0 p1 p2
1 0.1 0.1 0.1 0.1 0.970 0.020 0.010
2 0.1 0.1 0.1 0.1 0.942 0.047 0.035
3 0.1 0.1 0.1 0.1 0.915 0.074 0.073
4 0.1 0.1 0.1 0.1 0.888 0.101 0.109
5 0.1 0.1 0.1 0.1 0.862 0.127 0.146

Lower state.

p1 =
k−1∑︁
m=0

1
m!θm

∞∫︁
0

∞∫︁
y1

(︁
ym1 e−

y1
θ − ym2 e−

y2
θ
)︁

×
(︁
λ (β + θ1) e−y1λ−y2(β+θ1) + β (λ + θ1) e−y1β−y2(λ+θ1)

)︁
dy2dy1

=
k∑︁

m=1

1
θm−1

[︃
λ + β(︀1

θ + λ + β + θ1
)︀m

− β + θ1(︀1
θ + β + θ1

)︀m
(︃
1 −
(︃

1
θ + β + θ1

1
θ + λ + β + θ1

)︃m)︃

− λ + θ1(︀1
θ + λ + θ1

)︀m
(︃
1 −
(︃

1
θ + λ + θ1

1
θ + λ + β + θ1

)︃m)︃]︃

Perfect state.

p2 =
∞∫︁
0

(︃ k−1∑︁
m=0

1
m!

(︁ y
θ

)︁m
e−

y
θ

)︃(︁
(λ + θ1) e−y(λ+θ1)

+ (β + θ1) e−y(β+θ1) − (λ + β + θ1) e−y(λ+β+θ1)
)︁
dy

=
k∑︁

m=1

1
θm−1

(︃
λ + θ1(︀1

θ + λ + θ1
)︀m + β + θ1(︀1

θ + β + θ1
)︀m

− λ + β + θ1(︀1
θ + λ + β + θ1

)︀m
)︃

Table 3 and 4 contain some numerical results for com-
ponent’s three possible states for selected values of the pa-
rameters k, θ, λ, β and θ1.

4 Conclusions
When the issue of reliability of technical systems concerns
the many branch of the technology, in particular first in-
dustrial engineering, the techniques which help to inves-
tigate the issue entirely comes from the basic concepts of
possibility and statistical analysis. From this perspective,
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Table 4: Probabilities of component states with different parame-
ters.

k θ λ β θ1 p0 p1 p2
1 0.1 0.2 0.3 0.4 0.917 0.043 0.039
2 0.1 0.2 0.3 0.4 0.841 0.080 0.078
3 0.1 0.2 0.3 0.4 0.772 0.111 0.116
4 0.1 0.2 0.3 0.4 0.708 0.138 0.153
5 0.1 0.2 0.3 0.4 0.649 0.160 0.189

technical systems canbe seenas anatural application area
for probability and statistical analysis.

When taking into consideration the development of
the literature, it is configured firstly as the system connec-
tions divided two main groups connected series or paral-
lel and later as the k-out-of-n system in terms of ease of
application. Structurally, the optimal operation of the sys-
tem depends on the optimal operation of the components
which constitute the system. However we have some ques-
tions, which part is the malfunction or which part isn’t the
full performance and howmuch these will affect the work
of the system? The answer to this problem is connected
directly to how components combined with different con-
nection models. In this study, we have focused on a single
component which constitutes the system and examined
the strength of the component under the stress model. In
the similar studies existing in the literature, the strength
of the components is connected to the continuous proba-
bility distributions. This situation leads to the breaking at
a point strength of machine working under the pressure
and does not allow optimization of the working. In this in-
vestigation, it’s evaluated as the two-phase factor affect-
ing the working of machines and accordingly, expressing
the working of machines is selected from the Erlang distri-
bution which is phase-type distribution. When the factors
of stresses were taken two exponential distributions, in-
dependent and with different parameters, the optimal op-
eration of the machine is possible to increase the phase
number of Erlang distribution. The similar situation is also
observed in the dependent impacts. As the distribution pa-
rameters of the effect made the machine increase, provid-
ing the optimal operation may be possible with two ways.
The first of these is to increase the strength parameter and
the second is to increase the phase number of the distri-
bution. The strength parameters of machine running and
observed is constant. However, in case of the increase of
the phase number and the exponential of strength model,
supporting the spare machines may be possible the opti-
mal operation. In Erlang strength model, the optimal op-
eration can be achievedwhen by increasing the parameter

k or/and by connecting to be the backup each other, which
k number of machine, working with the same exponential
strength model. This result is an important optimality cri-
terion for the reliability of a technical system. In this re-
spect, the study brings a different perspective to the sub-
ject.
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