Open Phys. 2016; 14:26-36

DE GRUYTER OPEN

Research Article

Mohamed S. Osman*

Open Access

Multi-soliton rational solutions for some nonlinear evolution

equations

DOI 10.1515/phys-2015-0056

Received September 10, 2015; accepted December 07, 2015

Abstract: The Korteweg-de Vries equation (KdV) and
the (2+ 1)-dimensional Nizhnik-Novikov-Veselov system
(NNV) are presented. Multi-soliton rational solutions of
these equations are obtained via the generalized uni-
fied method. The analysis emphasizes the power of this
method and its capability of handling completely (or
partially) integrable equations. Compared with Hirota’s
method and the inverse scattering method, the proposed
method gives more general exact multi-wave solutions
without much additional effort. The results show that, by
virtue of symbolic computation, the generalized unified
method may provide us with a straightforward and effec-
tive mathematical tool for seeking multi-soliton rational
solutions for solving many nonlinear evolution equations
arising in different branches of sciences.
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1 Introduction

Many complex phenomena and dynamic processes in
physics, mechanics, chemistry and biology can be rep-
resented by nonlinear evolution equations (NEEs) [1-7].
When we want to understand the physical mechanism of
nature phenomena, described by NEEs, exact solutions for
the NEEs have to be explored. Therefore, it is crucial to ob-
tain the most general solutions of the corresponding NEEs
describing the evolution of such nonlinear systems. The
general solutions of the NEEs provide a lot of information
about the intrinsic structure of such equations.

There are various types of wave solutions that are re-
vealed for NEEs. Among these types: the cnoidal waves,
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snoidal waves, shock waves, periodic waves, solitary
waves and soliton waves.

Nowadays, solitons are studied in various areas of
non-linear science and many researchers focuss them-
selves to find a single soliton solution as well as the shock
wave solution for NEEs by the aid of the solitary wave
ansatz method [8-10].

In this paper, we search for multi-soliton rational so-
lutions of NEEs which they are playing an important role
in treating nonlinear problems.

A variety of methods for studying the integrability
of nonlinear partial differential equations and for con-
structing multiple-solitary wave solutions have been de-
veloped. Among these methods, the inverse scattering
method [11-13], Hirota’s bilinear method and its simplified
form [14-17].

The inverse scattering method represents a nonlinear
partial differential equation as a condition of compatibility
between two linear operators, the so-called Lax pairs [18].
In fact, this method requires heavy calculation work.

In Hirota’s method, we use the bilinear transforma-
tion equation where solitary wave solutions can be con-
structed by using exponentials. Equivalently, this method
may be thought as a rational function solution of nonlin-
ear combination of exponential functions. That is in some
sorts, it is a generalization to the well known exponen-
tial function method. While the simplified Hirota method
does not depend on the construction of bilinear forms; in-
stead it assumes that the multi-solitary wave solutions can
be expressed as polynomials in exponential functions. Hi-
rota’s bilinear method and the simplified Hirota approach
are rather heuristic and are significant for handling non-
linear equations. Although Hirota’s method and the sim-
plified Hirota method need simplest calculations but they
assert only multi-solitary wave solutions as polynomials in
exponential functions.

The main aim in this work is to present the generalized
unified method which is accomplished by presenting a
new algorithm to construct multi-wave solutions for NEEs.
This method generalizes the unified method in [19-21].

Here, we use the idea of the generalized unified
method to find multi-soliton wave rational solutions for
KdV [22, 23] and NNV [24-26].
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The remainder of this paper is organized as follows. In
Section 2, a description of the generalized unified method
is given in detail. In Section 3, the applications of the gen-
eralized unified method to KdV equation and NNV equa-
tions are illustrated. Conclusions are presented in Sec-
tion 4.

2 A methodology to the
generalized unified method
In this Section, we present the outline of the generalized

unified method.
Consider the NEEs of the type (q+1)-dimension

Fi(uj, e, Wy -+ s (U, Uy xos Ujxinss )
-0,
i,j=1,2,...m, ey

where u; = u;(t, x1, ..., Xg).
Each physical observable u; possess (g + 1) basic trav-
eling wave solutions that satisfy the equation

Hi(Uj’ (U})Z1 ey (Uj)Zq’ (U})Z1 Zy (U])21 Z39 0. ') = O’
q

z,~=a,-t+Za,~,sxs, 2
s=1

where U; = Uj(zy, ...
stants.

The fundamental rules and objectives of the unified
method are used here (for details see [19]). The only dis-
tinction is that the main aim in [19] is to search for a sin-
gle traveling wave solution, namely U; = Uj(2), z = ao t +

q
Z a i X je
j=1

For N-soliton wave solutions of (1), we have to con-
struct the solutions in the form

,Zg+1), @ and a; s are arbitrary con-

u(X1)-~-)XQa t):U(Zly""ZN+q)' (3)

By using the unified method [19], we obtain solutions in
the form;

(i) Polynomial function solutions

(ii) Rational function solutions

In this paper, we confine ourselves to find rational function
solutions.

2.1 The rational function solutions

Here, we search for a rational function solution of Equa-
tion (2) which is a bilinear transform in a linear or a non-
linear combinations of the auxiliary functions ¢,(z;), | =
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1,2,..., N+ g - 1. To this end, we introduce the steps of
computations of N-wave rational solutions as follows:
Step 1. The generalized unified method asserts that, the
N-wave solutions of (2)

U(z1, z2, ..., ZN+q—1)

Pu(@p1(z1), P2(22), ..., Pnig-1(2N1g-1))
Qr(p1(z1), P2(22), ..., Pnsg-1(zN1g-1))’

nxr, (4)

where P, and Q, are polynomials in the auxiliary functions
¢i(z),j = 1,2,...,N + g - 1 which satisfy the auxiliary
equations

pk q
, p
<¢j(zj)) = Z bj, $j(z)), zj=ajot+ Z Qj,s Xs,s
r=0 s=1
p = 1,2, k=1, (5)

where b;,, a; s and a;, are constants. It is worth to be
noticing that, n and k are determined from the balance
equation by the criteria given in [19-21].

Also, a second condition (the consistency condition),
which asserts that the constants in Equations (4) and (5)
could be consistently determined, is used.

When p = 1, (5) solves to elementary solutions (ex-
plicit or implicit) while when p = 2, it solves to elliptic
solutions.

When p = 1 and n = r, then k = 1 and the solutions of
the auxiliary Equations (5) are called "jet streams".

The polynomial in the numerator of the rational func-
tion solutions when n = r, k = 1 takes the form

Py (¢1(Zl), ¢2(ZZ), ceey ¢N+q—1(ZN+q—1)) =dao

n
+ Y a, b (z)+ Y i, i (z) i (z) +
i1 i, -1
n

DY

i1,i2,000s iNyg-1=1

(ai1,iz ----- iN+g-1 ¢i1(zi1)¢i2 (Ziz) (6)

N
@iy, i) + by [ [ orzi), n=N+g-1,
k=1
where iy < i < .. < ing1, N =2 2 and
Aos Qiys Qi iys +oes Qi iy, ixegq» DN @re  arbitrary  con-
stants to be determined latter. The polynomial
Qr(p1(z1), P2(22), ..., Prig-1(ZN+g-1)) takes a similar form
as in (6).
Now, we introduce the following theorem:

Theorem 1. The N-soliton solutions via rational function
solutions (when k = 1) are given by

U(z1, 22, o) ZN+q—1)
Pu(1(z1), P2(22), ..., Pnig-1(2N4g-1))
Qn(‘l)l(zl), ¢2(ZZ); ceey ¢’N+q—1(ZN+q—1)) ’

@)
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where Pn($1(z1), $2(22), ..., Pnig-1(2n+g-1)) is given by (6)
and the auxiliary equations are ¢;(z)) = c¢; ¢i(z;), where ¢
are arbitrary constantsandl=1,2,...,N+q - 1.

Step 2. By inserting (4) together the auxiliary equations
@(z)) = ¢; i(z)) into (2), we get an equation which is split-
ting to a set of nonlinear algebraic equations namely "the
principle equations". They are solved by any computer al-
gebra system.

Step 3. Solving the auxiliary equations.

Step 4. Finding the formal exact solutions which is given
in (4).

3 Models and applications

In this section, we will apply the method described in Sec-
tion 2 to find the exact multi-soliton rational solutions of
KdV equation and NNV equations which are very impor-
tant in the mathematical physics and have been paid at-
tention by many researchers.

Model 1. The Korteweg-de Vries equation (KdV)
Consider the KdV equation [22, 23]

U + Aox + VU uy = 0, (8)

where A and v are arbitrary constants. We mention that
(8) is a fundamental mathematical model for the descrip-
tion of weakly nonlinear wave propagation in dispersive me-
dia. Here u = u(x, t) is an appropriate field variable and
X, t are space coordinate and time respectively. The coef-
ficients A and v are determined by the medium properties
and can be either constants or functions of x, t. An incom-
plete list of physical applications of the KdV equation in-
cludes shallow-water gravity waves, ion-acoustic waves in
collisionless plasma, internal waves in the atmosphere and
ocean, and waves in bubbly fluids [27].

By using the new dependent variable transformation
u(x, t) = wx(x, t) in Equation (8) and integrating both sides
with respect to x, Equation (8) can be written as

wt+/1wxxx+§w,2( =0, 9)

where the constant of integration is considered to be zero.
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Multi-soliton rational solutions (when N = 2)

From equations (4) and (6) when N = 2, we have

w(x, t) = W(z1, z3)

_botpi $1(z1) + P2 P2(22) + p3 P1(z1) Pa(22)
ro + 11 $1(21) + 12 $2(22) + 13 P1(21) Pa(22) ’

where z1 = a1 x + axt, z2 = B1x + B2t and ay, B, pis
ri,i = 0,1,2,3, k = 1,2 are arbitrary constants. The
auxiliary functions ¢;(z;) satisfy the auxiliary equations
¢;(z)) = ¢; ¢;j(z)), where c; are arbitrary constants, j = 1, 2.

By substituting from (10) into (9) and by using any
package in symbolic computations, we get

(10)

_V’pipaR%rg

_VDaro _VpiTlo
r3 = 2 ’ ry =
Ri R, R%

r; = 1
R, R,

11

s = vp1p2 R2(R1 + Ry — vpo)
? RiR>R2 ’

2 .3 2 n3
a, =-Aciai, Br=-Ac;p,

where R: = (c1a1 £ c2B81), R1 = pov+ 12Ac¢y a3 19 and
Rz =poV+ 12AC2ﬂ1 ro.
Do, P1, P2, To, C1, C2, A, v, a1 and B, are arbitrary con-
stants.

By solving the auxiliary equations q,')}(z,-)
¢j 9;(z), j = 1,2 and substituting together with (11) into
(10), we get the solution of Equation (8) namely

u(x, t) = wx(x, t),

w(x, t) = W(z1, z2)

_ Rl RzR% (po +P1 eclzl +po eczzZ)

1o (R1R2R?+VR? (p1 Ry €17 + py Ry e 22)

(12)

+Vp1 pa R2e€1%1%2 % (R; + R, — v pg)
+V2 P1Db2 R%ecl Z1+Cy zz)

)

wherez; = a; (x - Ac2 ay t)and z; = 1 (x — A2 By b).
Shape and motion of the solution given by (12) is de-
picted in Figure 1

Multi-soliton rational solutions (when N = 3)

Now, we find a multi-soliton rational solution of Equa-
tion (8) when N = 3.
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From Equations (4) and (6) when N = 3, we have

w(x, t) = W(z1, 22, z3)

3
Po + Zps ¢S(Zs)

s=1

—
ro + Z Is ¢S(ZS)

s=1

3
+ Z Dij Pi(zi) §i(zj) + pa Pp1(21) Pa(22) P3(z3)
i,j=1

, (13

3
+ Z rij §i(zi) @i(z;) + 14 P1(z1) Pa(22) P3(z3)
i, j=1
wherei<j,zy =ar1x+axt,za=Pi1x+fat,zz=y1x+72t

and A, ﬁk; Yk Pos Yo, Pss I's, pi,]'; ri,j5 13} =1, 25 3,8 =
1,2,3,4, k = 1, 2 are arbitrary constants. The auxiliary

50 functions ¢,(z;) satisfy the auxiliary equations (;b}(zl) =
¢; ¢,(z;), where c; are arbitrary constants, [ = 1, 2, 3.

_ 4r By substituting from (13) into (9) and by a similar way
= 3t as we did in the last case (when N = 2), we get the solution
% of (8) in the form
g 2r

. u(x, t) = wx(x, t),

w(x, t) = W(zy, 22, z3)
u'_.__—)’./'-j_.__\\E.\‘—_J !k‘__. Y1(22, 23) + P2(21, 22, 23)

t—ais

-40 -20

K-aXis

v To(l/)3(22, z3) + ',1)4(21, 22,23))’

Y1 =roH?R? (ro (vpo r2 M? + 1,3 M? R3 e Z3>

+ 12 M2e“? (r;Ry+7123 (R2+R3 - pov) € 23)) ,
Yo =117 (Rf ro (rz R, M? H?

+ 123 H2M? (R1 +Rs - pov) € 23)

+R2r, M2 e (r, (R1 + Ry — po V)

H?+r3H? (R1+Ry+R3 - 2pov) e6323)) ,
Y3 =R ro H? (rz M? S22 (r2+r123e2%)

+ro (rz M? + 133 M2 e® 23)) ,
Py =117 (RE ry M? e %2 (rz H? + 1,3 H? e® 23)
+79 R? (rz MZ?H? + 1,3 H> M? e© 23)) ,
(14)

whereR. = (c1 a1+ B1), He = (€1 a1 £C371), M = (C2 B1+
¢371), R1 =pov+12Acias 1o, Ry =pov+12Ac, B1roand
R3s=pov+ 12/\C3’}/1 ro.

2 2
Z1 =01 (X—/lCl a1 t),Zz =ﬂ1 (X—AC2ﬁ1 t)andZ3 =7 (X—
2
ACB 71 t)’ Where Po, To, 11, T2, r2,39 C1, C2, C3, /\-’ vV, iy,
B1 and v, are arbitrary constants.

Figure 1: (a) 3D-plot for u(x, t). (b) 2D-plot for u(x, t) when x = 0.
(c) the contour plot for u(x, t).a; = 1,81 = 2,A =1, v = 5and
po =1/20, ro =1, p1 =3/20, p =1/5, c1 =3, ¢, = 1/2.
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Shape and motion of the solution given by (14) is de-
picted in Figure 2

Model 2. The (2+ 1)-dimensional Nizhnik-Novikov-Veselov
equations (NNV)

Here, we apply the generalized unified method described
in Section 2 to find multi-soliton rational wave solutions of
NNV which read [24-26]

Ur — Uox +a(UV)x =0,

Uux+pvy =0, (15)

where a and f are arbitrary constants. The NVV system may
be considered as a model for an incompressible fluid where
u and v are components of the (dimensionless) velocity [28].
Boiti and et al. solved this system of equations via the in-
verse scattering transformation [29]. It is well known that,
the system in (15) is an isotropic Lax integrable extension of
the well known (1+ 1)-dimensional KdV equations and has
physical significance [30]. Also, NNV system can also be ob-
tained from the inner parameter-dependent symmetry con-
straint of the KP equation [31].

By using the new dependent variable transformations
u(x,y, t) = ui(x,y, t) and v(x, y, t) = vix(x, y, t) in Equa-
tion (15) and integrating both sides with respect to x, Equa-
tion (15) can be written as

Uit — Uixxx + QU1 Vix = 0,

(16)
Uix + ﬂ Vly = O,

where the constants of integration are considered to be
zero.

Multi-soliton rational solutions (when N = 2)

From Equations (4) and (6) when N = 2, we have

ui(x,y, t) = Uz, 22)
_botp1 P1(z1) + p2 P2(22) + p3 P1(2z1) Pa(22)

- do + q1 (,'1)1(21) +q>2 ¢2(Zz) + 43 ¢1(Zl) $2(z2) ’ 1)
17

Vl(x’ Yy, t) = V(ZI9ZZ)
ro + 11 91(21) + 12 $2(22) + 13 P1(21) Pa(22)
go + q1 P1(21) + @2 P2(22) + g5 P1(z1) Pa(z2)’

wherez; = a; x+ay y+as t,z; = 1 x+f2 y+f5 tand ay, By,
pi» qi» i, 1=0,1,2,3, k=1, 2, 3 are arbitrary constants.
The auxiliary functions ¢;(z;) satisfy the auxiliary equa-
tions ¢;(zj) = c; $;(z;), where c; are arbitrary constants,
j=1,2.
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Figure 2: (a) 3D-plot for u(x, t). (b) 2D-plot for u(x, t) when x = 0. (c)
the contour plot for u(x, ). a; = 2,81 = -1,v=3,A=1, v =1/2,
Po = 1/20, ro=1,r = 3/20, ry = 1/5, 3= 1,and C1 =C =
C3 = 1.
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By substituting from (17) into (16) and by using any

package in symbolic computations, we get

R_H qorir a?
Rl Rz R+ H+ ’

__9ona q __Y9ona
2 RZ ’ 1 Rl )

qs = -

_ 62 B2qor2B-p2 Ry
pO_ ’
rna

_ ri (p2R2+6rzﬁq0Hf)
)’le ’

__arnR H (p2Ry+6C1goaz B12)
R+H+R1R2

__rlrzRfo (R1 +R2+r0a)
- R1R2R+H+ ’

a3 =cia3, B3=c3p3,

(18)
whereR: = ¢; a1+¢3 1, H: = ¢1 &2£C2 B2, R1 = 6 ¢c1 a1 go-
roaand Ry = 6¢2 190 — 10 .

P2, 4o, To, T1, 2, C1, C2, @, B, a1, &2, f1 and S, are ar-
bitrary constants.

By solving the auxiliary equations (;b;-(zj)
¢; 9;(zj), j = 1, 2 and substituting together with (18) into
(17), we get the solution of Equation (15) namely

ux,y, t) = uix(x, y, ), ui(x,y,t) = U(z1, 22),
U(Zly ZZ)
- R.H.R; (ap2ra Ry e

qo (R+ H. (R1 R2 - Rl roaec2? —rq aRZ ec1 21)
+ary ec1s (pz R, +6 qo TzﬂH_))

+R_H_ rir a2 ec1z1+c2 Zz)

_ R_H_ ra (pZ RZ +6 c102qo7T2 ﬁ) eC1Z1tC2 2

go (R+Hi.(R1Ry —~Riryae2? —raRy ear#)’

+R_H_-rin a2 ec1z21+C Zz) (19)
V(X, Y t) = VlX(X’ Y t)’ Vl(X, Y, t) = V(Zlyzz),
V(z1, 23) = RiH.R1R; (ro+r1e“? +r; eCzZz)
9o (R+ H,(RiR; -Riryaec22
-R_H_ rrna (Rl + R2 +To a) eC1 Z1+C2 2 (20)

-riaRye#) + R_H riry a2 ezt 22)

wherez; =a1x+ay+ciait,zo =fix+Poy+c Bt
The solution given by Equations (19)-(20) of Equa-
tion (15) is shown in Figures 3-4.

Multi-soliton rational solutions (when N = 3)

In this part, we find a multi-soliton rational solution of
Equations (15)-(16) when N = 3.

Multi-soliton rational solutions for some nonlinear evolution equations = 31

From equations (4) and (6) when N = 3, we have

3
Pot ZPS Ps(zs)

s=1

3
do + Z gs ¢s(zs)
s=1

ur(x,y, t) = U(z1, 22, 23) =

>

3
+ Z Pi,j Pi(zi) j(z;) + pu P1(z1) P2(22) P3(z3)

i, j=1

3
+ Z qi,j Pi(zi) dj(z)) + qu P1(z1) P2(22) P3(23)

i, j=1
@1
3
ro + Z I's ¢S(ZS)
Vl(X, Y, t) = V(le ZZ’ZB) = 5;1—’
qo + Z qs ¢’S(Zs)
s=1

3
+ Z rij 9i(zi) Pj(zj) + 14 P1(z1) Pa(22) P3(23)

i,j=1

s

3
+ Z qi,j ¢i(z) ¢j(Zj) + g4 P1(z1) P2(22) P3(z3)

i,j=1

wherei <j,zi =1 x+ay+ast,zo =Bix+ B2y +Bst,
z3 = mX+ 72y +93tand ag, Br, Vs Pos T0s Pss s Ts,
Di,j> qi,j» ti,j» ,j=1,2,3,s=1,2,3,4,k =1,2,3 are
arbitrary constants. The auxiliary functions ¢,(z;) satisfy
the auxiliary equations ¢;(z;) = ¢; ¢;(z;), where ¢, are ar-
bitrary constants, I = 1, 2, 3.

By substituting from (21) into (16) and by a similar way
as we did in the last case (when N = 2), we get

6go(R++72cC 6 L.
Po= Dol a72 B)B’ b1 = qlaﬁ ,
_64:BN: _ 6q3BH.
T BT T
» _6749:192c3BH R ’ _ 60 B a1 MN-
- R-H qoa > 77" gqoaM,N,
6Cc1029293Q-L-
= ’ _0,
P23 qOQ+L+(X p4
ro 6c1aq ro 6cap
ri=qp (=2 - = B
1 q1(q0 o ) ) qz(qo . )
_g (o _bGm
r3_q3(£10 a ),
b RH @R +R +100)
v R+H+q(2)a ’
(22)
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Figure 3: (a) 3D-plot for u(x, y, t) when y = 0. (b) 3D-plot for u(x, y, t) when t = 0. (c) the contour plot for u(x, y, t) when y = 0. (d) 2D-plot for
u(x,y,t)whenx=y=0.a1 =2,a0=3,81=1,B=-2,a=2,=1,1r90=0,r1=-2,r2=1,q0=1, pp=-landc; =c; = 1.
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Figure 4: (a) 3D-plot for v(x, y, t) when y = 0. (b) 3D-plot for v(x, y, t) when t = 0. (c) the contour plot for v(x, y, t) when y = 0. (d) 2D-plot for
v(x, y, t) when x = y = 0. The same parameters as in Figure 3.
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Figure 5: (a) 3D-plot for u(x, y, t) when y = 0. (b) 3D-plot for u(x, y, t) when t = 0. (c) the contour plot for u(x, y, t) when y = 0. (d) 2D-plot for
u(x,y,t)whenx=y=0.a1=2,a, =3,p1=1,82=-2,a=2,8=1,r0=0, 11 =-2,r2=1,9q0=1, pp =-landc; =¢c; = 1.
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Figure 6: (a) 3D-plot for v(x, y, t) when y = 0. (b) 3D-plot for v(x, y, t) when t = 0. (c) the contour plot for v(x, y, t) when y = 0. (d) 2D-plot for
v(x,y, t) when x =y = 0. The same parameters as in Figure 5.



36 =—— M.S.0Osman

_M-N-q1q3(R1 +R3 + 19 Q)

r,3= M+N+q(2)a ,

po 2 QL-92935(Ra+R3+100)

2,3=- 5 ,

Q+L+q0a

r =_R-H—Q—L—M—N—Q142Q3(R1+R2+R3+2r0a)

! R+H+Q+L+M+N+q(3)a ’
(22)

Y27 "R,Hiqo * ™7 M.N.qo

q23=w _R-H-QL-M-N-q19:93

Q:Liqo ’ R.H.Q.L:M.N.q} ’
a=cial, B = ciB =3,

(23)
whereR: =ciar1 21, Hi =ci1a, a2 o, M: = co a7
3y, Ne =cra22637v,Q: = c2fr12c3v,Le = 2 fr ¢
C3 72, R1 = 6C1&'1Q0 - ToQ, Rz = 6C2ﬁ1(]0 il 0 )4 and
R3 =6C2ﬂ1iroa.

D2, gi, To, C1, C2, €3, B, &1, Az, B1, Bo, v1 and v, i =
0, 1, 2, 3 are arbitrary constants.

By solving the auxiliary equations ¢)(z))
cj9i(z;), j = 1,2, 3 and substituting together with (22)-
(23) into (21), we get the solution of Equation (15) which is
very lengthy to be written here.

The solution of (15) when N =
ures 5-6.

3 is shown in Fig-

4 Conclusions

In summary, via the generalized unified method and sym-
bolic computation, we construct multi-soliton rational so-
lutions for the KAV and NNV. This method can not only give
a unified formulation to uniformly construct multi-wave
solutions, but also can provide us a guideline to classify
the types of these solutions according to the given param-
eters. This method can be applied to other kinds of non-
linear partial differential equations with the aid of com-
puter systems like Mathematica or Maple to facilitate the
algebraic calculations. Also, it is valuable to learn more
about these multi-soliton rational solutions and their re-
lated evolutional properties, we expect that these solu-
tions may be useful in future studies for the intricate nat-
ural world.
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