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Abstract: The Korteweg-de Vries equation (KdV) and
the (2+ 1)-dimensional Nizhnik-Novikov-Veselov system
(NNV) are presented. Multi-soliton rational solutions of
these equations are obtained via the generalized uni-
�ed method. The analysis emphasizes the power of this
method and its capability of handling completely (or
partially) integrable equations. Compared with Hirota’s
method and the inverse scattering method, the proposed
method gives more general exact multi-wave solutions
without much additional e�ort. The results show that, by
virtue of symbolic computation, the generalized uni�ed
method may provide us with a straightforward and e�ec-
tive mathematical tool for seeking multi-soliton rational
solutions for solving many nonlinear evolution equations
arising in di�erent branches of sciences.
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1 Introduction
Many complex phenomena and dynamic processes in
physics, mechanics, chemistry and biology can be rep-
resented by nonlinear evolution equations (NEEs) [1–7].
When we want to understand the physical mechanism of
nature phenomena, described byNEEs, exact solutions for
the NEEs have to be explored. Therefore, it is crucial to ob-
tain the most general solutions of the corresponding NEEs
describing the evolution of such nonlinear systems. The
general solutions of the NEEs provide a lot of information
about the intrinsic structure of such equations.

There are various types of wave solutions that are re-
vealed for NEEs. Among these types: the cnoidal waves,
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snoidal waves, shock waves, periodic waves, solitary
waves and soliton waves.

Nowadays, solitons are studied in various areas of
non-linear science and many researchers focuss them-
selves to �nd a single soliton solution as well as the shock
wave solution for NEEs by the aid of the solitary wave
ansatz method [8–10].

In this paper, we search for multi-soliton rational so-
lutions of NEEs which they are playing an important role
in treating nonlinear problems.

A variety of methods for studying the integrability
of nonlinear partial di�erential equations and for con-
structing multiple-solitary wave solutions have been de-
veloped. Among these methods, the inverse scattering
method [11–13], Hirota’s bilinearmethod and its simpli�ed
form [14–17].

The inverse scattering method represents a nonlinear
partial di�erential equation as a condition of compatibility
between two linear operators, the so-called Lax pairs [18].
In fact, this method requires heavy calculation work.

In Hirota’s method, we use the bilinear transforma-
tion equation where solitary wave solutions can be con-
structed by using exponentials. Equivalently, this method
may be thought as a rational function solution of nonlin-
ear combination of exponential functions. That is in some
sorts, it is a generalization to the well known exponen-
tial function method. While the simpli�ed Hirota method
does not depend on the construction of bilinear forms; in-
stead it assumes that themulti-solitarywave solutions can
be expressed as polynomials in exponential functions. Hi-
rota’s bilinear method and the simpli�ed Hirota approach
are rather heuristic and are signi�cant for handling non-
linear equations. Although Hirota’s method and the sim-
pli�ed Hirota method need simplest calculations but they
assert onlymulti-solitarywave solutions as polynomials in
exponential functions.

Themain aim in thiswork is to present the generalized
uni�ed method which is accomplished by presenting a
new algorithm to construct multi-wave solutions for NEEs.
This method generalizes the uni�ed method in [19–21].

Here, we use the idea of the generalized uni�ed
method to �nd multi-soliton wave rational solutions for
KdV [22, 23] and NNV [24–26].
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The remainder of this paper is organized as follows. In
Section 2, a description of the generalized uni�ed method
is given in detail. In Section 3, the applications of the gen-
eralized uni�ed method to KdV equation and NNV equa-
tions are illustrated. Conclusions are presented in Sec-
tion 4.

2 A methodology to the
generalized uni�ed method

In this Section, we present the outline of the generalized
uni�ed method.

Consider the NEEs of the type (q+1)-dimension

Fi(uj , (uj)t , (uj)x1 , . . . , (uj)xq , (uj)x1 x2 , (uj)x1x3 , ...)
= 0,
i, j = 1, 2, . . . m, (1)

where uj = uj(t, x1, . . . , xq).
Each physical observable uj possess (q + 1) basic trav-

eling wave solutions that satisfy the equation

Hi(Uj , (Uj)z1 , . . . , (Uj)zq , (Uj)z1 z2 , (Uj)z1 z3 , . . .) = 0,

zj = αj t +
q∑
s=1

αj,s xs , (2)

where Uj = Uj(z1, . . . , zq+1), αj and αj,s are arbitrary con-
stants.

The fundamental rules and objectives of the uni�ed
method are used here (for details see [19]). The only dis-
tinction is that the main aim in [19] is to search for a sin-
gle traveling wave solution, namely Uj = Uj(z), z = α0 t +
q∑
j=1

αj xj.

For N-soliton wave solutions of (1), we have to con-
struct the solutions in the form

u(x1, . . . , xq , t) = U(z1, . . . , zN+q). (3)

By using the uni�ed method [19], we obtain solutions in
the form;
(i) Polynomial function solutions
(ii) Rational function solutions
In this paper,we con�neourselves to�nd rational function
solutions.

2.1 The rational function solutions

Here, we search for a rational function solution of Equa-
tion (2) which is a bilinear transform in a linear or a non-
linear combinations of the auxiliary functions ϕl(zl), l =

1, 2, ..., N + q − 1. To this end, we introduce the steps of
computations of N-wave rational solutions as follows:
Step 1. The generalized uni�ed method asserts that, the
N-wave solutions of (2)

U(z1, z2, ..., zN+q−1)

= Pn(ϕ1(z1), ϕ2(z2), ..., ϕN+q−1(zN+q−1))
Qr(ϕ1(z1), ϕ2(z2), ..., ϕN+q−1(zN+q−1)) ,

n ≥ r, (4)

where Pn andQr are polynomials in the auxiliary functions
ϕj(zj), j = 1, 2, ..., N + q − 1 which satisfy the auxiliary
equations(

ϕ′j(zj)
)p

=
p k∑
r=0

bj,r ϕrj (zj), zj = αj,0 t +
q∑
s=1

αj,s xs ,

p = 1, 2, k ≥ 1, (5)

where bj,r, αj,s and αj,0 are constants. It is worth to be
noticing that, n and k are determined from the balance
equation by the criteria given in [19–21].

Also, a second condition (the consistency condition),
which asserts that the constants in Equations (4) and (5)
could be consistently determined, is used.

When p = 1, (5) solves to elementary solutions (ex-
plicit or implicit) while when p = 2, it solves to elliptic
solutions.

When p = 1 and n = r, then k = 1 and the solutions of
the auxiliary Equations (5) are called "jet streams".

The polynomial in the numerator of the rational func-
tion solutions when n = r, k = 1 takes the form

Pn
(
ϕ1(z1), ϕ2(z2), ..., ϕN+q−1(zN+q−1)

)
= a0

+
n∑
i1=1

ai1 ϕi1 (zi1 ) +
n∑

i1 , i2=1

ai1 ,i2 ϕi1 (zi1 )ϕi2 (zi2 ) + ...

+
n∑

i1 ,i2 ,...,iN+q−1=1

(
ai1 ,i2 ,...,iN+q−1ϕi1 (zi1 )ϕi2 (zi2 ) (6)

...ϕiN+q (ziN+q−1 )
)

+ bN
N∏
k=1

ϕk(zk), n = N + q − 1,

where i1 < i2 < ... < iN+q−1, N ≥ 2 and
a0, ai1 , ai1 ,i2 , ..., ai1 ,i2 ,...,iN+q−1 , bN are arbitrary con-
stants to be determined latter. The polynomial
Qr(ϕ1(z1), ϕ2(z2), ..., ϕN+q−1(zN+q−1)) takes a similar form
as in (6).

Now, we introduce the following theorem:

Theorem 1. The N-soliton solutions via rational function
solutions (when k = 1) are given by

U(z1, z2, ..., zN+q−1)

= Pn(ϕ1(z1), ϕ2(z2), ..., ϕN+q−1(zN+q−1))
Qn(ϕ1(z1), ϕ2(z2), ..., ϕN+q−1(zN+q−1)) , (7)
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where Pn(ϕ1(z1), ϕ2(z2), ..., ϕN+q−1(zN+q−1)) is givenby (6)
and the auxiliary equations are ϕ′l(zl) = cl ϕl(zl), where cl
are arbitrary constants and l = 1, 2, ..., N + q − 1.

Step 2. By inserting (4) together the auxiliary equations
ϕ′l(zl) = cl ϕl(zl) into (2), we get an equationwhich is split-
ting to a set of nonlinear algebraic equations namely "the
principle equations". They are solved by any computer al-
gebra system.
Step 3. Solving the auxiliary equations.
Step 4. Finding the formal exact solutions which is given
in (4).

3 Models and applications
In this section, we will apply the method described in Sec-
tion 2 to �nd the exact multi-soliton rational solutions of
KdV equation and NNV equations which are very impor-
tant in the mathematical physics and have been paid at-
tention by many researchers.

Model 1. The Korteweg-de Vries equation (KdV)
Consider the KdV equation [22, 23]

ut + λ uxxx + ν u ux = 0, (8)

where λ and ν are arbitrary constants. We mention that
(8) is a fundamental mathematical model for the descrip-
tion of weakly nonlinearwave propagation in dispersiveme-
dia. Here u = u(x, t) is an appropriate �eld variable and
x, t are space coordinate and time respectively. The coef-
�cients λ and ν are determined by the medium properties
and can be either constants or functions of x, t. An incom-
plete list of physical applications of the KdV equation in-
cludes shallow-water gravity waves, ion-acoustic waves in
collisionless plasma, internal waves in the atmosphere and
ocean, and waves in bubbly �uids [27].

By using the new dependent variable transformation
u(x, t) = wx(x, t) in Equation (8) and integratingboth sides
with respect to x, Equation (8) can be written as

wt + λ wxxx + ν
2 w

2
x = 0, (9)

where the constant of integration is considered to be zero.

Multi-soliton rational solutions (when N = 2)

From equations (4) and (6) when N = 2, we have

w(x, t) = W(z1, z2)

= p0 + p1 ϕ1(z1) + p2 ϕ2(z2) + p3 ϕ1(z1)ϕ2(z2)
r0 + r1 ϕ1(z1) + r2 ϕ2(z2) + r3 ϕ1(z1)ϕ2(z2) , (10)

where z1 = α1 x + α2 t, z2 = β1 x + β2 t and αk, βk, pi,
ri , i = 0, 1, 2, 3, k = 1, 2 are arbitrary constants. The
auxiliary functions ϕj(zj) satisfy the auxiliary equations
ϕ′j(zj) = cj ϕj(zj), where cj are arbitrary constants, j = 1, 2.

By substituting from (10) into (9) and by using any
package in symbolic computations, we get

r3 = ν2 p1 p2 R2
− r0

R1 R2 R2
+

, r2 = ν p2 r0
R2

, r1 = ν p1 r0
R1

,

p3 = ν p1 p2 R2
− (R1 + R2 − ν p0)
R1 R2 R2

+
,

α2 = −λ c2
1 α3

1, β2 = −λ c2
2 β3

1,

(11)

where R± = (c1 α1 ± c2 β1), R1 = p0 ν + 12 λ c1 α1 r0 and
R2 = p0 ν + 12 λ c2 β1 r0.
p0, p1, p2, r0, c1, c2, λ, ν, α1 and β1 are arbitrary con-
stants.

By solving the auxiliary equations ϕ′j(zj) =
cj ϕj(zj), j = 1, 2 and substituting together with (11) into
(10), we get the solution of Equation (8) namely

u(x, t) = wx(x, t),
w(x, t) = W(z1, z2)

= R1 R2 R2
+ (p0 + p1 ec1 z1 + p2 ec2 z2 )

r0
(
R1 R2 R2

+ + ν R2
+ (p1 R2 ec1 z1 + p2 R1 ec2 z2 )

+ν p1 p2 R2
−ec1 z1+c2 z2 (R1 + R2 − ν p0)

+ν2 p1 p2 R2−ec1 z1+c2 z2 )
,

(12)

where z1 = α1 (x − λ c2
1 α1 t) and z2 = β1 (x − λ c2

2 β1 t).
Shape and motion of the solution given by (12) is de-

picted in Figure 1

Multi-soliton rational solutions (when N = 3)

Now, we �nd a multi-soliton rational solution of Equa-
tion (8) when N = 3.
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Figure 1: (a) 3D-plot for u(x, t). (b) 2D-plot for u(x, t) when x = 0.
(c) the contour plot for u(x, t). α1 = 1, β1 = 2, λ = 1, ν = 5 and
p0 = 1/20, r0 = 1, p1 = 3/20, p2 = 1/5, c1 = 3, c2 = 1/2.

From Equations (4) and (6) when N = 3, we have

w(x, t) = W(z1, z2, z3)

=
p0 +

3∑
s=1

ps ϕs(zs)

r0 +
3∑
s=1

rs ϕs(zs)

+
3∑

i, j=1

pi,j ϕi(zi)ϕj(zj) + p4 ϕ1(z1)ϕ2(z2)ϕ3(z3)

+
3∑

i, j=1

ri,j ϕi(zi)ϕj(zj) + r4 ϕ1(z1)ϕ2(z2)ϕ3(z3)
, (13)

where i < j, z1 = α1 x + α2 t, z2 = β1 x + β2 t, z3 = γ1 x + γ2 t
and αk, βk, γk p0, r0, ps, rs, pi, j, ri, j , i, j = 1, 2, 3, s =
1, 2, 3, 4, k = 1, 2 are arbitrary constants. The auxiliary
functions ϕl(zl) satisfy the auxiliary equations ϕ′l(zl) =
cl ϕl(zl), where cl are arbitrary constants, l = 1, 2, 3.

By substituting from (13) into (9) and by a similar way
as we did in the last case (when N = 2), we get the solution
of (8) in the form

u(x, t) = wx(x, t),
w(x, t) = W(z1, z2, z3)

= ψ1(z2, z3) + ψ2(z1, z2, z3)
ν r0(ψ3(z2, z3) + ψ4(z1, z2, z3)) ,

ψ1 = r0 H2
+ R2

+

(
r0

(
ν p0 r2 M2

− + r2,3 M2
+ R3 ec3 z3

)
+ r2 M2

− ec2 z2
(
r2 R2 + r2,3 (R2 + R3 − p0 ν) ec3 z3

))
,

ψ2 = r1 ec1 z1
(
R2

+ r0

(
r2 R1 M2

− H2
+

+ r2,3 H2
− M2

+ (R1 + R3 − p0 ν) ec3 z3
)

+ R2
− r2 M2

− ec2 z2 (r2 (R1 + R2 − p0 ν)

H2
+ + r2,3 H2

− (R1 + R2 + R3 − 2p0 ν) ec3 z3
))

,

ψ3 = R2
+ r0 H2

+

(
r2 M2

− ec2 z2
(
r2 + r2,3 ec3 z3

)
+ r0

(
r2 M2

− + r2,3 M2
+ ec3 z3

))
,

ψ4 = r1 ec1 z1
(
R2
− r2 M2

− ec2 z2
(
r2 H2

+ + r2,3 H2
− ec3 z3

)
+r0 R2

+

(
r2 M2

− H2
+ + r2,3 H2

− M2
+ ec3 z3

))
,

(14)

where R± = (c1 α1±c2 β1),H± = (c1 α1±c3 γ1),M± = (c2 β1±
c3 γ1), R1 = p0 ν+12 λ c1 α1 r0, R2 = p0 ν+12 λ c2 β1 r0 and
R3 = p0 ν + 12 λ c3 γ1 r0.
z1 = α1 (x − λ c2

1 α1 t), z2 = β1 (x − λ c2
2 β1 t) and z3 = γ1 (x −

λ c2
3 γ1 t), where p0, r0, r1, r2, r2,3, c1, c2, c3, λ, ν, α1,

β1 and γ1 are arbitrary constants.
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Shape and motion of the solution given by (14) is de-
picted in Figure 2

Model 2. The (2+ 1)-dimensional Nizhnik-Novikov-Veselov
equations (NNV)
Here, we apply the generalized uni�ed method described
in Section 2 to �nd multi-soliton rational wave solutions of
NNV which read [24–26]

ut − uxxx + α (u v)x = 0,
ux + β vy = 0,

(15)

where α and β are arbitrary constants. The NVV systemmay
be considered as a model for an incompressible �uid where
u and v are components of the (dimensionless) velocity [28].
Boiti and et al. solved this system of equations via the in-
verse scattering transformation [29]. It is well known that,
the system in (15) is an isotropic Lax integrable extension of
the well known (1+ 1)-dimensional KdV equations and has
physical signi�cance [30]. Also, NNV system can also be ob-
tained from the inner parameter-dependent symmetry con-
straint of the KP equation [31].

By using the new dependent variable transformations
u(x, y, t) = u1x(x, y, t) and v(x, y, t) = v1x(x, y, t) in Equa-
tion (15) and integrating both sideswith respect to x, Equa-
tion (15) can be written as

u1t − u1xxx + α u1x v1x = 0,
u1x + β v1y = 0,

(16)

where the constants of integration are considered to be
zero.

Multi-soliton rational solutions (when N = 2)

From Equations (4) and (6) when N = 2, we have

u1(x, y, t) = U(z1, z2)

= p0 + p1 ϕ1(z1) + p2 ϕ2(z2) + p3 ϕ1(z1)ϕ2(z2)
q0 + q1 ϕ1(z1) + q2 ϕ2(z2) + q3 ϕ1(z1)ϕ2(z2) ,

v1(x, y, t) = V(z1, z2)

= r0 + r1 ϕ1(z1) + r2 ϕ2(z2) + r3 ϕ1(z1)ϕ2(z2)
q0 + q1 ϕ1(z1) + q2 ϕ2(z2) + q3 ϕ1(z1)ϕ2(z2) ,

(17)

where z1 = α1 x+α2 y+α3 t, z2 = β1 x+β2 y+β3 t and αk, βk,
pi, qi, ri , i = 0, 1, 2, 3, k = 1, 2, 3 are arbitrary constants.
The auxiliary functions ϕj(zj) satisfy the auxiliary equa-
tions ϕ′j(zj) = cj ϕj(zj), where cj are arbitrary constants,
j = 1, 2.

Figure 2: (a) 3D-plot for u(x, t). (b) 2D-plot for u(x, t) when x = 0. (c)
the contour plot for u(x, t). α1 = 2, β1 = −1, γ = 3, λ = 1, ν = 1/2,
p0 = 1/20, r0 = 1, r1 = 3/20, r2 = 1/5, r2,3 = 1, and c1 = c2 =
c3 = 1.



Multi-soliton rational solutions for some nonlinear evolution equations | 31

By substituting from (17) into (16) and by using any
package in symbolic computations, we get

q3 = −R− H− q0 r1 r2 α2

R1 R2 R+ H+
, q2 = −q0 r2 α

R2
, q1 = −q0 r1 α

R1
,

p0 = 6 c2 β2 q0 r2 β − p2 R2
r2 α

,

p1 = r1 (p2 R2 + 6 r2 β q0 H−)
r2 R1

,

p3 = −α r1 R− H− (p2 R2 + 6 c1 q0 α2 β r2)
R+ H+ R1 R2

r3 = − r1 r2 R− H− (R1 + R2 + r0 α)
R1 R2 R+ H+

,

α3 = c2
1 α3

1, β3 = c2
2 β3

1,
(18)

whereR± = c1 α1±c2 β1,H± = c1 α2±c2 β2,R1 = 6 c1 α1 q0−
r0 α and R2 = 6 c2 β1 q0 − r0 α.
p2, q0, r0, r1, r2, c1, c2, α, β, α1, α2, β1 and β2 are ar-
bitrary constants.

By solving the auxiliary equations ϕ′j(zj) =
cj ϕj(zj), j = 1, 2 and substituting together with (18) into
(17), we get the solution of Equation (15) namely

u(x, y, t) = u1x(x, y, t), u1(x, y, t) = U(z1, z2),
U(z1, z2)

= R+ H+ R2 (α p2 r2 R1 ec2 z2

q0 (R+ H+ (R1 R2 − R1 r2 α ec2 z2 − r1 α R2 ec1 z1 )
+α r1 ec1 z1 (p2 R2 + 6 q0 r2 β H−))

+R− H− r1 r2 α2 ec1 z1+c2 z2 )

− R− H− r1 α (p2 R2 + 6 c1 α2 q0 r2 β) ec1 z1+c2 z2

q0 (R+ H+ (R1 R2 − R1 r2 α ec2 z2 − r1 α R2 ec1 z1 )
,

+R− H− r1 r2 α2 ec1 z1+c2 z2 )
(19)

v(x, y, t) = v1x(x, y, t), v1(x, y, t) = V(z1, z2),

V(z1, z2) = R+ H+ R1 R2 (r0 + r1 ec1 z1 + r2 ec2 z2 )
q0
(
R+ H+(R1 R2 − R1 r2 α ec2 z2

,

−R− H− r1 r2 α (R1 + R2 + r0 α) ec1 z1+c2 z2

−r1 α R2 ec1 z1 ) + R− H− r1 r2 α2 ec1 z1+c2 z2
) (20)

where z1 = α1 x + α2 y + c2
1 α3

1 t, z2 = β1 x + β2 y + c2
2 β3

1 t.
The solution given by Equations (19)-(20) of Equa-

tion (15) is shown in Figures 3-4.

Multi-soliton rational solutions (when N = 3)

In this part, we �nd a multi-soliton rational solution of
Equations (15)-(16) when N = 3.

From equations (4) and (6) when N = 3, we have

u1(x, y, t) = U(z1, z2, z3) =
p0 +

3∑
s=1

ps ϕs(zs)

q0 +
3∑
s=1

qs ϕs(zs)
,

+
3∑

i, j=1

pi,j ϕi(zi)ϕj(zj) + p4 ϕ1(z1)ϕ2(z2)ϕ3(z3)

+
3∑

i, j=1

qi,j ϕi(zi)ϕj(zj) + q4 ϕ1(z1)ϕ2(z2)ϕ3(z3)

v1(x, y, t) = V(z1, z2, z3) =
r0 +

3∑
s=1

rs ϕs(zs)

q0 +
3∑
s=1

qs ϕs(zs)
,

+
3∑

i, j=1

ri,j ϕi(zi)ϕj(zj) + r4 ϕ1(z1)ϕ2(z2)ϕ3(z3)

+
3∑

i, j=1

qi,j ϕi(zi)ϕj(zj) + q4 ϕ1(z1)ϕ2(z2)ϕ3(z3)
,

(21)

where i < j, z1 = α1 x + α2 y + α3 t, z2 = β1 x + β2 y + β3 t,
z3 = γ1 x + γ2 y + γ3 t and αk, βk, γk, p0, r0, ps , qs, rs,
pi, j , qi, j, ri, j , i, j = 1, 2, 3, s = 1, 2, 3, 4, k = 1, 2, 3 are
arbitrary constants. The auxiliary functions ϕl(zl) satisfy
the auxiliary equations ϕ′l(zl) = cl ϕl(zl), where cl are ar-
bitrary constants, l = 1, 2, 3.

By substituting from (21) into (16) and by a similar way
as we did in the last case (when N = 2), we get

p0 = 6 q0 (R+ + γ2 c3) β
α , p1 = 6 q1 β L+

α ,

p2 = 6 q2 β N+
α , p3 = 6 q3 β H+

α ,

p1,2 = 6 γ2 q1 q2 c3 β H− R−
R+ H− q0 α

, p1,3 = 6 c2 β2 q1 q2 M− N−
q0 α M+ N+

,

p2,3 = 6 c1 α2 q2 q3 β Q− L−
q0 Q+ L+ α

, p4 = 0,

r1 = q1 ( r0
q0
− 6 c1 α1

α ), r2 = q2 ( r0
q0
− 6 c2 β1

α )

r3 = q3 ( r0
q0
− 6 c3 γ1

α ),

r1,2 = −R− H− q1 q2 (R1 + R2 + r0 α)
R+ H+ q2

0 α
,

(22)
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Figure 3: (a) 3D-plot for u(x, y, t) when y = 0. (b) 3D-plot for u(x, y, t) when t = 0. (c) the contour plot for u(x, y, t) when y = 0. (d) 2D-plot for
u(x, y, t) when x = y = 0. α1 = 2, α2 = 3, β1 = 1, β2 = −2, α = 2, β = 1, r0 = 0, r1 = −2, r2 = 1, q0 = 1, p2 = −1 and c1 = c2 = 1.
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Figure 4: (a) 3D-plot for v(x, y, t) when y = 0. (b) 3D-plot for v(x, y, t) when t = 0. (c) the contour plot for v(x, y, t) when y = 0. (d) 2D-plot for
v(x, y, t) when x = y = 0. The same parameters as in Figure 3.
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Figure 5: (a) 3D-plot for u(x, y, t) when y = 0. (b) 3D-plot for u(x, y, t) when t = 0. (c) the contour plot for u(x, y, t) when y = 0. (d) 2D-plot for
u(x, y, t) when x = y = 0. α1 = 2, α2 = 3, β1 = 1, β2 = −2, α = 2, β = 1, r0 = 0, r1 = −2, r2 = 1, q0 = 1, p2 = −1 and c1 = c2 = 1.
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Figure 6: (a) 3D-plot for v(x, y, t) when y = 0. (b) 3D-plot for v(x, y, t) when t = 0. (c) the contour plot for v(x, y, t) when y = 0. (d) 2D-plot for
v(x, y, t) when x = y = 0. The same parameters as in Figure 5.
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r1,3 = −M− N− q1 q3 (R1 + R3 + r0 α)
M+ N+ q2

0 α
,

r2,3 = −Q− L− q2 q3 (R2 + R3 + r0 α)
Q+ L+ q2

0 α
,

r4 = −R− H− Q− L−M− N− q1 q2 q3 (R1 + R2 + R3 + 2 r0 α)
R+ H+ Q+ L+ M+ N+ q3

0 α
,

(22)

q1,2 = R− H− q1 q2
R+ H+ q0

, q1,3 = M− N− q1 q3
M+ N+ q0

,

q2,3 = Q− L− q2 q3
Q+ L+ q0

, q4 = R− H− Q− L−M− N− q1 q2 q3
R+ H+ Q+ L+ M+ N+ q2

0
,

α3 = c2
1 α3

1, β3 = c2
2 β3

1, γ3 = c2
3 γ

3
1 ,

(23)
where R± = c1 α1 ± c2 β1, H± = c1 α2 ± c2 β2, M± = c2 α1 ±
c3 γ1, N± = c1 α2 ± c3 γ2, Q± = c2 β1 ± c3 γ1, L± = c2 β2 ±
c3 γ2, R1 = 6 c1 α1 q0 − r0 α, R2 = 6 c2 β1 q0 − r0 α and
R3 = 6 c2 β1 ± r0 α.
p2, qi , r0, c1, c2, c3 α, β, α1, α2, β1, β2, γ1 and γ2, i =
0, 1, 2, 3 are arbitrary constants.

By solving the auxiliary equations ϕ′j(zj) =
cj ϕj(zj), j = 1, 2, 3 and substituting together with (22)-
(23) into (21), we get the solution of Equation (15) which is
very lengthy to be written here.

The solution of (15) when N = 3 is shown in Fig-
ures 5-6.

4 Conclusions
In summary, via the generalized uni�ed method and sym-
bolic computation, we construct multi-soliton rational so-
lutions for theKdVandNNV. Thismethod cannot only give
a uni�ed formulation to uniformly construct multi-wave
solutions, but also can provide us a guideline to classify
the types of these solutions according to the given param-
eters. This method can be applied to other kinds of non-
linear partial di�erential equations with the aid of com-
puter systems like Mathematica or Maple to facilitate the
algebraic calculations. Also, it is valuable to learn more
about these multi-soliton rational solutions and their re-
lated evolutional properties, we expect that these solu-
tions may be useful in future studies for the intricate nat-
ural world.
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