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Abstract:We investigate the stability and invariant mani-
folds of generalized Beddington model with the host pop-
ulation subject to the Allee effect. We obtain the condition
for the existence of the fixed points and investigate the sta-
bility of the system.
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1 Introduction
Parasitoids have long been popular subjects for ecological
study since they are important for biological pest con-
trol, which has stimulatedmuch empirical and theoretical
works on the attributes that make parasitoids effective
pest control agents.

The host-parasitoid models can have simple struc-
tures when compared with the corresponding predator-
preymodels. Simple predator-prey and host-parasitemod-
els show unstable dynamics, causing extinction [10].
These findings prompted a search for mechanisms that
prevent or promote coexistence. For instance, works in the
literature have shown that spatio-temporal environmental
heterogeneity, density-dependence, interference among
parasitoids, spatial aggregation of predators in areas of
high prey density, dispersal, and genetic variation may
promote coexistence. Using the Nicholson-Bailey model
as a starting point, theories have been sought for mecha-
nisms that stabilize its dynamics; the rationale is that sta-
bility should ensure the persistence of the host and par-
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asitoid. Many species of parasitoids and their hosts can
readily be cultured in laboratorymicrocosms, and this has
greatly increased the amount of emprical information on
host-parasitoid interactions under controlled conditions
[2].

Many stabilizing mechanisms have been identified,
including mutual interference among parasitoid aggrega-
tions and patchy environments [9], several types of par-
asitoid aggregation, density-dependent parasitoid sex ra-
tios [2–5], competition among parasitoid larvae, and Allee
effects [7].

The general host-parasitoid model has the form:

Nt+1 = rNt exp(−aPt),
Pt+1 = eNt(1 − exp(−aPt)).

(1)

Kapcak et. al. [8] studied a generalization of (1) which
is given by [6] as an open problem.

S.R.-J. Jang and S.L. Diamond [7] investigated the fol-
lowing Beddington model l with the host subject to an
Allee effect:

Nt+1 = Nt exp
[︂
r
(︂
1 − NtK

)︂
− aPt

]︂
Nt

A + Nt
,

Pt+1 = eNt[1 − exp(−aPt)],
(2)

where the parameters r, K, a, A, and e are positive.

In this paper we analyze the following discrete-time
model which is the generalization of the model (2):

Nt+1 = Nt exp
[︂
r
(︂
1 − NtK

)︂
− aPt

]︂
Nt

A + Nt
,

Pt+1 = eNt[1 − exp(−bPt)],
(3)

where the parameters r, K, a, A, e and b are positive.

Now, we eliminate some of the parameters by chang-
ing the variables. Taking xt = Nt

K , and yt = bPt, we obtain

xt+1 = xt exp [r (1 − xt) − qyt]
xt

B + xt
,

yt+1 = mxt[1 − exp(−yt)],
(4)

where m = beK, q = a
b and B = A

K .
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2 Equilibrium Points
In this section we analyze the fixed points of the discrete
system (4). Firstly, we have to focus on the following iso-
cline equations:

x = x exp [r (1 − x) − qy] x
B + x ,

y = mx[1 − exp(−y)].
(5)

2.1 Extinction and Exclusion Fixed Points

In the equation (5), if x = 0, we have the extinction fixed
point P*1 = (x*1, y*1) = (0, 0).

In order to find the exclusion fixed points, we take x ≠
0 and y = 0 in system of equations (5). Hence, we obtain

B = x
(︁
er(1−x) − 1

)︁
. (6)

Let us denote z = F(x) = x
(︁
er(1−x) − 1

)︁
. When this

curve intersects with the horizontal line z = B, some fixed
points are obtained.

Notice that F is continuous, F(0) = F(1) = 0, F′(0) > 0,
limx→∞ F(x) = −∞ and there is a unique x such that
F′(x) = 0, where x ∈ (0, 1). See Figure 1.

Now,wehave to determine inwhich condition the hor-
izontal line z = B intersects the function z = F(x), which
is the condition when B is less than the height of the max-
imum value of the curve z = F(x). Let us denote the max-
imum point by (x̄, ȳ). In order to find that point, we have

F′(x̄) = er(1−x̄)(1 − rx̄) − 1 = 0. (7)

We focus on the case where the horizontal line z = B
is a tangent to the curve z = F(x), which is F(x̄) = B:

x̄
(︁
er(1−x̄) − 1

)︁
= B. (8)

Eliminating the term er(1−x̄) in equations (7) and (8),
we obtain

rx̄2 + Brx̄ − B = 0. (9)

The positive solution of equation (9) for x̄ is as follows:

x̄ = 1
2

[︃
−B +

√︂
B2 + 4B

r

]︃
. (10)

Hence, the condition for the existence of the exclusion
fixed points is obtained. There exist no fixed points if B >

F(x̄), there exist only one fixed point if B = F(x̄), and
there exist two exclusion fixed points if B < F(x̄). Further-
more, since B > 0 and the function F is positive only on
the interval (0, 1), the intersections always occur on this
interval; from which we conclude that for the exclusion
fixed points, say P*2 = (x*2, y*2) and P*3 = (x*3, y*3), we have
0 < x*2 < 1 and 0 < x*3 < 1. See Figure 1

Hence, we obtain the following result:

Theorem 1. Let

F(x) = x
(︀
exp

[︀
r(1 − x)

]︀
− 1
)︀

and

θ = 1
2

[︃
−B +

√︂
B2 + 4B

r

]︃
.

For the system given in (4),

a. for any values of parameters, there exists an extinc-
tion fixed point (0, 0).

b. there exist no exclusion fixed points if B > F(θ).
c. there exists one exclusion fixed point (θ, 0) if B =
F(θ).

d. there exist two exclusion fixed points if B < F(θ).

Notice that the exclusion fixed points are obtained by tak-
ing y = 0, which vanishes in the second equation of the
system (5). We give the graphs of the isoclines in Figure 2
with somevalues of parameterswhich confirmsour results
in the theorem. In Figure 2, B = .5 and the values for F(θ)
are as follows: (a) F(θ) = 0.372 < B, (b) F(θ) = 0.499 ≈ B,
(c) F(θ) = 0.773 > B.

2.2 Coexistence Fixed Points

Since there are complex, non-algebraic, equations for the
isoclines, it is not easy to obtain a simple condition for the
positive fixed points. However, we investigate this points
numerically and find that for particular values of parame-
ters there may exist zero, one, or two positive fixed points.
Figure 3 represents the possible numbers of coexistence
fixed points.

Notice that, since

y′′ = 1
q

[︂
1

(B + x)2 −
1
x2

]︂
< 0

for the first equation in (5), the first isocline is concave
downwards, thus the only interval where the curve is
above the x axis is (x*2, x*3). Hence, if a positive fixed point
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Figure 1: z = F(x), z = B.
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(c) B < F(θ)

Figure 2: The graphs represent isoclines of the system. The horizontal line is the part of the isocline whose equation is the second equation
of the system (5). The graph of the first equation is given by the curve.

(a) m = .1, B = .5, q = .5, r = 1.1; (b) m = .1, B = .5, q = .5, r = 1.35; (c) m = .1, B = .5, q = .5, r = 1.8.
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(b) one coexistence fixed point
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(c) two coexistence fixed points

Figure 3: Isoclines of the system.
(a) m = 2.5, B = 4.75, q = .01, r = 4.02; (b) m = 4.4, B = 4.75, q = .01, r = 4.02; (c) m = 7, B = 4.75, q = .01,

r = 4.02.
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(a) two coexistence fixed points

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

(b) no coexistence fixed points

Figure 4: The parameter q affects the existence of the positive fixed points if m is large enough.
(a) m = 7.4, B = 4.75, q = .01, r = 4.02; (b) m = 7.4, B = 4.75, q = .06, r = 4.02.

(x*+, y*+) exists, then it satisfies the condition x*2 < x*+ < x*3.

Furthermore, since θ = θ(B, r) and F(x) in Theorem 1
doesn’t depend on the parameters q and m, we can con-
clude that the existence of any kind of fixed point does not
depend on the parametersm and q. Even these parameters
do not change the position of the exclusion fixed points.
However, the existence and the position of the coexistence
fixed points are affected by each of the parameters. Figure
4 represents the effect of the parameter q. For large values
of m, the parameter q affects the existence of the positive
fixed points. However, for moderate values of m, where
x*2 < 1

m < x*3, the parameter q does not affect the existence
nor the number of positive fixed points, but the positions
of them. This is shown in Figure 5.

Since, for some positive fixed points, x*+ < x*3 < 1 and
the x-intercept of the second isocline is 1

m , for m < 1 the
isoclines do not intersect and hence there are no coexis-
tence fixed points for this case. The inverse of this state-
ment is not true (an example is shown in Figure 3 (a), for
which m = 2.5 > 1 and there are no positive fixed points).

3 Stability of the System (4)
In this section, we analyze the stability of the system (4).

Let
F(x) = x

(︀
exp

[︀
r(1 − x)

]︀
− 1
)︀

(11)

and

θ = 1
2

[︃
−B +

√︂
B2 + 4B

r

]︃
. (12)

Case 1. B > F(θ)

Theorem 2. For the system (4), when B > F(θ), the extinc-
tion fixed point (0, 0) is globally asymptotically stable.

Proof. With the assumption that B > F(θ), the only fixed
point is at (0, 0). Furthermore, notice that if B > F(θ), then
B > F(xn) for any xn .

If we start with (xn , yn), where xn = 0 and yn ≥ 0, then
xn+1 = yn+1 = 0.

Now, let us start with some point on the plane (xn , yn),
where xn > 0 and yn ≥ 0, and show that xn+1 < xn and
yn+1 < yn. Hence, proving the inequalities, the sequences
must converge to the only fixed point (0, 0):

xn+1 = xn exp[r(1 − xn) − qyn] xn
B+xn

< xn exp[r(1 − xn)] xn
B+xn

< (B + xn) xn
B+xn

< xn .
Hence, xn → 0 as n →∞.

We also know that yn+1 = mxn(1 − e−yn ) < mxn, from
which we conclude that yn → 0 as xn → 0.

Case 2. B = F(θ)

Now, for the system (4), we are going to analyze the fixed
point (θ, 0) when B = F(θ).

The Jacobian matrix of the map

G(x, y) =
(︁
xer(1−x)−qy x

B + x ,mx(1 − e
−y)
)︁

is
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Figure 5: The parameter q does not affect the number of positive fixed points but the positions of them if x*2 < 1
m < x*3.

(a) m = 4.5, B = 4.75, q = .01, r = 4.02; (b) m = 4.5, B = 4.75, q = .03, r = 4.02.

JG(x, y) =
(︃
− e

r−rx−qyx(B(−2+rx)+x(−1+rx))
(B+x)2 − e

r−rx−qyqx2
B+x

m − e−ym e−ymx

)︃
.

The Jacobian evaluated at the point (θ, 0) is

JG(θ, 0) =
(︃
− e

r−rθθ(B(−2+rθ)+θ(−1+rθ))
(B+θ)2 − e

r−rθqθ2
B+θ

0 mθ

)︃
,

where θ is given in equation (12). By using equations (11)
and (12), after some calculations, we obtain the following
Jacobian matrix for the exclusion fixed point (θ, 0):

JG(θ, 0) =
(︃

1 −qθ
0 mθ

)︃
,

which makes the fixed point non-hyberbolic.

The eigenvalues of JG(θ, 0) are λ1 = 1 and λ2 = mθ. If
mθ > 1, then the fixed point (θ, 0) is unstable. If mθ < 1,
then in order to investigate the stability of this case, we
have to apply the center manifold theory [1].

It is more convenient to make a change of variables in
the system (4) so we can have a shift from the point (θ, 0)
to (0, 0). Let u = x − θ and v = y. Then the new system is
given by

ut+1 =
er−qvt−r(ut+θ)(ut + θ)2

B + ut + θ
− θ,

vt+1 = µ(ut + θ)[1 − exp(−vt)].
(13)

At the point (0, 0), the Jacobian of the planar map given in
(13) is

J̃G(0, 0) =
(︃

1 −qθ
0 mθ

)︃
.

Now we can write the equations in the system (13) as

ut+1 = ut − qθvt + f̃ (ut , vt),
vt+1 = mθvt + g̃(ut , vt),

(14)

where

f̃ (ut , vt) = −ut − θ + qvtθ +
e−rut−qvt (B + θ)(ut + θ)2

θ(B + ut + θ)
and

g̃(ut , vt) = −mvtθ +
(︀
1 − e−vt

)︀
m(ut + θ).

Let us assume that the map h takes the form

h(u) = αu2 + βu3 + O(u4), α, β ∈ R.

Now we have to compute the constants α and β. The
function h must satisfy the center manifold equation

h(u − qθh(u) + f̃ (u, h(u))) − mθh(u) − g̃(u, h(u)) = 0.

The Taylor series expansions, at the point u = 0, are
evaluated for the equation above. Equating the coeffi-
cients of the series and using the equations (11) and (12),
after some manipulations, we obtain α = β = 0.

Thus on the center manifold v = h(u) we find the fol-
lowing map

P(u) = −θ + e
−r(−1+u+θ)(u + θ)2

B + u + θ ,

where θ is given in equation (12).

Calculations show that P′(0) = 1 and

P′′(0) = −
B2
(︂
4 + Br + r

√︁
B(4+Br)

r

)︂
r
(︂
−B +

√︁
B(4+Br)

r

)︂ < 0.
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Hence, for the map P, the origin is semi-stable from the
right. See Figure 6.

Notice that this result is valid when mθ < 1 which
yields the condition r > Bm2

1+Bm .
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Figure 6:Map P on the center manifold v = h(u). (0, 0) is semi-
stable from the right.

B = .500 and r = 1.351.
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Figure 7:Map Q on the center manifold u = h(v). (0, 0) is asymptoti-
cally stable. Notice that mθ < 1.

B = .5, q = 1.1, m = 2 and r = 1.351.
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Figure 8: The phase diagram showing the stable and center mani-
folds when B = F(θ) and mθ < 1. Semi-stability of map P on the
center manifold v = h(u) = 0 can be also seen.

m = .1, B = .5, q = .5, and r = 1.351.

Case 3. B < F(θ)

The dynamics of this case, for which there may exist zero,
one, or two positive fixed points, is much more compli-
cated due to the non-algebraic equations of the isoclines.
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Figure 9: The estimated stability region of exclusion fixed point P*3.
B = 0.1, q = 0.6.

Now, we are going to find the stable manifold, which
exists when mθ < 1. Since the stable manifold is at a tan-
gent to the eigenvector at the point, let us take

h(v) = qθ
mθ − 1 v + αv

2 + βv3.
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Figure 10: Phase diagram of the system when there is no positive
fixed points.

m = .9, B = .1, q = .6 and r = 1.2.
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Figure 11: Phase diagram of the system when there exist a positive
fixed points.

m = 1.4, B = .1, q = .6 and r = 1.2.

This map must satisfy the center manifold equation

h(mθv + g̃(h(v), v)) − h(v) + qθv − f̃ (h(v), v) = 0.

We calculate the map Q on the stable manifold and
found that Q′(0) = mθ, which is expected. Because of the
long output of the computationsweomit themhere. Figure
7 shows the map Q.

Stable and center manifolds are given in Figure 8.
By symbolic/numeric computationswe obtain the sta-

bility region of the exclusion fixed point when there are
no coexistence fixed points. Figure 9 represents the sta-
bility region for the exclusion fixed point P*3 on the r-m
parameter space. In Figure 10, we give the phase diagram
of the system when there exist no positive fixed point. In
Figure 11, the phase diagram represents the dynamics of
the system when there exists a positive fixed point and for

the given values of parameters, the positive fixed point is
asymptotically stable.

4 Conclusions
In this paper, we generalized the model studied by S.R.-J.
Jang and S.L. Diamond [7]. The condition for the existence
of the fixed points are found. We also obtained the center
manifold for the exclusion fixed point when B = F(θ).
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