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Abstract: In this paper, we are concerned with the oscilla-
tory behavior of a class of fractional di�erential equations
with functional terms. The fractional derivative is de�ned
in the sense of the modi�ed Riemann-Liouville derivative.
Basedona certain variable transformation, byusing agen-
eralized Riccati transformation, generalized Philos type
kernels, and averaging techniques we establish new inter-
val oscillation criteria. Illustrative examples are also given.
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1 Introduction
Fractional di�erential equations are generalizations of
classical di�erential equations of integer order and have
recently proved to be valuable tools in the modeling of
many phenomena in various �elds of science and engi-
neering. Apart from diverse areas of mathematics, frac-
tional di�erential equations arise in rheology, viscoelastic-
ity, chemical physics, electrical networks, �uid �ows, con-
trol, dynamical processes in self-similar and porous struc-
tures, etc.; see, for example, [1–6]. There have been anum-
ber of works in which fractional derivatives are used for a
better descriptionof consideredmaterial properties;math-
ematicalmodeling based on enhanced rheologicalmodels
naturally leads to di�erential equations of fractional order
and to the necessity of the formulation of initial conditions
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for such equations. This is due both to the intensive devel-
opment of the theory of fractional calculus itself and to the
applications. The books on the subject of fractional inte-
grals and fractional derivatives by Diethelm [7], Miller and
Ross [8], Podlubny [9], andKilbas et al. [10] summarize and
organize much of fractional calculus andmany of theories
and applications of fractional di�erential equations. Many
papers have studied some aspects of fractional di�erential
equations, especially the existenceof solutions (or positive
solutions) of nonlinear initial (or boundary) value prob-
lems for fractional di�erential equation (or system) by the
use of techniques of nonlinear analysis (�xed-point the-
orems, Leray-Schauder theory), the methods for explicit
and numerical solutions and the stability of solutions, we
refer to [11–21] and the references cited therein.

Recently, research on oscillation of various equations
includingdi�erential equations, di�erence equations, and
dynamic equations on time scales has been a hot topic in
the literature, and much e�ort has already been put into
establishing new oscillation criteria for these equations;
see the monographs [22, 23]. In these investigations, we
notice that very little attention is paid to oscillation of frac-
tional di�erential equations.

In [24], Jumarie proposed a de�nition for a fractional
derivative which is known as the modi�ed Riemann-
Liouville derivative in the literature. Since then, many au-
thors have investigated various applications of the mod-
i�ed Riemann-Liouville derivative (e.g., see [25–27]) in-
cluding various fractional calculus formulae, the frac-
tional variational iterationmethod, and the fractional sub-
equation method for solving fractional partial di�erential
equations.

Recently Feng and Meng [28], Liu, Zheng and Meng
[29], Qin and Zheng [30], and Feng [31] have established
some new oscillation criteria for the following equations:

Dαt
[
r (t)ψ (x (t))Dαt x (t)

]
+ q (t) f (x (t)) = e (t) ,

Dαt
[
a (t)

(
Dαt
(
r (t)Dαt x (t)

))γ] + q (t) f (x (t)) = e (t) ,
Dαt
[
a (t)Dαt

(
r (t)Dαt x (t)

)]
+ p (t)Dαt

(
r (t)Dαt x (t)

)
+ q (t) f (x (t)) = e (t) ,
Dαt
(
r (t) k1

(
x (t) , Dαt x (t)

))
+ p (t) k2

(
x (t) , Dαt x (t)

)
Dαt x (t) + q (t) f (x (t)) = 0,
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for t ≥ t0 > 0 and 0 < α < 1, where Dαt (·) denotes the
modi�ed Riemann-Liouville derivative with respect to the
variable t.

In this paper, we are concerned with the oscillation of
fractional di�erential equations with nonlinear damping
terms in the form of

Dαt
(
r (t) k1

(
x (t) , Dαt x (t)

))
+ p (t) k2

(
x (t) , Dαt x (t)

)
Dαt x (t) + F (t, x (t) , x (τ (t))) = e (t)

(1)
for t ≥ t0 > 0 and 0 < α < 1, where Dαt (·) denotes the
modi�ed Riemann-Liouville derivative with respect to the
variable t, the function r ∈ Cα

(
[t0, ∞), (0,∞)

)
, which

is the set of functions with continuous derivative or frac-
tional order α, the function p ∈ Cα

(
[t0, ∞), [0,∞)

)
, the

function k1 belongs to Cα
(
R2, R2

)
satisfying k21 (u, v) ≤

Kvk1 (u, v) for some positive constant K, all u ∈ R and all
v ∈ R\{0}, the function k2 belongs to C

(
R2, R2

)
satisfying

uvk2 (u, v) > 0 for all u ∈ R and all v ∈ R\{0} the func-
tion F ∈ C

(
[t0, ∞) × R2, R

)
, and the function τ belongs to

C
(
[t0, ∞), (0,∞)

)
with limt→∞ τ (t) = ∞.

A solution of (1) is called oscillatory if it has arbitrar-
ily large zeros, otherwise it is called nonoscillatory. Equa-
tion (1) is called oscillatory if all its solutions are oscilla-
tory.

The de�nition and some of the key properties of mod-
i�ed Riemann-Liouville derivative are:

Dαt f (t) =


1

Γ(1−a)
d
dt
∫ t
0 (t − ξ )

−α f (ξ )dξ , 0 < α < 1(
f (n) (t)

)(α−n)
, 1 ≤ n ≤ α < n + 1

,

where f (ξ ) = (f (ξ ) − f (0)) .

Dαt tβ =
Γ (1 + β)

Γ (1 + β − α)
tβ−α ,

Dαt (f (t) g (t)) = g (t)Dαt f (t) + f (t)Dαt g (t) ,

Dαt f (g (t)) = f ′g (g (t))Dαt g (t) = Dαg f (g (t))
(
g′ (t)

)α
,

which do not hold for classical Riemann-Liouville and Ca-
puto derivates. In particular, Leibniz’s rule (product rule)
andFaàdi Bruno’s formula (chain rule) are important tools
in our proofs.

2 Main results
We will use a transformation technique also used in [28–
33] in our proofs. For the sake of convenience, through the
rest of this paper, we denote

ξ = ξ (t) := tα
Γ (1 + α)

, ξt0 := ξ (t0) =
tα0

Γ (1 + α)

and for any function f , we denote f̃ = f ◦ξ−1 i.e. f̃ (ξ ) = f (t).
We immediately arrive at the conclusion Dαt f (t) = f̃ ′ (ξ ),
which gives us the ability to build a connection between
fractional and integer order derivatives of functions. We
will transform fractional order di�erential inequalities to
integer order di�erential inequalities in our proofs with
this connection.

Nowwe introduce a functional that will be used in the
proofs of some results.

Let

B (si , ti) =
{
u ∈ C1[si , ti] : u (t) ̸= 0 for t ∈ (si , ti) ,

u (si) = u (ti) = 0} ,

for i = 1, 2. We de�ne the functional A(·; si , ti) for G ∈
B (si , ti) such as;

A(g; si , ti) =
ti∫
si

G2 (t) g (t) dt, si ≤ t ≤ ti, i = 1, 2,

where g ∈ C
(
[t0, ∞), R

)
. It is easily seen that the linear

functional A(·; si , ti) satis�es

A(g′; si , ti) = −A(2
G′
G g; si , ti) ≥ −A(2

∣∣∣∣G′G
∣∣∣∣ |g| ; si , ti).

In proofs of some of our results, we will also use another
class of averaging functions H ∈ C (D, R) which satisfy
(i) H (t, t) = 0, H (t, s) > 0 for t > s,

(ii) H has partial derivatives ∂H/∂t and ∂H/∂s on D such
that

∂H
∂t = h1 (t, s)

√
H (t, s), ∂H

∂s = −h2 (t, s)
√
H (t, s)

where D = {(t, s) : t0 ≤ s ≤ t < ∞} and h1, h2 ∈
Lloc

(
D,R+).

We will also use the function class Y to study the oscilla-
tory behavior of (1). We say that a function Φ (t, s, l) be-
longs to the function class Y dentoed by Φ ∈ Y, if Φ ∈
C (E, R), where E = {(t, s, l) : t0 ≤ l ≤ s ≤ t < ∞}, which
satis�es Φ (t, t, l) = 0, Φ (t, l, l) = 0, Φ (t, s, l) ̸= 0 for
l < s < t, and has the partial derivative ∂Φ/∂s on E such
that ∂Φ/∂s is locally integrable with respect to s in E.

In the proof of some of our results we de�ne below a
useful operator, introduced in [34], as an important tool.

For Φ ∈ Y, we de�ne the operator

T [g; l, t] =
t∫
l

Φ2 (t, s, l) g (s) ds t ≥ s ≥ l ≥ t0, (2)
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where g ∈ C
(
[t0, ∞), R

)
. It is easy to verify that the linear

operator T [·; l, t] satis�es

T
[
g′; l, t

]
= −2T [ϕg; l, t] for g ∈ C1

(
[t0, ∞), R

)
, (3)

where the function ϕ = ϕ (t, s, l) is de�ned by

∂Φ (t, s, l)
∂s = ϕ (t, s, l)Φ (t, s, l) . (4)

Before our main results, now we state a useful lemma [35]
(Young’s inequality).

Lemma 1. If A and B are nonnegative constants andm, n ∈
R such that 1

m + 1
n = 1, then

1
mA + 1

n B ≥ A
1
m B

1
n .

We are ready to state our main results concerning oscilla-
tory behavior of Equation (1) now.We shallmake use of the
following conditions in our results:
(C1)For any T ≥ t0, there exists T ≤ s1 < t1 ≤ s2 < t2 such

that

e (t) ≤ 0 for t ∈ [s1, t1],
e (t) ≥ 0 for t ∈ [s2, t2] ,

(C2)there exists a function q (t) > 0 and a constant γ ≥ 1
such that
F (t, x, u) /x ≥ q (t) |x|γ−1 holds for t ∈ [s1, t1]∪ [s2, t2]
and x ̸= 0, u ∈ R.

Theorem 1. Suppose the conditions (C1 − C2) hold. If there
exist some δi ∈ (si , ti), for
i = 1, 2; H ∈ C (D, R) satisfying (i)-(ii) and a positive func-
tion ρ ∈ C1

(
[t0, ∞),R+) such that

1
H(δi ,ξsi )

δi∫
ξsi

ρ̃ (s)
[
H (s, ξsi ) Q̃ (s) − Kr̃(s)

4 H1 (s, ξsi )
]
ds

+ 1
H(ξti ,δi)

ξti∫
δi
ρ̃ (s)

[
H (ξti , s) Q̃ (s) −

Kr̃(s)
4 H2 (s, ξti )

]
ds > 0

(5)
for i = 1, 2, where Hi (t, s) := hi (t, s) − ρ̃′(t)

ρ̃(t)

√
H (t, s) and

Q (t) = γ (γ − 1)(1−γ)/γ [q (t)]1/γ |e (t)|(γ−1)γ with the con-
vention 00 = 1, then Equation (1) is oscillatory.

Proof. On the contrary, suppose that Equation (1) has a
nonoscillatory solution x (t). Then x (t) eventually must
have one sign, i.e. x (t) ̸= 0 on [T0, ∞) for some large
T0 ≥ t0. De�ne

w (t) := ρ (t)
r (t) k1

(
x (t) , Dαt x (t)

)
x (t)

(6)

for t ≥ T0. Then we deduce

Dαt w (t) = ρ (t) e (t)x (t)
− ρ (t) F (t, x (t) , x (τ (t)))x (t)

−ρ (t) p (t)
k2
(
x (t) , Dαt x (t)

)
Dαt x (t)

x (t)

−ρ (t) r (t)
k1
(
x (t) , Dαt x (t)

)
Dαt x (t)

x2 (t)

+ D
α
t ρ (t)
ρ (t)

w (t)

for t ≥ T0. By assuming (C2) and the condition on k2, we
obtain

Dαt w (t) ≤ ρ (t)
(
e (t)
x (t)

− q (t) |x (t)|γ−1
)

+ D
α
t ρ (t)
ρ (t)

w (t) − 1
Kρ (t) r (t)

w2 (t) (7)

for t ≥ T0. By assuming (C1), if x (t) > 0, then we can
choose s1, t1 ≥ T0 such that e (t) ≤ 0 for t ∈ [s1, t1]. Simi-
larly if x (t) < 0, then we can choose s2, t2 ≥ T0 such that
e (t) ≥ 0 for t ∈ [s2, t2]. So e(t)

x(t) ≤ 0 (i.e. − e(t)
x(t) =

∣∣∣ e(t)x(t)

∣∣∣) for
t ∈ [si , ti], i = 1 or 2 and from (7) one can deduce

Dαt w (t) ≤ ρ (t)
(
−
∣∣∣∣ e (t)x (t)

∣∣∣∣ − q (t) |x (t)|γ−1)
+D

α
t ρ (t)
ρ (t)

w (t) − 1
Kρ (t) r (t)

w2 (t) . (8)

For γ > 1, by setting m = γ, n = γ
γ−1 , A = γq (t) |x (t)|γ−1,

B = γ
γ−1

∣∣∣ e(t)x(t)

∣∣∣ and using Lemma 1, we obtain

q (t) |x (t)|γ−1 +
∣∣∣∣ e (t)x (t)

∣∣∣∣ ≥ Q (t) . (9)

Note that inequality (9) trivially holds for γ = 1. So, by
combining (8) and (9), we obtain

Dαt w (t) ≤ ρ (t)Q (t) +
Dαt ρ (t)
ρ (t)

w (t) − 1
Kρ (t) r (t)

w2 (t) (10)

for γ ≥ 1 and t ∈ [si , ti], i = 1 or 2.

Now let w (t) = w̃ (ξ ). Then we have Dαt w (t) = w̃′ (ξ )
and Dαt ρ (t) = ρ̃′ (ξ ) So (10) is transformed to

w̃′ (ξ ) ≤ ρ̃ (ξ ) Q̃ (ξ ) + ρ̃
′ (ξ )
ρ̃ (ξ )

w̃ (ξ ) − 1
Kρ̃ (ξ ) r̃ (ξ )

w̃2 (ξ ) (11)

for ξ ∈ [ξsi , ξti ] , i = 1 or 2.
Let δi an arbitrary point in (ξsi , ξti ). Substituting ξ

with s, multiplying (11) withH (ξ , s) and integrating it over
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[δi , ξ ) for ξ ∈ [δi , ξti ), i = 1 or 2, we obtain

ξ∫
δi
H (ξ , s) ρ̃ (s) Q̃ (s) ds ≤ −

ξ∫
δi
H (ξ , s) w̃′ (s) ds

+
ξ∫
δi
H (ξ , s)

[
ρ̃′(s)
ρ̃(s) w̃ (s) − 1

Kρ̃(s)̃r(s) w̃
2 (s)

]
ds

= H (ξ , δi) w̃ (δi) −
ξ∫
δi
w̃′ (s) h2 (ξ , s)

√
H (ξ , s)ds

+
ξ∫
δi
H (ξ , s)

[
ρ̃′(s)
ρ̃(s) w̃ (s) − 1

Kρ̃(s)̃r(s) w̃
2 (s)

]
ds

= H (ξ , δi) w̃ (δi) −
ξ∫
δi

[
A1w̃ (s) − 1

2A2
]2 ds

+
ξ∫
δi

Kρ̃(s)̃r(s)
4 H2

2 (ξ , s) ds

≤ H (ξ , δi) w̃ (δi) +
ξ∫
δi

Kρ̃(s)̃r(s)
4 H2

2 (ξ , s) ds.

where

A1 =
(

H (ξ , s)
Kρ̃ (s) r̃ (s)

)1/2

and

A2 =
(
Kρ̃ (s) r̃ (s)

)1/2 H2 (ξ , s) .

Now letting ξ → ξ−ti and dividing it by H (ξti , δi), we obtain

1
H (ξti , δi)

ξti∫
δi

H (ξti , s) ρ̃ (s) Q̃ (s) ds ≤ w̃ (δi)

+ 1
H (ξti , δi)

ξti∫
δi

Kρ̃ (s) r̃ (s)
4 H2

2 (ξti , s) ds. (12)

On the other hand, substituting ξ with s, multiplying (11)
with H (s, ξ ) and integrating it over (ξ , δi) for ξ ∈ [ξsi , δi),
i = 1 or 2, with similar calculations, we obtain

δi∫
ξ
H (s, ξ ) ρ̃ (s) Q̃ (s) ds ≤ −

δi∫
ξ
H (s, ξ ) w̃′ (s) ds

+
δi∫
ξ
H (s, ξ )

[
ρ̃′(s)
ρ̃(s) w̃ (s) − 1

Kρ̃(s)̃r(s) w̃
2 (s)

]
ds

= −H (δi , ξ ) w̃ (δi) −
δi∫
ξ
w̃ (s) h1 (s, ξ )

√
H (s, ξ )ds

+
δi∫
ξ
H (s, ξ )

[
ρ̃′(s)
ρ̃(s) w̃ (s) − 1

Kρ̃(s)̃r(s) w̃
2 (s)

]
ds

≤ −H (δi , ξ ) w̃ (δi) +
δi∫
ξ

Kρ̃(s)̃r(s)
4 H2

1 (s, ξ ) ds.

Now letting ξ → ξ+si and dividing it by H (δi , ξsi ), we obtain

1
H (δi , ξsi )

δi∫
ξsi

H (s, ξsi ) ρ̃ (s) Q̃ (s) ds ≤ −w̃ (δi)

+ 1
H (δi , ξsi )

δi∫
ξsi

Kρ̃ (s) r̃ (s)
4 H2

1 (s, ξsi ) ds. (13)

By combining (12) and (13), we obtain

1
H(δi ,ξsi )

δi∫
ξsi

H (s, ξsi ) ρ̃ (s) Q̃ (s) ds

+ 1
H(ξti ,δi)

ξti∫
δi
H (ξti , s) ρ̃ (s) Q̃ (s) ds

≤ 1
H(δi ,ξsi )

δi∫
ξsi

Kρ̃(s)̃r(s)
4 H2

1 (s, ξsi ) ds

+ 1
H(ξti ,δi)

ξti∫
δi

Kρ̃(s)̃r(s)
4 H2

2 (ξti , s) ds

which contradicts to (5). The proof is complete.

Theorem 2. Suppose the conditions (C1 − C2) hold. If there
exists a G ∈ B (si , ti) such that the inequality

A(Q̃; ξsi , ξti ) > A(K

(
G′
)2

G2 r̃; ξsi , ξti ) (14)

holds for i = 1, 2, then Equation (1) is oscillatory.

Proof. On the contrary, suppose that Equation (1) has a
nonoscillatory solution x (t). Then x (t) eventually must
have one sign, i.e. x (t) ̸= 0 on [T0, ∞) for some large
T0 ≥ t0. De�ne

w (t) :=
r (t) k1

(
x (t) , Dαt x (t)

)
x (t)

(15)

for t ≥ T0. Then we deduce

Dαt w (t) = e (t)
x (t)

− F (t, x (t) , x (τ (t)))x (t)

−p (t)
k2
(
x (t) , Dαt x (t)

)
Dαt x (t)

x (t)

−r (t)
k1
(
x (t) , Dαt x (t)

)
Dαt x (t)

x2 (t)

for t ≥ T0. By assuming (C2) and condition on k2, we ob-
tain

Dαt w (t) ≤ e (t)x (t)
− q (t) |x (t)|γ−1 − 1

Kr (t)
w2 (t) (16)

for t ≥ T0. By assuming (C1), if x (t) > 0, then we can
choose s1, t1 ≥ T0 such that e (t) ≤ 0 for t ∈ [s1, t1]. Simi-
larly if x (t) < 0, then we can choose s2, t2 ≥ T0 such that
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e (t) ≥ 0 for t ∈ [s2, t2]. So e(t)
x(t) ≤ 0 (i.e. − e(t)

x(t) =
∣∣∣ e(t)x(t)

∣∣∣) for
t ∈ [si , ti], i = 1 or 2 and from (16) one can deduce

Dαt w (t) ≤ −
∣∣∣∣ e (t)x (t)

∣∣∣∣ − q (t) |x (t)|γ−1 + 1
Kr (t)

w2 (t) .

As in the proof of the previous result, using Young’s in-
equality, we obtain

Dαt w (t) ≤ −Q (t) − 1
Kr (t)

w2 (t) (17)

which holds for t ∈ [si , ti], i = 1 or 2.

Now let w (t) = w̃ (ξ ). Then we have Dαt w (t) = w̃′ (ξ ) .
So (17) is transformed to

w̃′ (ξ ) ≤ −Q̃ (ξ ) − 1
Kr̃ (ξ )

w̃2 (ξ ) (18)

for ξ ∈ [ξsi , ξti ] , i = 1 or 2.

Nowmultiplying G2 (ξ ) throughout inequaity (18) and
integrating from ξsi to ξti for i = 1 or 2 we obtain

A(Q̃; ξsi , ξti ) ≤ A

2
∣∣∣G′∣∣∣
|G|

∣∣w̃∣∣ − 1
Kr̃ (ξ )

w̃2; ξsi , ξti

 . (19)

Setting

m (v) = 2

∣∣∣G′∣∣∣
|G| v −

1
Kr̃
v2, v > 0

we have m′
(
v*
)
= 0 and m′′

(
v*
)
< 0 where v* = K |G

′|
|G| r̃,

which impliesm (v) obtains itsmaximumat v*. Sowe have

m (v) ≤ m
(
v*
)
= K

(
G′
)

G2

2

r̃. (20)

Then, by using (20) in (19), we obtain

A(Q̃; ξsi , ξti ) ≤ A

K
(
G′
)

G2

2

r̃; ξsi , ξti


which contradicts (14). The proof is complete.

Theorem 3. Suppose the conditions (C1) and (C2)with γ =
1 hold. If there exists a Φ ∈ Y such that the inequality

T
[
q̃ (s) − Kϕ2 r̃ (s) ; ξsi , ξti

]
> 0 (21)

holds for i = 1, 2, where the operator T is de�ned by (2)
and the function ϕ = ϕ (t, s, l) is de�ned by (4), then Equa-
tion (1) is oscillatory.

Proof. On the contrary, suppose that Equation (1) has a
nonoscillatory solution x (t). Then x (t) eventually must
have one sign, i.e. x (t) ̸= 0 on [T0, ∞) for some large
T0 ≥ t0. By de�ning (15) and similar calculations with the
previous result, we have

w̃′ (ξ ) ≤ −q̃ (ξ ) − 1
Kr̃ (ξ )

w̃2 (ξ ) (22)

for ξ ∈ [ξsi , ξti ] , i = 1 or 2. Applying T [·; ξsi , ξti ] to (22)
and using (3), we have

T
[
q̃ (s) ; ξsi , ξti

]
≤ T
[
2 |ϕ|

∣∣w̃ (s)
∣∣ − 1

Kr̃ (s)
w̃2 (s) ; ξsi , ξti

]
(23)

for ξ ≥ ξ* Set

F (v) = 2 |ϕ| v − 1
Kr̃
v2, v > 0.

We have F′
(
v*
)
= 0 and F′′

(
v*
)
< 0 where v* = K |ϕ| r̃,

which implies that F obtains its maximum at v*. So we
have

F (v) ≤ F
(
v*
)
= Kϕ2 r̃. (24)

Then, by using (24) in (23), we obtain

T
[
q̃ (s) ; ξsi , ξti

]
≤ T
[
Kϕ2 r̃ (s) ; ξsi , ξti

]
which contradicts (21). Thus, the proof is complete.

3 Applications
Example 1. Consider the fractional di�erential equation

Dαt
(
Dαt x (t)

)
+ p (t) x (t)Dαt x (t) + x (t)

[
1 + x2 (τ (t))

]
= sin

(
tα/Γ (1 + α)

)
(25)

for t ≥ 0, p (t) ≥ 0 and 0 < α < 1. This corresponds
to Equation (1) with r (t) = 1, e (t) = sin

(
tα/Γ (1 + α)

)
,

k1 (u, v) = v, k2 (u, v) = uv. So we have K = γ = q =
Q = 1. Now, by choosing H (t, s) = (t − s)2, ξs1 = 2kπ,
ξt1 = ξs2 = (2k + 2) π, ξt2 = (2k + 4) π, δ1 = (2k + 1) π,
δ2 = (2k + 3) π for some su�ciently large k and ρ (t) = 1,
we have Hi (t, s) = hi (t, s) = 2 for i = 1, 2. Since

(2k+1)π∫
2kπ

[
(s − 2kπ)2 − 1

2

]
ds

+
(2k+4)π∫

(2k+3)π

[
((2k + 3) π − s)2 − 1

2

]
= 2
3π

3 − π > 0,

inequality (5) clearly holds. Thus, Equation (25) is oscilla-
tory from Theorem 1.
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Example 2. Choose Φ (t, s, l) = sin (t − s) sin (s − l), ξs1 =
2kπ, ξt1 = ξs2 = (2k + 1) π, ξt2 = (2k + 2) π and consider
the Equation (25). We have ϕ (t, s, l) = sin (t − 2s + l) and
it s easy to verify

T
[
q̃ (s) − Kϕ2 r̃ (s) ; ξsi , ξti

]
=

(2k+1)π∫
2kπ

sin2 ((2k + 1) π − s) sin2 (s − 2kπ)

× cos2 ((2k + 1) π − 2s + 2kπ) > 0

which implies that opscillation of Equation (25) follows
from Theorem 3.

Example 3. Consider the fractional di�erential equation

Dαt
(
sin2

(
tα/Γ (1 + α)

)
Dαt x (t)

)
+ x (t)

[
1 + x2 (τ (t))

]
= sin

(
tα/Γ (1 + α)

)
(26)

$for t ≥ 0 and 0 < α < 1. This corresponds to Equation (1)
with r (t) = sin2

(
tα/Γ (1 + α)

)
, e (t) = sin

(
tα/Γ (1 + α)

)
,

k1 (u, v) = v, k2 (u, v) = uv. Therefore r̃ (ξ ) = sin2 (ξ ), K =
γ = q = Q = 1. Now choose G (t) = sin2 t, ξs1 = 2kπ, ξt1 =
ξs2 = (2k + 1) π, ξt2 = (2k + 2) π. It is easy to verify that

3
8π = A(Q̃; ξsi , ξti ) > A(K

(
G′
)2

G2 r̃; ξsi , ξti ) =
π
4 .

So, Equation (26) is oscillatory from Theorem 2.

4 Conclusion
In this paper, we are concerned with the oscillation of
solution to fractional order functional di�erential equa-
tionswith nonlinear damping. As one can see, the variable
transformation used in (ξ ) is very important, transforms
a fractional di�erential equation into an ordinary di�er-
ential equation of integer order, whose oscillation crite-
ria can be established using generalized Riccati transfor-
mation, Generalized Philos type kernels and averagaging
technique. We note that the approach in establishing the
main theorems above can be generalized to research oscil-
lation of fractional di�erential equations with more com-
plicated forms, which are expected to research further.
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