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Abstract: In this paper, we are concerned with the oscilla-
tory behavior of a class of fractional differential equations
with functional terms. The fractional derivative is defined
in the sense of the modified Riemann-Liouville derivative.
Based on a certain variable transformation, by using a gen-
eralized Riccati transformation, generalized Philos type
kernels, and averaging techniques we establish new inter-
val oscillation criteria. Illustrative examples are also given.
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1 Introduction

Fractional differential equations are generalizations of
classical differential equations of integer order and have
recently proved to be valuable tools in the modeling of
many phenomena in various fields of science and engi-
neering. Apart from diverse areas of mathematics, frac-
tional differential equations arise in rheology, viscoelastic-
ity, chemical physics, electrical networks, fluid flows, con-
trol, dynamical processes in self-similar and porous struc-
tures, etc.; see, for example, [1-6]. There have been a num-
ber of works in which fractional derivatives are used for a
better description of considered material properties; math-
ematical modeling based on enhanced rheological models
naturally leads to differential equations of fractional order
and to the necessity of the formulation of initial conditions
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for such equations. This is due both to the intensive devel-
opment of the theory of fractional calculus itself and to the
applications. The books on the subject of fractional inte-
grals and fractional derivatives by Diethelm [7], Miller and
Ross [8], Podlubny [9], and Kilbas et al. [10] summarize and
organize much of fractional calculus and many of theories
and applications of fractional differential equations. Many
papers have studied some aspects of fractional differential
equations, especially the existence of solutions (or positive
solutions) of nonlinear initial (or boundary) value prob-
lems for fractional differential equation (or system) by the
use of techniques of nonlinear analysis (fixed-point the-
orems, Leray-Schauder theory), the methods for explicit
and numerical solutions and the stability of solutions, we
refer to [11-21] and the references cited therein.

Recently, research on oscillation of various equations
including differential equations, difference equations, and
dynamic equations on time scales has been a hot topic in
the literature, and much effort has already been put into
establishing new oscillation criteria for these equations;
see the monographs [22, 23]. In these investigations, we
notice that very little attention is paid to oscillation of frac-
tional differential equations.

In [24], Jumarie proposed a definition for a fractional
derivative which is known as the modified Riemann-
Liouville derivative in the literature. Since then, many au-
thors have investigated various applications of the mod-
ified Riemann-Liouville derivative (e.g., see [25-27]) in-
cluding various fractional calculus formulae, the frac-
tional variational iteration method, and the fractional sub-
equation method for solving fractional partial differential
equations.

Recently Feng and Meng [28], Liu, Zheng and Meng
[29], Qin and Zheng [30], and Feng [31] have established
some new oscillation criteria for the following equations:

DY [r()y (x () DEx (O] +q () f (x(6) =e (),

D{ [a(t) (D¢ (r()DEx (1)) "] +a(®)f x () =e(t),
D [a (t) Df (r () Dix ()] +p (0 Df (r () DEx (8))
+q(Of (x () =e(t),

Df (r(0) k1 (x (), Dx (8))) +p (D k2 (x (), DX (1))
Dix(t)+q @ f (x(t) =0,
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fort = tp > 0and O < a < 1, where DY (-) denotes the
modified Riemann-Liouville derivative with respect to the
variable ¢.

In this paper, we are concerned with the oscillation of
fractional differential equations with nonlinear damping
terms in the form of

DE (r(O) k1 (x (), Dix (1)) +p (&) ka (x(8), DEx (D))
DiIx()+F(t,x(t),x(t(t)) =e(t)

o))
fort = tp > 0and O < a < 1, where Df(-) denotes the
modified Riemann-Liouville derivative with respect to the
variable t, the function r € C*([to, =), (0, o)), which
is the set of functions with continuous derivative or frac-
tional order a, the function p € C* ([to, o), [0, oc)), the
function k; belongs to C* (R?, R?) satisfying k7 (u,v) <
Kvk; (u, v) for some positive constant K, all u € R and all
v € R\{0}, the function k, belongs to C (R?, R?) satisfying
uvky (u,v) > 0forallu € Randall v € R\{0} the func-
tionF e C ([to, o) x R?, R), and the function 7 belongs to
C ([to, =), (0, o0)) with lim¢e. T () = oo.

A solution of (1) is called oscillatory if it has arbitrar-
ily large zeros, otherwise it is called nonoscillatory. Equa-
tion (1) is called oscillatory if all its solutions are oscilla-
tory.

The definition and some of the key properties of mod-
ified Riemann-Liouville derivative are:

1 d t —-a
g Jo =8 f(&dé, 0<a<1
D?f(t)={ I'(1-a) dt JO

(f(n) (t)>(a7n), l<n<a<n+1
where f(§) = (f (§) - £ (0)).

aB _ F(1+B)
Drt " TA+B-a)

{(F(08(©) =g (ODIf O+ (O D (0),
DEf (g (1) - f5 (8 () Dig () = D§f (¢ (0) (8 1)

which do not hold for classical Riemann-Liouville and Ca-
puto derivates. In particular, Leibniz’s rule (product rule)
and Faa di Bruno’s formula (chain rule) are important tools
in our proofs.

e

2 Main results

We will use a transformation technique also used in [28-
33] in our proofs. For the sake of convenience, through the
rest of this paper, we denote

te t&

f:f(t)5:m, &t 5:f(to):m
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and for any function f, we denote f = fo&t i.e.f({) =f (0.
We immediately arrive at the conclusion D{f (t) = f &,
which gives us the ability to build a connection between
fractional and integer order derivatives of functions. We
will transform fractional order differential inequalities to
integer order differential inequalities in our proofs with
this connection.

Now we introduce a functional that will be used in the
proofs of some results.

Let

B(Si, ti) = {u S Cl[Si, ti] : u(t)/= Ofort e (Si, ti),
u(s;)=u(t;) =0},

fori = 1,2. We define the functional A(-;s;, t;) for G ¢
B (s, tj) such as;

ti
A(g;si,ti)=/62(t)g(t)dt, siststyi=1,2,

Si

where g € C ([to, e0), R) . It is easily seen that the linear
functional A(-; s;, t;) satisfies

’

Agssi, t) = —A(Zﬁg;si, t;) = -A(2 G

G G
' g5 sis ti)-

In proofs of some of our results, we will also use another
class of averaging functions H € C (D, R) which satisfy
(i) H(t,t)=0,H(t,s)>0fort>s,

(ii) H has partial derivatives 0H/ot and 0H/ds on D such
that

%—I;I=h1(t,5)\/m, %7?=_h2(t’s)\/m

where D = {(t,s):fp<sst<oo} and hi,h, €

Lioc (D,RY).

We will also use the function class Y to study the oscilla-
tory behavior of (1). We say that a function @ (t, s, I) be-
longs to the function class Y dentoed by @ € Y, if @ ¢
C(E,R), where E = {(t,s,]):typ<l<s<t<oo}, which
satisfies @ (t,t, 1) = 0, @(t,l,I) = 0, D(t,s,l)/= O for
l < s < t, and has the partial derivative 0@®/ds on E such
that 0@/ 9s is locally integrable with respect to s in E.

In the proof of some of our results we define below a
useful operator, introduced in [34], as an important tool.

For @ € Y, we define the operator

t
T[g;l,t]=/(D2(t,s,l)g(s)ds txs=>l>ty, (2)
l
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where g € C ([to, o), R). It is easy to verify that the linear
operator T [-; I, t] satisfies

T [g'; 1, t} - —2T[¢g;1, 1] forg e C (Ity,=),R), (3)

where the function ¢ = ¢ (¢, s, 1) is defined by

0D (t,s, 1)

55 =¢(t,s, )D(t,s,]). (4)

Before our main results, now we state a useful lemma [35]
(Young’s inequality).

Lemma 1. If A and B are nonnegative constants and m, n €
Rsuchthat =+ 1 =1, then

La,1psanpr.
m n

We are ready to state our main results concerning oscilla-

tory behavior of Equation (1) now. We shall make use of the

following conditions in our results:

(Cy)Forany T = tg, there exists T < 51 < t; < 55 < t; such
that

e(t) <
e(t) =

N

Oforte [Sl,tl],
Ofort e [Sz, tz] s

\

(C»)there exists a function g (f) > 0 and a constant v > 1
such that
F(t,x,u) /x> q(t)|x|" "  holds for t € [s1, t;]U[s2, t2]
and x'=0,u € R.

Theorem 1. Suppose the conditions (C, — C,) hold. If there
exist some 6; € (s;, t;), for

i=1,2; H € C(D, R) satisfying (i)-(ii) and a positive func-
tionp € C* ([to, o), R*) such that

mwg) ) PO [H(s, £)Q(9) - 2 H1 (s, &) ds

& K7
H({ 5) fp(s) {H(é‘t, s) Q(S) (S)Hz (s, &, )} ds >0
®)
fori=1,2, where H; (t, s) := by (t, s) - 20\ /H(, s) and

p(t)
Q) = v(y-1)F 7 [q(O]Y7 |e(6) OV with the con-
vention 0° = 1, then Equation (1) is oscillatory.

Proof. On the contrary, suppose that Equation (1) has a
nonoscillatory solution x (). Then x (t) eventually must
have one sign, i.e. x(t)/= 0 on [Ty, o) for some large
To = tg. Define

r(t) ki (x(t), Dfx(t))

© ©)

w(t) :=p(f)
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for t = Ty. Then we deduce

e()
x(t)

=p()p (1)

F(t, x(®),x(t (1)

k, (x (t), DEx () Dfx (1)
x (1)

ky (x(t), Dfx ()
x2 ()

fwe) = p() s

x ()

—p () (1)

tp (6
p ()

for t = Ty. By assuming (C>) and the condition on k,, we
obtain

+

w(t)

w0200 (5 -a0ixor)
DO, 1
0 " morn” O &

for t = Ty. By assuming (C,), if x () > 0, then we can
choose sq, t; = Ty such that e (¢) < O for t € [s1, t1]. Simi-
larly if x (t) < O, then we can choose s,, t; = Ty such that

e(t) 2 0fort € [sy, t1]- So igg <0 (ie. - % = % ) for
t € [s, t;], i = 1 or 2 and from (7) one can deduce
e(t
Déw (6) sp(t)< CIRICLICl 1)
Dp(t) 1 2
+ w(t) - w(t). 8
b0 YO B @ ®

For > 1, by settingm = v, n = 224, A = 4q (8) [x ()],

y-1
B= % % and using Lemma 1, we obtain
'yfl e(t)
q(t) [x (8| X0 Q). )
Note that inequality (9) trivially holds for v = 1. So, by
combining (8) and (9), we obtain
Dip (1) 2
w(t)<p()Q(t)+ =L w(t) - w? (t) (10)
fw(t) < p (0 Q)+ TEREW () - o ()

fory=1andt € [s;, t;],i=1or2.

Now let w (1) = w (¢). Then we have D¢w (t) = W' (£)
and D%p (t) = p (&) So (10) is transformed to

< P (&) _ W2
W(<p@AO+E 50) w($) Kp(f) " ($)
for& e [&;, &],i=1o0r2.

Let §; an arbitrary point in (&s;, &,). Substituting &
with s, multiplying (11) with H (¢, s) and integrating it over
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[51" '{) for ": € [51" é’ti)a

i=1or 2, we obtain

£ _ £ ,
JHEIPOA)ds <= [HESW ()ds
: (s)
; &[H(.f, 5) [’;(s)w(s) oL (s)} ds
¢ _,
=H(5,5i)V~V(5i)—6fV~V (s)h2(§,5)VH (&, s)ds
3
«[HES) (283 () - g W ()] ds

3
= H(£, 8)w(8) —f [Ayw (s) - 14,]" ds

¢
+ [ KO g2 (£, 5) ds
61
IS
<H (& 8;)w(8) + [ KO g2 (¢, 5) ds.
5i
where
4 _< H(,s) >”2
L \KB ()7 (s)
and

4> = (Kp(9)7() " Ha (&, 5).
Now letting £ - &; and dividing it by H (¢, 6;), we obtain

&

H (&, 5)/H(§t' )P (s)Q(s)ds < W (6;)

5 / OO 3, 5905, 1)

TH (é’t,

On the other hand, substituting ¢ with s, multiplying (11)
with H (s, ) and integrating it over (&, §;) for & € [&s;, 6;),
i =1 or 2, with similar calculations, we obtain

6 ~ b; ,
[H 0P ()00 ds <= [H(s, )W (5)ds
5i
+ !H(s, £) [f; B9 - W (s)} ds

§;
= -H (6, )W(5) - | W $,§)VH (s, §)ds

¢

&;
+{H(s,£) [’;((:))w( ) - r(s)r(s)w (s)} ds

S) h1

& _
< —H (8;, &)W (6;) + [ FPIC B2 (5, £) dis.
3
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Now letting & - & and dividing it by H (6;, &s,), we obtain

1 i o -
M!H(S, &P (s)Q(s)ds < -w(6))

5;
Kp ()T (S) ;2
) / 4 Hj (s, &s) ds.

Si

(13)

+
H (5i’ ‘SSi
By combining (12) and (13), we obtain

5; B
Wm{f H(s,&)p(s)Q(s)ds

&, )
+m fH(ftnS)ﬁ(S)Q(s) ds

f PEIC B2 (s, &) ds

H(b‘ &)

' KBIFG) 2
+H(€t,-,6,-)of 7 Hj (&, s)ds

which contradicts to (5). The proof is complete. O

Theorem 2. Suppose the conditions (C, — C;) hold. If there
exists a G € B (s;, t;) such that the inequality

(14)

N 2
- () .
A(Q; {Si, '{t,‘) > A(I( Gz r; fsi’ {ti)
holds for i = 1, 2, then Equation (1) is oscillatory.

Proof. On the contrary, suppose that Equation (1) has a
nonoscillatory solution x (t). Then x (t) eventually must
have one sign, i.e. x(t)/= 0 on [Ty, o) for some large
To = to. Define

r(t)ky (x (), DEx(t))
x (£)

w(t) := (15)

for t > To. Then we deduce
e() F(t,x(),x(r (1)
x (t) x (1)

k t), Dfx (t)) Dx (t
0 2 (X( ) Xt();)( )) ¢ X ()
ky (x (t), Dgx (t)) Dix (t)

X2 (f)

for t = Ty. By assuming (C;) and condition on k;, we ob-
tain

tw(n) =

-r(f)

e (t) _ y-1_ 1

ORRACI I e
for t = Ty. By assuming (C,), if x () > 0, then we can
choose sq, t; = Tg such that e (¢) < O for t € [sy, t1]. Simi-
larly if x (t) < O, then we can choose s,, t, = Ty such that

fw (t) < wi(t)  (16)
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e(t)=0fort e [sy,t3]. So igg <0 (i.e. - % = %‘) for

t € [sj, ti], i = 1 or 2 and from (16) one can deduce

e(®)
x(f)

As in the proof of the previous result, using Young’s in-
equality, we obtain

1

Dfw(t) < - 5@

—q @) X"+

w(t) < -Q(t) - ——=w? (b 17

Kr (t)

which holds for t € [s;, t;],i=1or2.

Now let w (f) = w (¢). Then we have D%w (t) = W (¢).
So (17) is transformed to

AGERAGOR r(g) W (9) (18)

for& e [&;,&,],i=1or2.

Now multiplying G2 (¢) throughout inequaity (18) and
integrating from &, to &, for i = 1 or 2 we obtain

’

G
A(Q é‘sl,ft) <A (2 |G| ‘~‘ - KN(.{) z;fs,-,{ti) . (19)
Setting
=2 ¢ 1., >0
m(v) Wv ﬁv, v

we have m" (v') = 0 and m” (v") < O where v* = K||G“ T,

which implies m (v) obtains its maximum at v". So we have

(),

mv)<m (v) =K T (20)
Then, by using (20) in (19), we obtain
N2
(G )
A(Q {Sl ’ {[, <A|K r é’S, ’ {[1
which contradicts (14). The proof is complete. O

Theorem 3. Suppose the conditions (C1) and (C,) with v =
1 hold. If there exists a @ € Y such that the inequality

T[4(5) - K§™7(9): s &1 | > 0 @1

holds for i = 1,2, where the operator T is defined by (2)
and the function ¢ = ¢ (t, s, 1) is defined by (4), then Equa-
tion (1) is oscillatory.
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Proof. On the contrary, suppose that Equation (1) has a
nonoscillatory solution x (t). Then x (t) eventually must
have one sign, i.e. x(t)/= 0 on [Ty, o) for some large
To = to. By defining (15) and similar calculations with the
previous result, we have

W) <-4~ ﬁ{) W2 (§) (22

for & € [&s;, &), 1 = 1or2. Applying T[; és;, é,] to (22)
and using (3), we have

T(36)3 600 &) = T (2191 [W00)| - 1™ ()38 &
@)
for & = &« Set
F(v)=2|¢|v——v v>0.

Kr

We have F'(v') = 0Oand F’ (v') < O wherev" = K|[¢|7,
which implies that F obtains its maximum at v". So we
have

F(v)<F (v) - K¢?F. (24)

Then, by using (24) in (23), we obtain
T[3(5)ds0r ] < T[K$F ()3 ds0r &

which contradicts (21). Thus, the proof is complete. O

3 Applications

Example 1. Consider the fractional differential equation

D (Dfx(t)) +p (t) x (t) DEx (t) + x () {1 + X2 (T (t))}

=sin (t*/T (1 + a)) (25)

fort = 0, p(t) = 0and O < a < 1. This corresponds
to Equation (1) with r(t) = 1, e(t) = sin (t*/I' (1 + a)),
ki(u,v) = v, ko (u,v) = uv.Sowehave K = v = g =
Q = 1. Now, by choosing H (t,s) = (t-s)?, &, = 2kn,
&, =&, = k+2)m, &, = k+4)nm, 61 = 2k+1)m,
0> = (2k + 3) m for some sufficiently large k and p (¢) = 1,
we have H; (t,s) = h; (t,s) =2 fori =1, 2. Since

k+1)m
{(s - 2km)* - ﬂ ds

2km
2k+4)m

+ / [((2k+3)ﬂ—s)2 - %] = §n3 -m>0,
2k+3)m

inequality (5) clearly holds. Thus, Equation (25) is oscilla-
tory from Theorem 1.
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Example 2. Choose @ (¢, s, 1) = sin(t - s)sin(s - 1), &, =
2km, &, =&, = k+1)m, &, = (2k + 2) m and consider
the Equation (25). We have ¢ (¢, s, 1) = sin (¢t — 2s + 1) and
it s easy to verify

T [4(5) - K§*7(5): 61 &
k+1)m
sin® ((2k + 1) - s) sin® (s — 2km)

2km
x cos? (2k + 1) - 2s + 2km) > O

which implies that opscillation of Equation (25) follows
from Theorem 3.

Example 3. Consider the fractional differential equation
Df (sin2 (t*/T (1 +a)) D?x(t))

+x(t) [1 +X2 (1 (t))} —sin (/T (1+a))  (26)

$for t > 0 and O < & < 1. This corresponds to Equation (1)
with r(¢) = sin® (¢2/T (1 + @), e(t) = sin (t*/I' (1 +a)),
ky (u, v) = v, ky (u, v) = uv. Therefore 7 (&) = sin® (¢), K =
v =q=Q = 1.Now choose G (t) = sin’ t, &, = 2km, &, =
&, = Rk + 1) m, &, = 2k + 2) m. It is easy to verify that

N2
~ G
%ﬂ = A(Q; &si &i) > A(I<((;2)7; sy ‘fti) = %

So, Equation (26) is oscillatory from Theorem 2.

4 Conclusion

In this paper, we are concerned with the oscillation of
solution to fractional order functional differential equa-
tions with nonlinear damping. As one can see, the variable
transformation used in () is very important, transforms
a fractional differential equation into an ordinary differ-
ential equation of integer order, whose oscillation crite-
ria can be established using generalized Riccati transfor-
mation, Generalized Philos type kernels and averagaging
technique. We note that the approach in establishing the
main theorems above can be generalized to research oscil-
lation of fractional differential equations with more com-
plicated forms, which are expected to research further.
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