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Abstract: Functional differential equations have impor-
tance in many areas of science such as mathematical
physics. These systems are difficult to solve analytically.In
this paper we consider the systems of linear functional
differential equations [1-9] including the term y(ax + )
and advance-delay in derivatives of y . To obtain the ap-
proximate solutions of those systems, we present a matrix-
collocation method by using Miintz-Legendre polynomi-
als and the collocation points. For this purpose, to obtain
the approximate solutions of those systems, we present a
matrix-collocation method by using Miintz-Legendre poly-
nomials and the collocation points. This method trans-
form the problem into a system of linear algebraic equa-
tions. The solutions of last system determine unknown co-
efficients of original problem. Also, an error estimation
technique is presented and the approximate solutions are
improved by using it. The program of method is written
in Matlab and the approximate solutions can be obtained
easily. Also some examples are given to illustrate the va-
lidity of the method.

Keywords: systems of functional differential equations;
matrix-collocation method; Miintz-Legendre polynomials;
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1 Introduction

In physics, chemistry, biology and engineering, a lot of
problems are modelled by differential equations, delay dif-
ferential equations [10-13] and their systems [1-9, 14-17].
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Also, solving these equation may be analytical difficult
and therefore numerical techniques are needed. Until now
many analytical and numerical solution techniques such
as method of steps, Euler’s method, Runga Kutta method,
shooting method, spline method [18-20], variational itera-
tion method [6], Adam’s method [8], Adomian decomposi-
tion method [21], homotopy perturbation method [14] etc.
are used for differential equations and systems of these.
For this purpose, in this study we will focus on the numer-
ical solutions of systems of functional differential equa-
tions. Some matrix and collocation methods [20, 22-27]
which was applied successfully for ordinary differential
equations, partial differential equations, integral equa-
tions and difference equations previously.

In this paper we will consider the systems of equations
in [0, 1] of the form,

R m k
Z Z Z [Hﬁ}r(x)y;n)(a{f}’x + ﬁg;’)} —g0 O

r=0 n=0 j=0

fori=1,2,..., kunder the conditions

> (@niyn(0) + Yniyn(D) = Aiyn=1,2,.... k. (2)

n=1

Here a matrix-collocation method will be applied to the
problem to get the approximate solutions in the truncated
series form

N
)/](X) = Z a]',nLYl(X))j = 1; 2’ ceey ky (3)
n=0

where Ln(x) are the Miintz-Legendre polynomials defined
by the formula

N .
oS () ) o

j=n

In the problem ygo)(x) = yj(x) are the unknown func-
tions, y;";’(x) and g;(x) functions defined in the interval
0 < x < 1. On the other hand alf’,}.r, 1”]’ s @i s Wn.i A arereal
constants, , aj,, n = 0,1, 2,..., N are unknown Miintz-
Legendre coefficients.
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2 Matrix relations required for
solution method

At the beginning let us consider the equation (1) and try to
construct the matrix form of each term in the equation. The

approximate solutions y;(x) the truncated series of Miintz-

Legendre polynomials and its derivatives can be written in

the matrix form as,

(0] = LA, [yf 0] = L9 )
where L() = [ Lo(x) Ly L0 |,
Ajz{a].’0 aj., aj,N}T,j=1,2,...,k.

On the other hand L(x) matrix can be represented as,

L(x) = TOFT, L*(x) = T*)FT, (6)

where

T(x)=[1 X XN:|

and the matrix F is defined by

CEDNYY EOY R ()

0 (1)N— (N+2)
0 0
F = 0 0
o 0

DY () (W)
D2 () (féi%)
DN 2(§3)

(_1)0(21\{\;1) ]
) GO
(_1)0 (21&21)

(_1)0 .(ZNlJrl)
0 (_1)0 (2]\(’)4—1) |

Using the relations (5) and (6), y;(x) can be written in the
form

ly;(x)] =

Then substituting aZ}.’x + ,BZ}.’ instead of x in Equation (7)
yieldsforj=1,2,...,k

i (w81 -

T(x)F'A;. @)

( x+,8"r)FTA j=1,2,...,k.
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Also the relation between T ( Tx + ﬁ" ’) and T(x) matri-
ces can be defined by

T (a?fx + ﬁ;‘y;’) T(x)B ((x" X+ B )

where by using the binomial expansion,

( )( n r)O(ﬁn r)O ((1))( ) (Bn r)l ( )(an r)O Bn r)z
0 (1) (@ ) (B ’)0 (D@D B ')1
0 ) @5 BY ')0
0 0 :

() nr)O ﬁnr)N
( )(an r) (ﬁn r)N 1
( )(an r)z Bn r)N 2

(%)(a )N(ﬁn r)O
Besides the relation T(x) and its derivative T®(x) can be
written as

T®(x) = T(x) (BT) ‘

where
0 1 0 0
0O 0 2 0
B! =
O 0 0 --- N
o o0 o0 -+ 0

Thus using these relations we obtain the matrix form of

[y](k) ( X+ ﬁ )} T(x) (BT) B (aln]r, Bl r) FTA

(8)
Furthermore, the matrix form of [y(k)(a;"}.’ X+ ,/3;"}.’)] is given
below:
(k) n,r n,r _ 7 Dk >
[y (ai,]. X+ B ) } - T()B*B, 4FA. ©9)
where
(k) X + Bn r)
(k) n,r
x + ﬁ )
k
( )(an rx+ﬁlrzlr) _ ,

(k)(an rX + Bn r)

Ay
A,
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Tx) 0 --- 0
_ 0 Tk --- O
T(x) = . . . ,
0 0 T(x)
BT 0 .- 0
) o BT ... o
B = . )
| 0 o0 B’
[ FT 0 0
} 0 FT 0
F-= ) ,
| 0 0 F'
B@y.f) 0 o0
_ 0 B(ai', Biy) oo 0
B, = .
0 0 B, A7)

3 Method of solution

In this Section, the method is constructed by using matrix

relations in Section 2, collocation points and matrix oper-
ations. Firstly, let us write the matrix equation correspond-
ing to the system (1) as,

R m
SO [nrCy” (afyx + By right)] =800 (10)

r=0 n=0

Here ppn,r(x) and g(x) matrices are defined as

Hrio)  pri(x) 11 (0
py1 ) pyi(x) 1y (0
]ln,r(x)= . . .
M) i () M)
and

g1(x)

g2(x)
glx) = .

8100

Using the collocation points [10-13, 18, 19, 21, 26, 28] de-
fined by the following formula

ts=ls,s=0,1,...,N,

N (11)
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in Equation (10) yields,

i i [}ln,r(xs)yk (alf"}.’xs + ﬁl"]’)} = g(xs).

r=0 n=0

So the fundamental matrix [15, 22, 23] equation can be rep-
resented as

WYsp5 =G, (12)

where

}ln,r(XO) 0 e 0
0 ]ln,r(xl) s 0

0 0 Mn,r(xn)
g(xo)
g(x1)

g(xy)
v xo + B
k , s
o _ v+ B
ap .

v W xy + B

From the relation (9) and the collocation points given by
(11) we have

vk (a{’,}’xs +B§f}.’) = T(xs)BkBa,ﬁFA, s=0,1,...,N. (13)

where }
T(xo)
T(x1)
T: . )
T(XN)
T(xs) 0 0
) 0 Tx) -+ O
T(xs) = . .
o o T(x)

Hence, fundamental matrix equation is

UTB'B, ;FA = G. (14)

The dimensiones of the matrices y, T, B, g, B, F in Equa-
tion (14) are k(N + 1) x k(N +1) and the dimensions of A and
G are k(N + 1) x 1 . Thus the fundamental matrix equation
corresponding to the Equation (1) can be written briefly in
the form

WA = G or [W;G], (15)
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where
W= yTBkBa,ﬁF =[wpgl,p,q=1,2,..., k(N +1).

Equation (15) is a system of equations consisting k(N + 1)
unknown Miintz-Legendre coefficients and k(N + 1) linear
algebraic equations. On the other hand matrix form that
corresponds to the conditions (2) can be written in the form
of

[$T(0) + PT(1)] FA = A, (16)

wherefori=1,2,...,k

¢ O 0
p=| 0 0,
0 0 :
0 0 br
¢
®i,2
¢; = : ,
®ik
Wi 0 0
'(Z): 0 lpz 0 ,
0 0 . :
0 0 - P
Vi1
Vi
Y = : ,
Vi k
A
A2
A= .
Ak

So that the matrix form of the conditions can be repre-
sented briefly in the form

UA=Aor [U;1], (17)

where
U= [¢T(0) + pT(1)] F.
Finally if we replace any rows of [W; G] by the rows of [U; A]

we have the new augmented matrix [24, 25] equation:

WA =G (18)

DE GRUYTER OPEN

that is
i W11 Wi,2 W1 k(N+1) gl(XO) T
W21 W32 W2, k(N+1) gz(Xo)
Wi,1 Wk,2 W k(N+1) 8k(xo)
Wiet,1 Wiel,2 Wi 1,k(N+1) g1(x1)
[w; G] - . (19)
WikNa WkN2 WEN,k(N+1) gr(xn-1)
Vi 2% V1,k(N+1) ; A
V2,1 V2,2 V2, k(N+1) 5 A
L Vi1 Vi2 Viok(N+1) H A
If rankW = rank[W; G] = k(N + 1), we could say
A=W'G. (20)

Therefore the unknown Miintz-Legendre coefficients ma-
trix can be find by solving this linear equation system. Fi-

nally substituting the coefficients a; ¢, aj1,...,a;n, j =
1,2,..., k in Equation (3)gives us the approximate solu-
tions:
N
yj,N(X) = Z aj’NLN(x), i= 1,2,..., k.
n=0

4 Error estimation and improved
approximate solutions

In this section an error analysis based on the residual
function is given for the method defined in the previous
section. When the approximate solutions obtained by our
method substituted in Equation (1), the equation will be
satisfied approximately, that is;

530S [t 0w (el )] = 100+ Bino)

@1
where R; y(x) is the residual function [23-26]. Let us write
the error function e; y = y;(x) - y; n(x) and to obtain the
error problem let us subtract the equations in (21) from
the equations (1) side by side. So we could reach the error
problem

XR: zm: zk: [Hﬁ}-r(")eﬂ (a?,}'rx + ﬁln,r)} =-Rjn(0). (22)

r=0 n=0 j=0
Applying the same procedure for the conditions gives us
the new homogenous conditions of the form,

> (Pnien(0) + Ppien(1)) =0, n=1,2,..., k. (23)

n=1
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And solving the error problem (22)-(23) by the same The set of the collocation points for N = 2 is calculated as
method defined in section 3, an approximation e; v,y can 1

be find to the error function e;y ,j = 1,2,..., k. When {xo =0,x1 = 55 X2 = 1} .

solving this error problem it is better to choose M and re-

placing the matrix The fundamental matrix equation corresponding to
the problem is given by (u1TBBy0.2+p2TBB1 o3
~Rin(0) +usTB*Bo3,-0.1 + usTBBo 2, 0.1 + usTB’Bo.1,03) FA =
Ry () ~Rin() G and the matrices in this equation is defined by
~NX) = .
' 2 0 0 3
-R (X) = =
kN p1(x) {04},112()6) {10},

instead of the matrix G . Therefore the approximate so-

lution y; n(x) can be improved as y; yu(x) = y;n(x) + 11 0 0

e; v.u(x). So a new error function can be defined as im- w30 = { 0 0 } > Habd = { 10 ] ’
proved absolute error function by the relation ‘E iN, M(x)] =

Y00 = yjnm()].

0 0 u1(0) 0 0
us(x) = [ } , M1 = 0 u(1/2) 0 ,
0 -1
. 0 0 ui(1)
5 Numerical examples ) )
u2(0) 0 0
In this section some examples will be given to explain M2 = 0 w(1/2) o0 )
the method in details and to show the numerical results. | O 0 p2(1) ]
All the computations and graphs are performed by a code
written in MATLAB R2007b. - 1
u3(0) 0 0
Example 1. First of all let us consider the system of equa- K5 = 0 w@/2 o ’
tions of order two with two unknown functionsin0 < x < 1 | O 0 #s(1) |
’ u4(0) 0 0
Uy = 0 u4(1/2) 0 ,
¥20.3x-0.1) + y?(0.3x-0.1) + 2y (x - 0.2) | 0 0 Ha(1) |
+ 3yP(x-0.3) = g1(x) [ s 0 0 ]
y20.2x-0.1) - y?0.1x-0.3) +yP(x - 0.3) us=1| 0 us(1/2) O |,
+ 4yP(x-0.2) = &) (24) [ O 0 (1)
under the conditions y;(0) = 1 yl)(O) = 1,y,(0) = B o, = { B(1,-0.2) 0 ,
,y(zl)(O) = —1.The exact solutions of the problem are ’ 0 B(1,-0.2) J
y1(x) =e*and y,(x) =e*.Herek=2,m=2,R=1, 1 -1/5 1/25 b
Zi(x)_l VZ 1(X)_1 H} i(X)—Z V% %(X)_ B=(1,-0.2)=| 0 1 -2/5 |,
U100 =0, P(l)%(x) 0, V%i(")_ Ly %(x)—— 0O o 1
Hy () = 1, uy5 () = 40(11—0(12—10(11 0, -
ai:% = 0.3, ﬁm = -0.2, By, = -0.3, Bp; = -0.1, B _ | B(1,-0.3) 0
: =—0.1,a§;}=a;;§=1,a§1 0.2,a23=0.1, L3 T 0 B(1,-0.3) |’
11 _ 1,1 _ - -
100 = e32}?5-§21")2+ e‘3"?1'°2*’5%61+ ZeX‘?/51 -Bsze’z-w/lo 2}13& 1 -3/10 9/100
25 (x) = @/571/10 _ gox/1043/10 | 5x-3/10 _ 4o-x+1/5 B=(1,-03)=| 0 1 -3/5 |,
Now by taking N = 2 for the problem we search for the 0 0 1
approximate solutions of the form ) B(0.3,-0.1) 0
Bo,-01 = { 0 B(0.3,-0.1)

2
Yi00 =Y ajaLa(0)
n=0
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B=(0.3,-0.1) =

B(0.2,-0.1)

Boo o1 =
0.2,-0.1 { B(0.2,-0.1)

-1/10 1/100
B=(0.2,-0.1) =

B(0.1,-0.3)

Boi s =
0.1,-0.3 [ B(0.1,-0.3)

[

-3/10 9/100
B=(0.1,-0.3) =

T(0)=[1 0 0],
T(1/2)=[1 1/2 1/4},

T(1)=[1 1 1],

DE GRUYTER OPEN

g(0)
G=| g(1/2) |,
g(1)

| -649/1614
8(0) - [ -1712/373 } ’

| 2967/1321
8(1/2) = [ -1017/502 ] ’

3426/685
391/3902 |’

>

A;

ai,o
Ar=| a1 |,
ai,»

az,o
A= | ax

az,»

The matrix that corresponding to this fundamental matrix
equation can be expressed as

-12 -2 6/5 -34 -11 1/5 3 —649/1614

2 3 7/5 -84 -34 -18/5 ; -1712/373

[w G] _ 8 8 16/5 -4 4 16/5 3 2967/1321
’ 12 8 12/5 -44 -14 2/5 ;  -1017/502

28 18  26/5 26 19 31/5 ; 3426/685

22 13 17/5 -4 6 22/5 ; 391/3902

On the other hand the matrix corresponding to the condi-
tions can be expressed as

3 0O 0 O 0O 0 ; 1
-12 -4 0 O 0O o0 ; 1
[U;A] - ¢
0 0O 0 3 0O o0 ; 1
0 0O 0 -12 -4 0 ; -1
Thus the new augmented matrix is as follows
-12 -2 6/5 -34 -11 1/5 5 —649/1614
2 3 7/5 -84 -34 -18/5 ; -1712/373
A AT 3 0 0 0 0 0 ; 1
[W; G = -12 4 0 0 0 0 ; 1
0 0 0 3 0 0 H 1
0 0 0 -12 -4 0 1

By solving the linear equations system we obtain the un-
known coefficient matrix as

T
A=[1/3 -5/4 2659/802 1/3 -3/4 379/374

Thus substituting these coefficients in the Equa-
tion (3), gives us the approximate solutions y;(x)
1 + x + 0.398794232618x> and y,(x) = 1
X + 0.596701701990x%2. Now by taking (N, M)



DE GRUYTER OPEN

o Figure 1
10 T T
107 3
— /@' -
5 ed
10 "¢ o J
o
_ -
10 y i
- -
<l _ -9
@ . - e——e
10 " (¢ J
7
7
7
10%¢ E
107E - - = |61,4| Actual absolute error 4
o |e146| Estimated absolute error
10-8 L L L L L L L L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 1: Comparison of the absolute errors of y;(x) in Example 1.

(4, 6), (8, 10) we can compute better results for our prob-
lem. After completing the computations by using MAT-
LAB, we can give the numerical results and figures. In
Table 1 and Table 2 actual absolute errors(Act.Abs.Err.)
and estimated absolute errors(Est.Abs.Err.) are compared
for y1(x) and y,(x) for (N,M) = (4,6),(8,10). In Ta-
ble 3 and Table 4 actual absolute errors and improved
absolute errors are compared for y;(x) and y,(x) for
(N, M) = (4, 6), (8, 10).

After comparing the numerical results of the errors,
some figures are given below to illustrate these results. In
Figure 1 actual absolute errors and estimated absolute er-
rors are drawn for y;(x) for (N, M) = (4, 6) and in Fig-
ure 2,actual absolute errors and estimated absolute errors
are drawn for y,(x) for (N, M) = (4, 6). In Figure 3 actual
absolute errors and improved absolute errors are drawn for
y1(x) for (N, M) = (4, 6) and in Figure 4,actual absolute er-
rors and improved absolute errors are drawn for y,(x) for
(N, M) = (4,6).

Example 2. As asecond example let us consider the system
of equations

y(ll)(x -0.5)+ 2y(21)(x -1)+3xy1(x-0.8) =g1(x)
xyPx-2) - 3x%yP(x - 0.1) + y2(x - 1) = g2(x)  (25)

under the conditions y;(0) = 2, y1(1) = e + 1, y2(0) = 1,
y2(1) = L. The exact solutions of the problem are y; (x) =
e + 1 and y,(x) = e Here g1(x) = e*Y/2 — 271 4
3x(e¥%/° + 1) and g, (x) = xe*2 + 3x2e**1/10 4 ¢*1 For
this problem taking (N, M) = (4, 6), (8, 10), in Table 5 and
Table 6 actual absolute errors and estimated absolute er-

rors are compared for y;(x) and y,(x). And in Table 7 and

error
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Figure 2: Comparison of the absolute errors of y,(x) in Example 1.
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Figure 3: Comparison of the absolute errors of y;(x) in Example 1.
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Figure 4: Comparison of the absolute errors of y>(x) in Example 1.
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Table 1: Comparison of absolute errors of y1(x) in Equation (24).

Act.Abs.Err.  Est.Abs.Err.  Act.Abs.Err. Est.Abs.Err.

N=4 N=4 N=8 N=38
M=6 M=10
X le1,4(x;)] le1,4,6(X)] le1,8(x;)] le1,8,10(x;)]
0 0 4.22e-19 4.00e-12 4.00e-12
0.2 9.81e-6 9.99e-6 4.74e-10 4.77e-10
0.4 2.50e-5 2.58e-5 1.69e-09 1.71e-9
0.6 2.73e-4 2.71e-4 3.52e-09 3.56e-9
0.8 1.96e-3 1.95e-3 1.95e-08 1.96e-8
1 7.41e-3 7.32e-3 3.33e-7 3.34e-7

Table 2: Comparison of absolute errors of y,(x) in Equation (24).

Act.Abs.Err. Est.Abs.Err. Act.Abs.Err. Est.Abs.Err.

N=4 N=4 N=8 N=8
M=6 M=10
Xi le2,4(x)]| l€2,4,6(X)] le2,8(x;)] le2,8,10(x;)]
0 0 1.32e-20 0 2.19e-24
0.2 8.16e-6 8.34e-6 4.55e-10 4.58e-10
0.4 7.42e-6 6.70e-6 1.67e-9 1.69e-9
0.6 3.86e-4 3.84e-4 3.48e-9 3.51e-9
0.8 2.02e-3 2.01e-3 3.63e-8 3.63e-8
1 6.57e-3 6.49e-3 4.94e-7 4.92e-7

Table 3: Absolute errors of y1 (x) in Equation (24).

Act.Abs.Err.  Imp.Abs.Err.  Act.Abs.Err.  Imp.Abs.Err.

N=4 N=4 N=8 N=8
M=6 M=10
X; le1,4(x)] |E1,4,6(x3)] le1,s(x;)] |E1,8,10(x)]|
0 0 0 4.00e-12 4.00e-12
0.2 9.81e-6 1.79e-7 4.74e-10 3.17e-12
0.4 2.50e-5 8.03e-7 1.69e-9 1.73e-11
0.6 2.73e-4 2.04e-6 3.52e-9 3.66e-11
0.8 1.96e-3 1.28e-5 1.95e-8 1.05e-10
1 7.41e-3 8.52e-5 3.33e-7 9.61e-10

Table 4: Absolute errors of y,(x) in Equation (24).

Act.Abs.Err.  Imp.Abs.Err.  Act.Abs.Err.  Imp.Abs.Err.

N=4 N=4 N=8 N=8

M=6 M=10

X; |e2,4(x;)] |E2,4,6(x:)] le2,8(x;)] |E2,8,10(x;)]

0 0 0 0 0

0.2 8.16e-6 1.83e-7 4.55e-10 3.66e-12

0.4 7.42e-6 7.22e-7 1.67e-9 1.40e-11

0.6 3.86e-4 1.97e-6 3.48e-9 2.96e-11

0.8 2.02e-3 1.21e-5 3.63e-8 3.19e-11

1 6.57e-3 7.13e-5 4.94e-7 2.78e-9
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Table 5: Absolute errors of y;(x) in Equation (25).

Table 6: Absolute errors of y,(x) in Equation (25).

Table 7: Absolute errors of y;(x) in Equation (25).

Table 8: Absolute errors of y,(x) in Equation (25).

Act.Abs.Err.  Est.Abs.Err.  Act.Abs.Err.  Est.Abs.Err.
N=4 N=4 N=38 N=38
M=6 M=10
X le1,4(x;)] |e1,4,6(x)] le1,s(x;)] le1,8,10(x;)]
0 0 7.91e-16 1.0e-11 2.48e-16
0.2 2.84e-4 3.29e-4 2.90e-6 3.55e-6
0.4 2.26e-3 2.20e-3 1.67e-5 2.04e-5
0.6 5.80e-3 5.78e-3 2.89e-5 3.49e-5
0.8 6.91e-3 6.92e-3 2.38e-5 2.88e-5
1 4.45e-13 1.92e-14 3.30e-12 5.35e-15
Act.Abs.Err.  Est.Abs.Err. Act.Abs.Err.  Est.Abs.Err.
N=4 N=4 N=8 N=8
M=6 M=10
Xi le2,4(x)] le2,4,6(x7)] le2,8(xy)] le2,8,10(x;)]
0 0 3.96e-18 0 2.37e-18
0.2 4.62e-3 4.56e-3 6.19e-6 7.34e-6
0.4 9.63e-3 9.40e-3 8.69¢e-6 1.01e-5
0.6 1.29e-2 1.24e-2 7.99e-6 8.97e-6
0.8 1.13e-2 1.07e-2 6.34e-6 6.63e-6
1 3.65e-12 6.0e-14 1.50e-12 2.16e-17
Act.Abs. Err.  Imp.Abs.Err.  Act.Abs.Err.  Imp.Abs.Err.
N=4 N=4 N=38 N=38
M=6 M=10
X le1,4(x)] |E1,4,6(xi)] le1,8(x;)| |E1,8,10(x3)]|
0 0 0 1.0e-11 1.0e-11
0.2 2.84e-4 4.46e-5 2.90e-6 6.48e-7
0.4 2.26e-3 5.14e-5 1.67e-5 3.62e-6
0.6 5.80e-3 1.63e-5 2.89e-5 6.06e-6
0.8 6.91e-3 1.69e-5 2.38e-5 4.98e-6
1 4.45e-13 4.65e-13 3.30e-12 3.31e-12
Act.Abs.Err.  Imp.Abs.Err.  Act.Abs.Err. Imp.Abs.Err.
N=4 N=4 N=8 N=8
M=6 M=10
X |€2,4(x;)] |E2,4,6(x;)| le2,8(x;)] |E2,8,10(x3))|
0 0 0 0 0
0.2 4.62e-3 6.44¢e-5 6.19e-6 1.15e-6
0.4 9.63e-3 9.63e-3 8.69e-6 1.44e-6
0.6 1.29e-2 4.77e-4 7.99e-6 9.82e-7
0.8 1.13e-2 5.98e-4 6.34e-6 2.92e-7
1 3.65e-12 3.59e-12 1.50e-12 1.50e-12
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Table 9: Absolute errors of y;(x) in Equation (25).
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X; PMN=10 SFMN=10 BPA N=5 BPAN=10 PM N=5

0.1 8.13E-014 4.30E-006 2.34E-007 3.33E-015 2.34E-007
0.2 2.40E-013 2.80E-005 1.12E-006 8.88E-015 1.12E-006
0.3 3.66E-013 8.10E-005 2.05E-006 2.73E-014 2.05E-006
0.4 3.79E-013 3.00E-004 2.57E-006 5.39E-014 2.57E-006
0.5 2.17E-013 7.30E-004 3.15E-006 9.17E-014 3.15E-006

Table 10: Absolute errors of y,(x) in Equation (25).

X; PMN=10 SFMN=10 BPA N=5 BPAN=10 PM N=5

0.1 5.97E-014 4.10E-006 1.40E-007 1.40E-007 1.40E-007
0.2 1.70E-013 2.20E-005 6.67E-007 4.44E-015 6.67E-007
0.3 2.57E-013 4.50E-005 1.21E-006 9.32E-015 1.21E-006
0.4 2.26E-013 1.40E-006 1.52E-006 1.23E-014 1.52E-006
0.5 5.26E-014 2.60E-004 1.84E-006 1.31E-014 1.84E-006

Table 8 actual absolute errors and improved absolute er-
rors are compared for y;(x) and y,(x).

Example 3. As asecond example let us consider the system
of equations [20],

Y200 - y1(0) + 200 - y1(x - 0.2) = —e* 2 + &
Y200 + y1(x) - y2(0 - y2(x - 0.2) = e %2 + & (26)
under the conditions y1(0) = 1, yP(0) = 1, y,(0) = 1,

y(0) = -1.For this example in the Table 9 and Table 10
a comparison is given for actual absolute errors between
Spline function method (SFM), Bessel polynomial approx-
imation(BPA) method and present method(PM).

The computations in Table 9 and Table 10 show that both
Bessel polynomial approximation and our method give so
close values at each x; points. Moreover as seen above
when the truncation limit is chosen N = 10 the results are
far more better than the results of spline function method.

Example 4.

(2)(0 2x-0.1) + y(z)(x)
+ 2y(0.5x-0.2) = g1(x)
Y200 +y?(0.3x - 0.1)
+ yP0.5x-0.2) = g,(x)

¥'2(0.3x - 0.1)

+

¥'2(0.2x - 0.1)

+

Y2 - 2y%(0.3x-0.1) +y(0.3x - 0.1)
+ 3y1(0.5x-0.2) = g3(x) 27)
under the conditions yl(O) y0) = -1, y,(0) = 2,

yP0) = 2, y300) = <1>(0) = 3. Here g1(x) =

3x2/2 + 77x/5 + 16/25, g,(x) = =3x?/4 + 2x/5 + 92/25,
g3(x) = 9x%/2+33x/5+163/25.For this problem by taking
N = 3 gives us the unknown coeffient matrix as

A=[-1/4 13/20 -13/12 221/60 -1/2 17/10

-11/3  97/15 -1/4 21/20 -31/12 407/60].

Substituting these coefficients in the Equation (3)yields
the solutions y; (x) = x3+2x2—x+1,y2(x) = -X> +x2+2x+2
and y3(x) = 2x> - x? + 3x + 1 which are the exact solutions
of the problem.

6 Conclusion

In this study a numerical technique is applied to obtain
the approximate solutions of system of linear functional
differential equations. By using this method, the problem
is reduced to a system of algebraic equations. The solu-
tions of last system give coefficients of assumed solutions.
An error analysis and residual correction is done for these
solutions. Numerical examples are given to explain the
method. In the first example the theoretical matrix struc-
tures mentioned in Section 2 and Section 3 are shown in
details. Besides in the first and second example, the ac-
tual absolute errors and the estimated absolute errors are
compared and it is seen that they are very close. Therefore,
the reliability of results can be test by the error estimation
technique when the exact solution of the problem is not
known. Also the absolute errors of improved solutions are
compared with the absolute errors of standard solution. In
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the third example, a comparison is done between spline
function method, Bessel polynomial approximation and
our method. It is seen that our results are almost the same
with the Bessel polynomial approximation and also our re-
sults are better than the results of spline function method.
And in the last example, a problem which has polynomial
solutions is considered and it is seen that the method give
the exact solutions. In all examples, the numerical values
and comparisons show that the method gives good results.
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